


Contemporary MathematicsVolume 4 Issue 2|2023| 359

T	 	 Temperature of the fluid in the boundary layer (K)
Tw	 	 Variable temperature of the surface (K)
T∞	 	 Free stream temperature (K)
T0	 	 Constant surface temperature
uw(x)	 Shrinking velocity
vw(x)	 Variable wall mass transfer velocity
v0	 	 Initial strength suction
B(x)	 Variable magnetic field
B0	 	 Constant magnetic field
qr	 	 Radiative heat flux
σ*	 	 Stefan-Boltzman constant
k*	 	 Mean absorption co-efficient
μnf	 	 Viscosity of nanofluid (kg/ms)
αnf	 	 Thermal diffusivity of nanofluid (m2/s)
φ	 	 Volumetric fraction of solid nanoparticles
(ρcp)nf	 Heat capacity of the nanofluid (J/KgK)
Cp	 	 Specific heat constant pressure (J/KgK)
ρnf	 	 Density of nanofluid (kg/m3)
ρs	 	 Density of volume fraction (kg/m3)
ρf	 	 Density of base fluid (kg/m3)
knf	 	 Thermal conductivity of nanofluid (J/msK)
ks	 	 Thermal conductivity of solid fraction (J/msK)
kf	 	 Thermal conductivity base fluid (J/msK)
μf	 	 Viscosity of the base fluid (kg/ms)
σnf	 	 Electrical conductivity of the nanofluid (Siemens/m)
σs	 	 Electrical conductivityof solid fraction (Siemens/m)
σf	 	 Electrical conductivityof base fluid (Siemens/m)
υf	 	 Kinematic viscosity (m2/s)
Pr	 	 Prandtl number
α	 	 Thermal diffusivity (m2/s)
M	 	 Magnetic field parameter
Rd	 	 Thermal radiation parameter
Ec	 	 Eckert number
S	 	 Wall suction parameter
Re	 	 Reynolds number
f '	 	 Dimensional velocity components
θ	 	 Dimensionless temperature
ψ	 	 Stream function (m2s-1)
Cf	 	 Skin friction coefficient
τw	 	 Local shear stress
qw	 	 Wall heat transfer
Nux		 Local Nusselt number
Rex		 Local Reynolds number
f ''(0)	 Skin friction at the wall
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θ'(0)	 Wall heat transfer gradient
S	 	 Suction parameter

Superscripts

()'	 	 Differentiation with respect to η

Subscripts

()nf	 	 Indicates nanofluid
()f	 	 Represent base fluid
()s	 	 Denote solid fluid particle
w	 	 condition at the wall

1. Introduction
One of the fascinating areas of physics that studies the behavior of electrically conducting fluids in the presence 

of a magnetic field is magnetohydrodynamics (MHD). In the fields of industrial and biomedical sciences, it is crucial. 
Medical applications such as magnetic drug targeting, cancer tumor treatment, magnetic endoscopy, and blood flow 
during surgery, as well as technical devices like pumps, flow meters, generators, metallurgy and material processing 
in the chemical industry, industrial power engineering, and nuclear engineering, all depend on MHD flow [1-4]. 
Animasaun et al. [5] examined the mixed convection nanofluid MHD stagnation-point flow, which was driven by 
buoyancy, and they noticed that a growing value of inclined angle raised the velocity boundary layer along with the 
induced magnetic field profiles. The behavior of MHD flow and its heat conduction through a porous channel wall were 
addressed by Fakour et al. [6]. Makinde et al. [7] and Nadeem et al. [8] investigated the electrically conducting fluid 
flow past an extended sheet in the presence of buoyancy effects.

