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T	 	 Temperature	of	the	fluid	in	the	boundary	layer	(K)
Tw	 	 Variable	temperature	of	the	surface	(K)
T∞	 	 Free	stream	temperature	(K)
T0	 	 Constant	surface	temperature
uw(x)	 Shrinking	velocity
vw(x)	 Variable	wall	mass	transfer	velocity
v0	 	 Initial	strength	suction
B(x)	 Variable	magnetic	field
B0	 	 Constant	magnetic	field
qr	 	 Radiative	heat	flux
σ*	 	 Stefan-Boltzman	constant
k*	 	 Mean	absorption	co-efficient
μnf	 	 Viscosity	of	nanofluid	(kg/ms)
αnf	 	 Thermal	diffusivity	of	nanofluid	(m2/s)
φ	 	 Volumetric	fraction	of	solid	nanoparticles
(ρcp)nf	 Heat	capacity	of	the	nanofluid	(J/KgK)
Cp	 	 Specific	heat	constant	pressure	(J/KgK)
ρnf	 	 Density	of	nanofluid	(kg/m3)
ρs	 	 Density	of	volume	fraction	(kg/m3)
ρf	 	 Density	of	base	fluid	(kg/m3)
knf	 	 Thermal	conductivity	of	nanofluid	(J/msK)
ks	 	 Thermal	conductivity	of	solid	fraction	(J/msK)
kf	 	 Thermal	conductivity	base	fluid	(J/msK)
μf	 	 Viscosity	of	the	base	fluid	(kg/ms)
σnf	 	 Electrical	conductivity	of	the	nanofluid	(Siemens/m)
σs	 	 Electrical	conductivityof	solid	fraction	(Siemens/m)
σf	 	 Electrical	conductivityof	base	fluid	(Siemens/m)
υf	 	 Kinematic	viscosity	(m2/s)
Pr	 	 Prandtl	number
α	 	 Thermal	diffusivity	(m2/s)
M	 	 Magnetic	field	parameter
Rd	 	 Thermal	radiation	parameter
Ec	 	 Eckert	number
S	 	 Wall	suction	parameter
Re	 	 Reynolds	number
f '	 	 Dimensional	velocity	components
θ	 	 Dimensionless	temperature
ψ	 	 Stream	function	(m2s-1)
Cf	 	 Skin	friction	coefficient
τw	 	 Local	shear	stress
qw	 	 Wall	heat	transfer
Nux		 Local	Nusselt	number
Rex		 Local	Reynolds	number
f ''(0)	 Skin	friction	at	the	wall
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θ'(0)	 Wall	heat	transfer	gradient
S	 	 Suction	parameter

Superscripts

()'	 	 Differentiation	with	respect	to	η

Subscripts

()nf	 	 Indicates	nanofluid
()f	 	 Represent	base	fluid
()s	 	 Denote	solid	fluid	particle
w	 	 condition	at	the	wall

1. Introduction
One	of	the	fascinating	areas	of	physics	that	studies	the	behavior	of	electrically	conducting	fluids	in	the	presence	

of	a	magnetic	field	is	magnetohydrodynamics	(MHD).	In	the	fields	of	industrial	and	biomedical	sciences,	it	is	crucial.	
Medical	applications	such	as	magnetic	drug	targeting,	cancer	tumor	treatment,	magnetic	endoscopy,	and	blood	flow	
during	surgery,	as	well	as	technical	devices	like	pumps,	flow	meters,	generators,	metallurgy	and	material	processing	
in	 the	chemical	 industry,	 industrial	power	engineering,	and	nuclear	engineering,	all	depend	on	MHD	flow	[1-4].	
Animasaun	et	al.	 [5]	examined	 the	mixed	convection	nanofluid	MHD	stagnation-point	flow,	which	was	driven	by	
buoyancy,	and	they	noticed	that	a	growing	value	of	inclined	angle	raised	the	velocity	boundary	layer	along	with	the	
induced	magnetic	field	profiles.	The	behavior	of	MHD	flow	and	its	heat	conduction	through	a	porous	channel	wall	were	
addressed	by	Fakour	et	al.	[6].	Makinde	et	al.	[7]	and	Nadeem	et	al.	[8]	investigated	the	electrically	conducting	fluid	
flow	past	an	extended	sheet	in	the	presence	of	buoyancy	effects.