Nanofluid technology is a modern multidisciplinary field where thermal engineering, nanoscience, and 
nanotechnology have formed massively over the last few decades. The development of advanced nanotechnology has 
led to the discovery of numerous methods for developing open estimations of the thermal and physical characteristics 
of fluids that conduct poorly, such as water, oil, kerosene, glycerol, and lamps. Importance of nanofluid: Sheikholeslami 
et al. and Malik et al. [9-12] studied nanofluid flow and displayed its applications. Choi [13] was the first to use the 
term “nanofluid” by putting nano-sized particles in base fluid and discovering that the base fluid’s improved thermal 
conductivity was caused by a combination of nanoparticles. The state-of-the-art review of nanofluids is addressed by 
Das et al. [14], where the authors explain the applications of nanofluids along with the importance of convectional heat 
transfer in nanofluids. Because of this characteristic of nanofluids, they have many important applications, for example, 
thermal power generation systems, nuclear reactors, storage devices, and gas turbine rotors [15]. Later on, Khan et al. 
[16], studied the numerical simulation of the nanofluid stretching surface for the boundary layer laminar flow. Alok et al. 
[17] gave a detailed description of squeezing flow through similar plates with Cu-water nanofluid between two parallel 
plates. Three dimensional micropolar hybrid nanofluid flow past an exponentially stretching sheet was studied by 
Manjunatha et al. [18]. The study of MHD stagnation point flow of nanofluid passing a stretching surface with variable 
thickness analyzed by Ramesh et al. [19] and observed that raising value of Brownian motion increased the temperature 
and thermal boundary layer thickness. Kumar et al. [20] executed 3D rotating flow towards an exponentially stretching 
surface with solar energy radiation. Upreti et al. [21] studied the significance of thermal radiation and non-uniform heat 
source on single-and multi-walled nanotubes H2O nanofluid flow in porous medium that passed through a flat plate. 
Abbas et al. [22] investigated the shape factor of nanoparticles such as Cu, Al2O3, and TiO2 on water based nanofluid 
flow under magnetic field effect through a moving rotating plate. Using Xue’s proposed thermal conductivity model, 
Upreti et al. [23] examined the three dimensional thermal and flow transfer of H2O-CNTs nanofluid for a two-way 
stretchable surface and they found that in such problems Eckert number plays a key role. Gupta et al. [24] investigated 
the numerical analysis of the squeezing nanofluid flow between two similar plates.
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As elaborated earlier, the flow and heat transfer of a fluid through a stretching or shrinking sheet have a wide range 
of applications in various industrial and technological processes, including the crystallization of paper, hot rolling, 
glass fiber drawing, petroleum industry drawing of plastic films, and many others. Crane [25] was the first to discuss 
the nature of an incompressible fluid while passing through a stretched sheet. Partha et al. [26] analyzed the mixed 
convection flow and thermal transmission of fluid over an exponentially stretched sheet. As its applicability to diverse 
engineering challenges grows, researchers are now concentrating on understanding the flow of an incompressible fluid 
due to a shrinking sheet. Wang [27] was the first to describe the peculiar sort of fluid flow caused by contracting sheets. 
Saleh et al. [28] examined the stagnation point flow of a steady fluid while passing through a shrinking sheet. For the 
unsteady case, Fang et al. [29] discussed the mass and heat transfer along the shrinking sheet. The combined impacts 
of chemical reaction and viscous dissipation on hrdromagnetic nanofluid flow subject to stretched or shrinking sheet 
were analyzed by Kameswaran et al. [30]. MHD mixed convection flow under suction and injection variations due to 
stretched sheets was discussed in detail by Haroun et al. [31]. The effects of radiation heat transfer on many flows, such 
as space technology and high-temperature operations, are quite significant. The effects of thermal radiation and viscous 
dissipation on MHD mixed convection flow over an exponential vertical stretched sheet were analyzed by Sreenivasulu 
et al. [32].

From the stated aforementioned studies, we observed that the physical effects of radiation parameters, Lorentz 
forces, suction parameters, etc. have limited research work due to exponential shrinking. Therefore, the novelty of the 
present analysis is to consider the impact of magnetic field and thermal radiation on water-based nanofluid flow over a 
two-dimensional exponential sheet. The present mathematical model has fundamental importance. For the non-linearity 
of the addressed mathematical model, a numerical procedure was used for the governing dimensionless equations: 
the common finite difference method with central differencing. The physical quantities of skin friction coefficient and 
rate of heat transfer are also examined and presented graphically for numerous pertinent parameters. Additionally, a 
comparison with recent published studies is also mentioned in tabular form for the accuracy of computational processes. 
Hopefully, the current study will be applicable in different fields such as drug delivery, contrast enhancement in 
magnetic resonance, manufacturing, magnetic separation, and transportation.

2. Model description

Thermal boundary layer

Momentum boundary layer

Nanoparticles

uw = –U0ex/l Tw

B0

T∞

y v

x

u

Figure 1. Physical model and co-ordinate system
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Consider a steady, two dimensional, laminar, incompressible, and electrically conducting boundary layer flow 
of Cu-water nanofluid over an exponentially shrinking sheet subject to thermal radiation. Where, the sheet is taken 
along x-axis and y-axis is normal to the sheet. Considered that, velocity of the shrinking sheet is uw = –U0e

x/l, where 
e is the exponential parameter and U0 referred to velocity. A transverse magnetic field B(x) = B0e

x/2l, where B0 is a 
constant magnetic field which is applied perpendicular to the sheet. However, in flow domain due to the electrical 
conductivity of blood, a magnetic field is applied and as a result Lorentz force induced in the considered boundary 
layer. T is the temperature of the nanofluid, the temperature of the sheet is Tw(x) = T∞ + T0e

x/2l where, Tw denotes the 
surface temperature, T∞ is free stream temperature and T0 is the constant temperature. The schematic system of flow 
is illustrated at Figure 1. From the above assumption, governing continuity, momentum and energy equations for the 
problem can be written as [33]:
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∂ ∂
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The boundary conditions are:

(4)
( ), ,  ( ), as 0
,  , as 
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= = = =
 →∞ → →∞

Here u and v are velocity components along x-axis and y-axis, respectively. Here vw(x) = v0e
x/2l the variable wall 

mass transfer velocity, v0 means initial strength suction, where v0 < 0 for mass suction and v0 > 0 for mass injection of 
the sheet.

According to the study of [33], the radiative heat flux term qr can be expressed as: 

(5)
44

3
r

Tq
yk

σ∗

∗
∂

= -
∂

Where, the symbol σ* and k* means for the Stefan-Boltzman constant and mean absorption co-efficient, 
respectively. Since the temperature differences of the flow are considered as much as smaller, for that one can expressed 
the term T 4 as linear function and later on using Tayler series form by neglecting higher order terms we have: 

(6)4 3 44 3T T T∞ ∞≅ -

From (2-3), μnf stands for viscosity of nanofluid, αnf denotes thermal diffusivity of nanofluid and ρnf denotes density 
of nanofluidare presented as [33-35],

(1 ) ;  ( ) (1 )( ) ( )nf f s p nf p f p sc c cρ ϕ ρ ϕρ ρ ϕ ρ ϕ ρ= - + = - +
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2.5

( 2 ) 2 ( )
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Here, φ is the volume fraction of solidparticles and φ = 0 coresponding to a regular fluid. (ρcp)nf denotes the heat 
capacity of the nanofluid, whereas ρs and ρf are densities related to the nano-particles volume fraction and the base fluid 
respectively, knf denotes thermal conductivity of the nanofluid whereas ks and kf are the thermal conductivities concerned 
to solid volume fraction and the base fluid respectively [34]. Here, μnf is the dynamical viscosity of nanofluid; where, 
μf is the viscosity of the base fluid, σnf represents the electrical conductivity of the nanofluid whereas σs and σf are the 
electrical conductivity related to solid volume fraction and the base fluid respectively.

The shrinking uw is defined by,

(8)
0

x
lwu U e= -

3. Mathematical analysis
The governing equation (1-3) along with (4) are reduced by following similarity transformation:
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Where η denotes the similarity variables and υf is the kinematic viscosity concerned of the base fluid and ψ 
indicates stream function. θ(η) is the dimensionless temperature function and f (η) is the dimensionless function.

The velocity components is obtained when ψ is defined as: 

;  u v
y x
ψ ψ∂ ∂

= = -
∂ ∂

Substituting equations (5)-(9) into (2-4), the transformed governing equations we have,
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With corresponding boundary conditions are
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number.
Two essential physical quantities of the addressed problem are skin friction Coefficient Cf and local Nusselt number 

Nux for the sheet explained as [36],
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Where, τw is thelocal shear stress and the convective heat flux qw defined by:
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Substituting equations (5)-(9) into (13-14), finally we have: 
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Where, 
0

f
x lRe

U le

υ
=  is the Reynolds number.