Nanofluid	 technology	 is	 a	modern	multidisciplinary	 field	where	 thermal	 engineering,	 nanoscience,	 and	
nanotechnology	have	formed	massively	over	the	last	few	decades.	The	development	of	advanced	nanotechnology	has	
led	to	the	discovery	of	numerous	methods	for	developing	open	estimations	of	the	thermal	and	physical	characteristics	
of	fluids	that	conduct	poorly,	such	as	water,	oil,	kerosene,	glycerol,	and	lamps.	Importance	of	nanofluid:	Sheikholeslami	
et	al.	and	Malik	et	al.	[9-12]	studied	nanofluid	flow	and	displayed	its	applications.	Choi	[13]	was	the	first	 to	use	the	
term	“nanofluid”	by	putting	nano-sized	particles	in	base	fluid	and	discovering	that	the	base	fluid’s	improved	thermal	
conductivity	was	caused	by	a	combination	of	nanoparticles.	The	state-of-the-art	review	of	nanofluids	is	addressed	by	
Das	et	al.	[14],	where	the	authors	explain	the	applications	of	nanofluids	along	with	the	importance	of	convectional	heat	
transfer	in	nanofluids.	Because	of	this	characteristic	of	nanofluids,	they	have	many	important	applications,	for	example,	
thermal	power	generation	systems,	nuclear	reactors,	storage	devices,	and	gas	turbine	rotors	[15].	Later	on,	Khan	et	al.	
[16],	studied	the	numerical	simulation	of	the	nanofluid	stretching	surface	for	the	boundary	layer	laminar	flow.	Alok	et	al.	
[17]	gave	a	detailed	description	of	squeezing	flow	through	similar	plates	with	Cu-water	nanofluid	between	two	parallel	
plates.	Three	dimensional	micropolar	hybrid	nanofluid	flow	past	an	exponentially	stretching	sheet	was	studied	by	
Manjunatha	et	al.	[18].	The	study	of	MHD	stagnation	point	flow	of	nanofluid	passing	a	stretching	surface	with	variable	
thickness	analyzed	by	Ramesh	et	al.	[19]	and	observed	that	raising	value	of	Brownian	motion	increased	the	temperature	
and	thermal	boundary	layer	thickness.	Kumar	et	al.	[20]	executed	3D	rotating	flow	towards	an	exponentially	stretching	
surface	with	solar	energy	radiation.	Upreti	et	al.	[21]	studied	the	significance	of	thermal	radiation	and	non-uniform	heat	
source	on	single-and	multi-walled	nanotubes	H2O	nanofluid	flow	in	porous	medium	that	passed	through	a	flat	plate.	
Abbas	et	al.	[22]	investigated	the	shape	factor	of	nanoparticles	such	as	Cu,	Al2O3,	and	TiO2	on	water	based	nanofluid	
flow	under	magnetic	field	effect	through	a	moving	rotating	plate.	Using	Xue’s	proposed	thermal	conductivity	model,	
Upreti	et	al.	 [23]	examined	the	three	dimensional	 thermal	and	flow	transfer	of	H2O-CNTs	nanofluid	for	a	 two-way	
stretchable	surface	and	they	found	that	in	such	problems	Eckert	number	plays	a	key	role.	Gupta	et	al.	[24]	investigated	
the	numerical	analysis	of	the	squeezing	nanofluid	flow	between	two	similar	plates.
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As	elaborated	earlier,	the	flow	and	heat	transfer	of	a	fluid	through	a	stretching	or	shrinking	sheet	have	a	wide	range	
of	applications	 in	various	 industrial	and	technological	processes,	 including	 the	crystallization	of	paper,	hot	rolling,	
glass	fiber	drawing,	petroleum	industry	drawing	of	plastic	films,	and	many	others.	Crane	[25]	was	the	first	to	discuss	
the	nature	of	an	incompressible	fluid	while	passing	through	a	stretched	sheet.	Partha	et	al.	[26]	analyzed	the	mixed	
convection	flow	and	thermal	transmission	of	fluid	over	an	exponentially	stretched	sheet.	As	its	applicability	to	diverse	
engineering	challenges	grows,	researchers	are	now	concentrating	on	understanding	the	flow	of	an	incompressible	fluid	
due	to	a	shrinking	sheet.	Wang	[27]	was	the	first	to	describe	the	peculiar	sort	of	fluid	flow	caused	by	contracting	sheets.	
Saleh	et	al.	[28]	examined	the	stagnation	point	flow	of	a	steady	fluid	while	passing	through	a	shrinking	sheet.	For	the	
unsteady	case,	Fang	et	al.	[29]	discussed	the	mass	and	heat	transfer	along	the	shrinking	sheet.	The	combined	impacts	
of	chemical	reaction	and	viscous	dissipation	on	hrdromagnetic	nanofluid	flow	subject	 to	stretched	or	shrinking	sheet	
were	analyzed	by	Kameswaran	et	al.	[30].	MHD	mixed	convection	flow	under	suction	and	injection	variations	due	to	
stretched	sheets	was	discussed	in	detail	by	Haroun	et	al.	[31].	The	effects	of	radiation	heat	transfer	on	many	flows,	such	
as	space	technology	and	high-temperature	operations,	are	quite	significant.	The	effects	of	thermal	radiation	and	viscous	
dissipation	on	MHD	mixed	convection	flow	over	an	exponential	vertical	stretched	sheet	were	analyzed	by	Sreenivasulu	
et	al.	[32].