4. Numerical method
Here the numerical procedure that addressed in [37] was discussed in details. This numerical technique is a quite 

simple, accurate and more precisely efficient in order to solve an extensive class of two-point boundary value similarity 
problems in fluid mechanics. Since, the momentum equation (10) and energy equation (11) is highly non-linear. So, 
it is very difficult to solve these equations analytically. That’s why we transformed the momentum equation (10) and 
energy equation (11) into a linear equation. For solving complexity of the addressed problem, numerically we applied 
a common finite difference technique which based on central differencing. Additionally, a matrix manipulation of 
tridigonal form is also addressed in technique. For obtained more accuracy of the problem, an iterative procedure is also 
used in this process. The total numerical technique is stable, accurate and quickly converging. In fluid mechanics, it is 
an accurate and powerful method for solving highly non-linear problems in case of fluid mechanics as mentioned by [38].

To do that, the momentum equation reduces it to a 2nd order linear form by considering:
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2.5

1 ( ) ( ) 2 ( )

(1 ) (1 ) s

f

F'' x fF' x f'F x
ρ

ϕ ϕ ϕ
ρ

+ -
   - - +       

2 2 ( )2 ( ) 0
2 ( )

(1 )

s f f s

s f f ss

f

MF x σ σ ϕ σ σ

σ σ ϕ σ σρ
ϕ ϕ

ρ

 + - - - = 
+ + -      - +      

2.5

2 2 ( )
2 ( )

2 ( )( ) 2

(1 ) (1 ) (1 )

s f f s

s f f s

s s

f f

MF x
F'' x f'

σ σ ϕ σ σ
σ σ ϕ σ σ

ρ ρ
ϕ ϕ ϕ ϕ ϕ

ρ ρ

  + - -   + + -   ⇒ - + 
          - - + - +                     

( ) 0fF' x+ =

which takes the following form:
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In this structure of the equation (15) all the equations of the system can be reduced in the similar process. Therefore 
the equation (10) is solved by, Appling acommon finite difference technique that constitutes with central differencing 
and matrix manipulation of tridiagonal form.

Before to start the solution procedure, first we have to set initial guesses for  f (η),  f '(η), θ(η) between η = 0 and 
η = η∞ (η∞ → ∞) which should obviously satisfy the boundary condition (12). For the present problem, we insert the 
following initial guesses:
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The function  f (η) is obtained by integrating the curve  f '(η). To forward a new estimation for  f '(η) and  f 'new(η) 
we have to consider the functions  f  is known. Therefore, the updated value of  f (η) is obtained by integrating the curve
 f 'new(η).

Hence, the fresh distributions of  f '(η) and  f (η) are then imposed for getting new inputs and so on. This solution is 
continued until the convergence up to a small quantity | f ''new –  f ''| ≤ ε is obtained. 

After obtaining the function  f (η), using the same algorithm energy equation (11) is solved, but without iteration as 
the equation (10) is linear. The energy equation (11) is
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By setting F(η) = θ(η) is again a second order linear differential equation of the form,
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We get a new approximation θnew for θ by considering  f (η),  f '(η) are known. This process is continuing until 
convergence up to a small quantity |θ'new – θ'| ≤ ε is obtained and finally we obtain θ. 

In this problem we apply discretization step Δη = 0.01 and by trial and error we consider the value of η∞ = 6 and 

convergence criterion ε = 10–4 defined as 
,
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5. Values of thermophysical properties
The values of thermo-physical correlation of water and nanoparticles are given in Table 1.

Table 1. Values of H2O and Cu [33, 35]

Thermophysical properties Water (H2O) Copper (Cu)

ρ(kg/m3) 997.1 8,933

cp(J/kgK) 4,179 385

k(W/mK) 0.693 400

σ(S/m) 0.05 5.96 × 107

Pr 6.2

6. Numerical validation
To check the applicability of the applied code, a comparison has been made with Sumera et al. [33] and Ishak et 

al. [39] for the Nusselt number –θ'(0) for various values of Prandtl number when Rd = 0.2, M = 0, Ec = 0.1, S = 3. This 
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obtained results are stated in Table 2 and found an acceptable accuracy. Finally, to obtain the grid suitable for the present 
mathematical model, a grid independence test is studied here and the obtained result are captured in Table 3. Figure 2 
shows the stability analysis for various values of convergence number.

Table 2. Comparison of the local Nusselt number –θ'(0) for various value Pr = 1, 2, 3, 5, 10 with specific values of Rd = 0.2, M = 0, Ec = 0.1, S = 3

Pr
Sumera et al. [33]

–θ'(0)
Ishak [39]

–θ'(0)
Present results

–θ'(0)

1 0.9548106 0.9548 0.958710

2 1.4714540 1.4715 1.475632

3 1.86909 1.8691 1.861887

5 2.5001 2.5001 2.506501

10 3.6603 3.6604 3.663791

Table 3. Grid independence test while other parameter values are Rd = 0.2, M = 1, Ec = 0.1, S = 3, φ = 0.1, Pr = 6.2

Step size
h = Δη η θ CPU time

0.01 0.2
0.4

0.984
0.968 0.945

0.02 0.2
0.4

0.986
0.971 0.542

0.04 0.2
0.4

0.986
0.971 0.507
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7. Results and discussion
Since, we have considered the incompressible laminar two-dimensional boundary layer steady state nanofluid flow 

past an exponentially shrinking surface has been explored numerically. To get an acceptable and authentic numerical 
results of addressed problem, it is essential to put all realistic values related to parameters. After surviving related to 
problem, here we used the following values in computational process: Prandtl number Pr = 5, 6.2, 7 as in [40-41], 
magnetic field parameter M = 1, 2, 3 as in [34], thermal radiation parameter Rd = 0.2, 0.4, 0.6 as in [42], Eckert number 
Ec = 0.5, 1, 1.5, 2, 3 as in [42-44], wall mass suction parameter S = 2.4, 2.6, 2.8, 3 as in [45].
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Figure 3. (a) Effect of S on  f '(η); (b) Effect of S on θ(η)
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Figures 3(a) and 3(b) show the effects of mass suction parameters on the velocity and temperature profiles. It 
shows that as suction parameter increased, velocity profile enhanced but temperature profile decline. This is due to the 
fact that, the fluid in near to the wall is sucked in presence of suction. As a result momentum boundary layer thickness 
is reduced and consequently distribution of velocity is increased. While fluid temperature is appreciably increased when 
nanoparticles are mixed with based fluid compare to that of conventional fluid. 
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Figure 4. (a) Effect of φ on  f '(η); (b) Effect of φ on θ(η)

Figures 4(a) and 4(b) elucidates the variations of solid volume fraction of nanoparticles on  f '(η) and θ(η), 
respectively. Both velocity and temperature profiles are accelerate with rising values of volume fraction. The fact is 
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that the influence of the level of nanofluid viscosity and nanofluid density. Also by mixing nanoparticles into base fluid, 
thermal conductivity of base fluid is also increased compared to that of regular fluid. As a results thermal boundary layer 
increased and heat of the fluid is also accelerate. 
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Figure 5. (a) Effect of M on  f '(η); (b) Effect of M on θ(η)

Figure 5(a) and 5(b) portrays the influence magnetic field parameter on  f '(η) and θ(η), respectively. Both velocity 
and temperature are reduced due to the incrementing values of M. The reason behind that when we applied a magnetic 
field in the flow domain which acts opposite directions of fluid flows, a resistance force induced in the boundary layer. 
This resistive force are well known as Lorentz force. As a result fluid temperature is accelerate and this increment is 
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significant in Cu-water case compare to pure fluid case. 
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Figure 6. Effect of Rd on θ(η)

The variations of thermal radiation parameter on temperature profile is displayed in Figure 6. It is observed that 
θ(η) profile is increased as radiation parameter enhanced. Because we know that fluids energy is mainly transformed 
through electromagnetic energy which ultimately increased the fluids internal kinetic development and collisions 
between the considered fluid molecules. This can be described with radiation parameter, since radiation parameter is 
representing the thermal dissipation in medium of electromagnetic radiation charge.  
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Figure 7. Effect of Pr on θ(η)
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Figure 7 reveals the impact of Prandtl number on heat profile. From the graph, it can be observed that the 
temperature distribution enhanced due to the accelerate in the Prandtl number. This phenomena is more important for 
physical applications. As we know that ratio of kinematic viscosity to thermal diffusivity is Prandtl number. Therefore 
higher values of Prandtl number reduces the thermal diffusivity and its effect is clearly observed in Figure 6. 
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Figure 8. Effect of Ec on θ(η)