From	the	stated	aforementioned	studies,	we	observed	that	 the	physical	effects	of	radiation	parameters,	Lorentz	
forces,	suction	parameters,	etc.	have	limited	research	work	due	to	exponential	shrinking.	Therefore,	the	novelty	of	the	
present	analysis	is	to	consider	the	impact	of	magnetic	field	and	thermal	radiation	on	water-based	nanofluid	flow	over	a	
two-dimensional	exponential	sheet. The	present	mathematical	model	has	fundamental	importance.	For	the	non-linearity	
of	 the	addressed	mathematical	model,	a	numerical	procedure	was	used	for	 the	governing	dimensionless	equations:	
the	common	finite	difference	method	with	central	differencing.	The	physical	quantities	of	skin	friction	coefficient	and	
rate	of	heat	 transfer	are	also	examined	and	presented	graphically	for	numerous	pertinent	parameters.	Additionally,	a	
comparison	with	recent	published	studies	is	also	mentioned	in	tabular	form	for	the	accuracy	of	computational	processes.	
Hopefully,	 the	current	study	will	be	applicable	 in	different	 fields	such	as	drug	delivery,	contrast	enhancement	 in	
magnetic	resonance,	manufacturing,	magnetic	separation,	and	transportation.

2. Model description

Thermal	boundary	layer

Momentum	boundary	layer

Nanoparticles

uw = –U0ex/l Tw

B0

T∞

y v

x

u

Figure 1. Physical	model	and	co-ordinate	system
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Consider	a	steady,	 two	dimensional,	 laminar,	 incompressible,	and	electrically	conducting	boundary	layer	flow	
of	Cu-water	nanofluid	over	an	exponentially	shrinking	sheet	subject	 to	 thermal	radiation.	Where,	 the	sheet	 is	 taken	
along	x-axis	and	y-axis	is	normal	to	the	sheet.	Considered	that,	velocity	of	the	shrinking	sheet	is	uw = –U0e

x/l,	where	
e	 is	 the	exponential	parameter	and	U0	 referred	to	velocity.	A	transverse	magnetic	field	B(x)	=	B0e