Figure 8 examine the effects of the Eckert number on the heat profile. Figure indicates that with rising values 
of Eckert number fluid heat from the surface isquickly spread as what expected. Because, the transformation of fluid 
kinetic energy into the fluid internal energy is caused due to Eckert number and this work is completed against the 
viscous fluid stresses. 
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Figure 9. (a) Skin friction coefficient - f ''(0) with Rd for different values of φ; (b) Local Nusselt number θ'(0) with Rd for different values of φ 

Figure 9(a) to 11(b), demonstrates the variations of skin friction co-efficient and the rate of heat transfer of Cu-
water and Pure water for various values of particles volume fraction, magnetic field parameter, suction parameter against 
radiation parameter, Eckert number and magnetic field parameter, respectively. From the figures, it is observed that skin 
friction coefficient is enhanced for the φ and M; while reverse act is found in Nusselt number case. Both  f ''(0) and –θ'(0) 
are increased for suction parameter cases. 
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Figure 11. (a) Skin friction coefficient - f ''(0) with M for different values of S; (b) Local Nusselt number θ'(0) with M for different values of S

8. Conclusions
In this paper, the influence of suction and thermal radiation on the MHD flow and heat transfer of a water-based 

Cu-water incompressible nanofluid flow over an exponentially shrinking sheet is analyzed. The numerical results are 
shown graphically in order to investigate the impacts of physical aspects on velocity and temperature distributions. 
Some of the findings from the present investigations are:

• An increase in the particle volume fraction, magnetic field parameter, and both velocity and temperature 
distributions on both occasions, Cu-water nanofluid performance in terms of velocity and temperature is significantly 
higher than that of pure water flow.

• Fluid velocity increased, but temperature distribution reduced in the presence of the suction parameter.
• Temperature distributions are boosted up with accelerating values of the radiation parameter, Eckert number, 

while decreasing for Prandtl number.
• The influence of the suction parameter decreases both the skin friction coefficient and the rate of heat transfer.
• An increment in the values of the magnetic field parameter and radiation parameter reduces the coefficient of skin 

friction but accelerates the rate of heat transfer.

Conflict of interest
The authors declare no competing financial interest.

References
[1]	 Hatami M, Hosseinzadeh K, Domairry G, Behnamfer M. Numerical study of MHD two-phase Couette flow 

analysis for fluid-particle suspension between moving parallel plates. Journal of the Taiwan Institute of Chemical 
Engineers. 2014; 45(5): 2238-2245.

[2]	 Sheikholeslami M, Ganji D, Ashorynejad HR. Analytical investigation of Jeffery-Hamel flow with high magnetic 
field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics. 2012; 33(1): 



Contemporary MathematicsVolume 4 Issue 2|2023| 377

1553-1564.
[3]	 Kefayati GR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian 

nanofluid in an enclosure. International Journal of Heat and Mass Transfer. 2016; 92: 1066-1089.
[4]	 Sheikholeslami M, Ganji DD. Numerical approach for magnetic nanofluids flow in a porous cavity using CuO 

nanoparticles. Materials & Design. 2017; 120: 382-393.
[5]	 Animasaun IL, Prakash J, Vijayaragavan R, Sandeep N. Stagnation flow of nanofluid embedded with dust particles 

over an inclined stretching sheet with induced magnetic field and suction. Journal of Nanofluids. 2017; 6: 28-37.
[6]	 Fakour M, Ganji DD, Abbasi M. Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a 

channel with porous walls. Case Studies in Thermal Engineering. 2014; 4: 202-214.
[7]	 Makinde OD, Khan WA, Khan ZH. Buoyancy effects on MHD stagnation point flow and heat transfer of a 

nanofluid past a convectively heated stretching/shrinking sheet. International Journal of Heat and Mass Transfer. 
2013; 62: 526-533.

[8]	 Nadeem S, Haq RU, Khan ZH. Numerical study of MHD boundary layer flow of a maxwell fluid past a stretching 
sheet in the presence of nanoparticles. Journal of the Taiwan Institute of Chemical Engineers. 2014; 45(1): 121-
126.