x/2l,	where	B0	 is	a	
constant	magnetic	field	which	is	applied	perpendicular	 to	 the	sheet.	However,	 in	flow	domain	due	to	 the	electrical	
conductivity	of	blood,	a	magnetic	field	is	applied	and	as	a	result	Lorentz	force	induced	in	the	considered	boundary	
layer.	T	is	the	temperature	of	the	nanofluid,	the	temperature	of	the	sheet	is	Tw(x)	=	T∞ + T0e

x/2l	where,	Tw	denotes	the	
surface	temperature,	T∞	 is	free	stream	temperature	and	T0	 is	 the	constant	temperature.	The	schematic	system	of	flow	
is	illustrated	at	Figure	1.	From	the	above	assumption,	governing	continuity,	momentum	and	energy	equations	for	the	
problem	can	be	written	as	[33]:
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∂ ∂
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The	boundary	conditions	are:

(4)
( ),	 , 	 ( ),	as	 0
, 	 ,	as	
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= = = =
 →∞ → →∞

Here u	and	v	are	velocity	components	along	x-axis	and	y-axis,	respectively.	Here	vw(x)	=	v0e
x/2l	the	variable	wall	

mass	transfer	velocity,	v0	means	initial	strength	suction,	where	v0	<	0	for	mass	suction	and	v0	>	0	for	mass	injection	of	
the	sheet.

According	to	the	study	of	[33],	the	radiative	heat	flux	term	qr	can	be	expressed	as:	

(5)
44

3
r

Tq
yk

σ∗

∗
∂

= -
∂

Where,	 the	 symbol	σ*	 and	k*	means	 for	 the	Stefan-Boltzman	constant	 and	mean	absorption	 co-efficient,	
respectively.	Since	the	temperature	differences	of	the	flow	are	considered	as	much	as	smaller,	for	that	one	can	expressed	
the term T 4	as	linear	function	and	later	on	using	Tayler	series	form	by	neglecting	higher	order	terms	we	have:	

(6)4 3 44 3T T T∞ ∞≅ -

From	(2-3),	μnf	stands	for	viscosity	of	nanofluid,	αnf	denotes	thermal	diffusivity	of	nanofluid	and	ρnf	denotes	density	
of	nanofluidare	presented	as	[33-35],

(1 ) ; 	( ) (1 )( ) ( )nf f s p nf p f p sc c cρ ϕ ρ ϕρ ρ ϕ ρ ϕ ρ= - + = - +
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2.5
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Here,	φ	is	the	volume	fraction	of	solidparticles	and	φ	=	0	coresponding	to	a	regular	fluid.	(ρcp)nf	denotes	the	heat	
capacity	of	the	nanofluid,	whereas	ρs	and	ρf	are	densities	related	to	the	nano-particles	volume	fraction	and	the	base	fluid	
respectively,	knf	denotes	thermal	conductivity	of	the	nanofluid	whereas	ks	and	kf	are	the	thermal	conductivities	concerned	
to	solid	volume	fraction	and	the	base	fluid	respectively	[34].	Here,	μnf	is	the	dynamical	viscosity	of	nanofluid;	where,	
μf	is	the	viscosity	of	the	base	fluid,	σnf	represents	the	electrical	conductivity	of	the	nanofluid	whereas	σs	and	σf are the 
electrical	conductivity	related	to	solid	volume	fraction	and	the	base	fluid	respectively.

The	shrinking	uw	is	defined	by,

(8)
0

x
lwu U e= -

3. Mathematical analysis
The	governing	equation	(1-3)	along	with	(4)	are	reduced	by	following	similarity	transformation:
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Where η	denotes	 the	similarity	variables	and	υf	 is	 the	kinematic	viscosity	concerned	of	 the	base	 fluid	and	ψ 
indicates	stream	function.	θ(η)	is	the	dimensionless	temperature	function	and	f (η)	is	the	dimensionless	function.