[9]	 Sheikholeslami M, Shah Z, Tassaddiq A, Shafee A, Khan I. Application of electric field for augmentation of 
ferrofluid heat transfer in an enclosure including double moving walls. IEEE Access. 2019; 7: 21048-21056.

[10]	Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Zhixiong L. Application of neural network for 
estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Computer Methods in Applied 
Mechanics and Engineering. 2019; 344: 1-12.

[11]	Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on Magnetizable 
hybrid nanofluid heat transfer through a circular cavity. Journal of Molecular Liquids. 2019; 277: 388-396.

[12]	Sheikholeslami M, Shah Z, Shafi A, Khan I, Tlili I. Uniform magnetic force impact on water based nanofluid 
thermal behavior in a porous enclosure with ellipse shaped obstacle. Scientific Reports. 2019; 9(1196): 1-11.

[13]	Choi S. Enhanced thermal conductivity of nanofluids with nano particles, development and applications of 
Newtonian flows. ASME Journal of Heat Transfer. 1995; 66: 99-105.

[14]	Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: Science and Technology. New York: John Wiley & Sons, 
IncHoboken; 2008.

[15]	Owen JM, Roger RH. Flow and heat transfer in rotating-disc systems. I-Rotor-stator systems, NASA STI/Recon 
Technical Report A. Wiley; 1989.

[16]	Khan W, Pop I. Boundary layer flow of a nanofluid past a stretching sheet. Academia. 2010; 53: 2477-2483.
[17]	Pandey AK, Kumar AM. Squeezing unsteady MHD Cu-water nanofluid flow between two parallel plates in porous 

medium with suction/injection. Computational and Applied Mathematics Journal. 2018; 4(2): 31-42.
[18]	Manjunatha S, Kuttan BA, Ramesh GK, Gireesha BJ, Emad HA. 3D flow and heat transfer of micropolar 

fluid suspended with mixture of nanoparticles (Ag-CuO/H2O) driven by an exponentially stretching surface. 
Multidiscipline Modeling in Materials and Structures. 2020; 16(6): 1691-1707.

[19]	Ramesh GK, Prasanna BCK, Gireesha BJ, Gorla RSR. MHD stagnation point flow of nanofluid towards a 
stretching surface with variable thickness and thermal radiation. Journal of Nanofluids. 2015; 4(2): 247-253.

[20]	Kumar KG, Ramesh GK, Shehzad SA, Abbasi FM. Three-dimensional (3D) rotating flow of selenium nanoparticles 
past an exponentially stretchable surface due to solar energy radiation. Journal of Nanofluids. 2019; 8(5): 1034-
1040.

[21]	Upreti H, Rawat SK, Kumar M. Radiation and non-uniform heat sink/source effects on 2D MHD flow of CNTs-
H2O nanofluid over a flat porous plate. Multidiscipline Modeling in Materials and Structures. 2019; 16(4): 791-
809.

[22] Abbas W, Magdy MM. Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3 and TiO2 over a 
moving rotating plate and impact of various nanoparticles shapes. Mathematical Problems in Engineering. 2020; 
2020: 9606382.

[23] Upreti H, Pandey AK, Kumar M, Makinde OD. Darcy-forchheimer flow of CNTs-H2O nanofluid over a porous 
stretchable surface with Xue model. International Journal of Modern Physics B. 2023; 37(2): 2350018.

[24]	Gupta AK, Ray SS. Numerical treatment for investigation of squeezing unsteady nanofluid flow between two 
parallel plates. Powder Technology. 2015; 279: 282-289.

[25]	Crane LJ. Flow past a stretching plate. Journal of Applied Mathematics and Physics. 1970; 21: 645-647.
[26]	Partha MK, Murthy PVSN, Rajasekhar GP. Effect of viscous dissipation on the mixed convection heat transfer 

from an exponentially stretching surface. Heat and Mass Transfer. 2005; 41: 360-366.
[27]	Miklavcic M, Wang CY. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics. 2006; 64(2): 



Contemporary Mathematics 378 | M. Ferdows, et al.

283-290.
[28]	Saleh SHM, Arifin NM, Nazar R, Ali FM, Pop I. Mixed convection stagnation flow towards a vertical shrinking 

sheet. International Journal of Heat and Mass Transfer. 2014; 73: 839-848.
[29]	Fang TG, Zhang J, Yao SS. Viscous flow over an unsteady shrinking sheet with mass transfer. Chinese Physics 

Letters. 2009; 26(1): 014703.
[30]	Kameswaran PK, Narayana M, Sibanda P, Murthy PVSN. Hydromagnetic nanofluid flow due to a stretching or 

shrinking sheet with viscous dissipation and chemical reaction effects. International Journal of Heat and Mass 
Transfer. 2012; 55(25-26): 7587-7595. 

[31]	Haroun NA, Sibanda P, Mondal S, Motsa SS. On unsteady MHD mixed convection in a nanofluid due to a 
stretching/shrinking surface with suction/injection using the spectral relaxation method. Boundary Value Problems. 
2015; 1: 1-17.

[32]	Sreenivasulu P, Reddy NB. Thermo-Diffusion and Diffusion-Thermo effects on MHD boundary layer flow past an 
exponential stretching sheet with thermal radiation and viscous dissipation. Advances in Applied Science Research. 
2012; 3(6): 3890-3901.

[33]	Dero S, Rohni AM, Saaban A. The dual solution and stability analysis of nanofluid flow using Tiwari-Das model 
over a permeable exponentially shrinking surface with partial slip conditions. Journal of Engineering of Applied 
sciences. 2019; 14(13): 4569-4582.

[34]	Sandeep N, Sulochana C, Kumar BR. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an 
exponentially stretching surface. Engineering Science and Technology, an International Journal. 2016; 19: 227-
240.

[35]	Yan L, Dero S, Khan I, Mari IA, Baleanu D, Nisar DS, et al. Dual solutions and stability analysis of magnetized 
hybrid nanofluid with joule heating and multiple slip conditions. Processes. 2020; 8: 332.

[36]	Adnan NSM, Arifin NM, Bacho M, Ali FM. Stability analysis of MHD flow and heat transfer passing a permeable 
exponentially shrinking sheet with partial slip and thermal radiation. CFD Letters. 2019; 11(12): 34-42.

[37]	Kafoussias NG, Williams EW. An improved approximation technique to obtain numerical solution of a class of 
two-point boundary value similarity problems in fluid mechanics. International Journal for Numerical Methods in 
Fluids. 1993; 17(2): 145-162.

[38]	Tzirtzilakis EE, Kafoussias NG. Three dimensional magnetic fluid boundary layer flow over a linearly stretching 
sheet. Journal of Heat Transfer. 2010; 132: 1-8.

[39]	Ishak A. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains 
Malaysiana. 2011; 40(4): 391-395.

[40]	Shah Z, Dawar A, Kumam P, Khan W, Islam S. Impact of nonlinear thermal radiation on MHD nanofluid thin film 
flow over a horizontally rotating disk. Applied Sciences. 2019; 12(4): 1533.

[41]	 Mamatha B, Raju MC, Varma SVK. Thermal diffusion effect on MHD mixed convection unsteady flow of a micro 
polar fluid past a semi-infinite vertical porous plate with radiation and mass transfer. International Journal of 
Engineering Research in Africa. 2015; 13: 21-37.

[42]	Murugesan T, Dinesh MK. Viscous dissipation and Joule heating effects on MHD flow of a Thermo-Solutal 
stratified nanofluid over an exponentially stretching sheet with radiation and heat generation/absorption. World 
Scientific News. 2019; 23(5): 193-210.

[43]	Mathur P, Mishra S. Free convective magnetohydrodynamic flow over an exponentially stretching sheet with 
radiation. Heat Transfer Asian Res. 2019; 6(7): 1-13.

[44]	Rashid I, Sagheer M, Hussain S. Exact solution of stagnation point flow of MHD nanofluid induced by an 
exponential stretching sheet with thermal conductivity. Physica Scripta. 2020; 95: 1-12.

[45]	Jain S, Choudhary R. Effects of MHD on boundary layer flow in porous medium due to exponentially shrinking 
sheet with slip. Procedia Engineering. 2015; 127: 1203-1210.