The	velocity	components	is	obtained	when	ψ	is	defined	as:	

; 	u v
y x
ψ ψ∂ ∂

= = -
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Substituting	equations	(5)-(9)	into	(2-4),	the	transformed	governing	equations	we	have,
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With	corresponding	boundary	conditions	are
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number.
Two	essential	physical	quantities	of	the	addressed	problem	are	skin	friction	Coefficient	Cf	and	local	Nusselt	number	

Nux	for	the	sheet	explained	as	[36],
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Where,	τw	is	thelocal	shear	stress	and	the	convective	heat	flux	qw	defined	by:
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Substituting	equations	(5)-(9)	into	(13-14),	finally	we	have:	
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4. Numerical method
Here	the	numerical	procedure	that	addressed	in	[37]	was	discussed	in	details.	This	numerical	technique	is	a	quite	

simple,	accurate	and	more	precisely	efficient	in	order	to	solve	an	extensive	class	of	two-point	boundary	value	similarity	
problems	in	fluid	mechanics.	Since,	 the	momentum	equation	(10)	and	energy	equation	(11)	is	highly	non-linear.	So,	
it	 is	very	difficult	to	solve	these	equations	analytically.	That’s	why	we	transformed	the	momentum	equation	(10)	and	
energy	equation	(11)	into	a	linear	equation.	For	solving	complexity	of	the	addressed	problem,	numerically	we	applied	
a	common	finite	difference	 technique	which	based	on	central	differencing.	Additionally,	a	matrix	manipulation	of	
tridigonal	form	is	also	addressed	in	technique.	For	obtained	more	accuracy	of	the	problem,	an	iterative	procedure	is	also	
used	in	this	process.	The	total	numerical	technique	is	stable,	accurate	and	quickly	converging.	In	fluid	mechanics,	it	is	
an	accurate	and	powerful	method	for	solving	highly	non-linear	problems	in	case	of	fluid	mechanics	as	mentioned	by	[38].

To	do	that,	the	momentum	equation	reduces	it	to	a	2nd	order	linear	form	by	considering:
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which	takes	the	following	form:
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s f f ss

f

MR x f'
σ σ ϕ σ σ

σ σ ϕ σ σρ
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  + - - = - +  

+ + -       - +          

( ) 0S x =

In	this	structure	of	the	equation	(15)	all	the	equations	of	the	system	can	be	reduced	in	the	similar	process.	Therefore	
the	equation	(10)	is	solved	by,	Appling	acommon	finite	difference	technique	that	constitutes	with	central	differencing	
and	matrix	manipulation	of	tridiagonal	form.

Before	to	start	the	solution	procedure,	first	we	have	to	set	initial	guesses	for	  f (η),	  f '(η),	θ(η)	between	η	=	0	and	
η = η∞	(η∞	→	∞)	which	should	obviously	satisfy	the	boundary	condition	(12).	For	the	present	problem,	we	insert	the	
following	initial	guesses:

( ) , 	 ( ) 1 ( ), 	 ( ) 1 ( )Tf S f' f'' 'η η ηη η δ η θ η δ θ η
η η η∞ ∞ ∞

   
= - = - - + = - +   

   

The	function	  f (η)	is	obtained	by	integrating	the	curve	  f '(η).	To	forward	a	new	estimation	for	  f '(η)	and	  f 'new(η)	
we	have	to	consider	the	functions	 f 	is	known.	Therefore,	the	updated	value	of	 f (η)	is	obtained	by	integrating	the	curve
 f 'new(η).

Hence,	the	fresh	distributions	of	 f '(η)	and	 f (η)	are	then	imposed	for	getting	new	inputs	and	so	on.	This	solution	is	
continued	until	the	convergence	up	to	a	small	quantity	| f ''new –  f ''|	≤	ε	is	obtained.	

After	obtaining	the	function	 f (η),	using	the	same	algorithm	energy	equation	(11)	is	solved,	but	without	iteration	as	
the	equation	(10)	is	linear.	The	energy	equation	(11)	is

24 2 . ( )1
3( ) ( )

(1 ) (1 )
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K
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M EC f'Rd '' f ' f'
c c

Pr
c c

θ θ θ
ρ ρ

ϕ ϕ ϕ ϕ
ρ ρ
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2 2 ( )
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σ σ ϕ σ σ

 + - - 
 

+ + -  
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By	setting	F(η)	=	θ(η)	is	again	a	second	order	linear	differential	equation	of	the	form,

(17)( ) ( ) ( ) ( ) ( ) ( ) ( )P x F'' x Q x F' x R x F x S x+ + =

Where,

( 2 ) 2 ( )
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Q x f R x f' S x M Ec f'
c
c

σ σ ϕ σ σ
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We	get	a	new	approximation	θnew for θ by	considering	  f (η),	  f '(η)	are	known.	This	process	is	continuing	until	
convergence	up	to	a	small	quantity	|θ'new – θ'|	≤	ε	is	obtained	and	finally	we	obtain	θ.	

In	this	problem	we	apply discretization	step	Δη	=	0.01	and	by	trial	and	error	we	consider	the	value	of	η∞	=	6	and	

convergence	criterion	ε	=	10–4	defined	as	
,

( ) ( )
max .

( )
old new

i N old

f i f i
f i

ε
 -

=   
 

5. Values of thermophysical properties
The	values	of	thermo-physical	correlation	of	water	and	nanoparticles	are	given	in	Table	1.

Table 1. Values	of	H2O	and	Cu	[33,	35]

Thermophysical	properties Water	(H2O) Copper	(Cu)

ρ(kg/m3) 997.1 8,933

cp(J/kgK) 4,179 385

k(W/mK) 0.693 400

σ(S/m) 0.05 5.96	×	107

Pr 6.2

6. Numerical validation
To	check	the	applicability	of	the	applied	code,	a	comparison	has	been	made	with	Sumera	et	al.	[33]	and	Ishak	et	

al.	[39]	for	the	Nusselt	number	–θ'(0)	for	various	values	of	Prandtl	number	when	Rd	=	0.2,	M	=	0,	Ec	=	0.1,	S	=	3.	This	
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obtained	results	are	stated	in	Table	2	and	found	an	acceptable	accuracy.	Finally,	to	obtain	the	grid	suitable	for	the	present	
mathematical	model,	a	grid	independence	test	is	studied	here	and	the	obtained	result	are	captured	in	Table	3.	Figure	2	
shows	the	stability	analysis	for	various	values	of	convergence	number.

Table 2. Comparison	of	the	local	Nusselt	number	–θ'(0)	for	various	value	Pr	=	1,	2,	3,	5,	10	with	specific	values	of	Rd	=	0.2,	M	=	0,	Ec	=	0.1,	S = 3

Pr
Sumera	et	al.	[33]

–θ'(0)
Ishak	[39]

–θ'(0)
Present	results

–θ'(0)

1 0.9548106 0.9548 0.958710

2 1.4714540 1.4715 1.475632

3 1.86909 1.8691 1.861887

5 2.5001 2.5001 2.506501

10 3.6603 3.6604 3.663791

Table 3. Grid	independence	test	while	other	parameter	values	are	Rd	=	0.2,	M	=	1,	Ec	=	0.1,	S	=	3,	φ	=	0.1,	Pr	=	6.2

Step	size
h	=	Δη η θ CPU	time

0.01 0.2
0.4

0.984
0.968 0.945

0.02 0.2
0.4

0.986
0.971 0.542

0.04 0.2
0.4

0.986
0.971 0.507
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Figure 2. Variation	of	different	convergence	criteria
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7. Results and discussion
Since,	we	have	considered	the	incompressible	laminar	two-dimensional	boundary	layer	steady	state	nanofluid	flow	

past	an	exponentially	shrinking	surface	has	been	explored	numerically.	To	get	an	acceptable	and	authentic	numerical	
results	of	addressed	problem,	it	 is	essential	to	put	all	realistic	values	related	to	parameters.	After	surviving	related	to	
problem,	here	we	used	the	following	values	in	computational	process:	Prandtl	number Pr	=	5,	6.2,	7	as	 in	[40-41],	
magnetic	field	parameter	M	=	1,	2,	3	as	in	[34],	thermal	radiation	parameter	Rd	=	0.2,	0.4,	0.6	as	in	[42],	Eckert	number	
Ec	=	0.5,	1,	1.5,	2,	3	as	in	[42-44],	wall	mass	suction	parameter	S	=	2.4,	2.6,	2.8,	3	as	in	[45].
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Figure 3.	(a)	Effect	of	S	on  f '(η);	(b)	Effect	of	S	on	θ(η)
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Figures	3(a)	and	3(b)	show	the	effects	of	mass	suction	parameters	on	the	velocity	and	temperature	profiles.	It	
shows	that	as	suction	parameter	increased,	velocity	profile	enhanced	but	temperature	profile	decline.	This	is	due	to	the	
fact	that,	the	fluid	in	near	to	the	wall	is	sucked	in	presence	of	suction.	As	a	result	momentum	boundary	layer	thickness	
is	reduced	and	consequently	distribution	of	velocity	is	increased.	While	fluid	temperature	is	appreciably	increased	when	
nanoparticles	are	mixed	with	based	fluid	compare	to	that	of	conventional	fluid.	
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Figure 4.	(a)	Effect	of	φ	on	 f '(η);	(b)	Effect	of	φ	on	θ(η)

Figures	4(a)	and	4(b)	elucidates	 the	variations	of	 solid	volume	fraction	of	nanoparticles	on  f '(η)	and	θ(η),	
respectively.	Both	velocity	and	temperature	profiles	are	accelerate	with	rising	values	of	volume	fraction.	The	fact	 is	
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that	the	influence	of	the	level	of	nanofluid	viscosity	and	nanofluid	density.	Also	by	mixing	nanoparticles	into	base	fluid,	
thermal	conductivity	of	base	fluid	is	also	increased	compared	to	that	of	regular	fluid.	As	a	results	thermal	boundary	layer	
increased	and	heat	of	the	fluid	is	also	accelerate.	
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Figure 5.	(a)	Effect	of	M	on	 f '(η);	(b)	Effect	of	M	on	θ(η)

Figure	5(a)	and	5(b)	portrays	the	influence	magnetic	field	parameter	on	  f '(η)	and	θ(η),	respectively.	Both	velocity	
and	temperature	are	reduced	due	to	the	incrementing	values	of	M.	The	reason	behind	that	when	we	applied	a	magnetic	
field	in	the	flow	domain	which	acts	opposite	directions	of	fluid	flows,	a	resistance	force	induced	in	the	boundary	layer.	
This	resistive	force	are	well	known	as	Lorentz	force.	As	a	result	fluid	temperature	is	accelerate	and	this	increment	is	
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significant	in	Cu-water	case	compare	to	pure	fluid	case.	
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The	variations	of	thermal	radiation	parameter	on	temperature	profile	is	displayed	in	Figure	6.	It	 is	observed	that	
θ(η)	profile	is	increased	as	radiation	parameter	enhanced.	Because	we	know	that	fluids	energy	is	mainly	transformed	
through	electromagnetic	energy	which	ultimately	 increased	 the	 fluids	 internal	kinetic	development	and	collisions	
between	the	considered	fluid	molecules.	This	can	be	described	with	radiation	parameter,	since	radiation	parameter	is	
representing	the	thermal	dissipation	in	medium	of	electromagnetic	radiation	charge.		
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Figure	7	 reveals	 the	 impact	of	Prandtl	number	on	heat	profile.	From	the	graph,	 it	can	be	observed	 that	 the	
temperature	distribution	enhanced	due	to	the	accelerate	in	the	Prandtl	number.	This	phenomena	is	more	important	for	
physical	applications.	As	we	know	that	ratio	of	kinematic	viscosity	to	thermal	diffusivity	is	Prandtl	number.	Therefore	
higher	values	of	Prandtl	number	reduces	the	thermal	diffusivity	and	its	effect	is	clearly	observed	in	Figure	6.	
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Figure 8. Effect	of	Ec	on	θ(η)

Figure	8	examine	the	effects	of	 the	Eckert	number	on	the	heat	profile.	Figure	indicates	 that	with	rising	values	
of	Eckert	number	fluid	heat	from	the	surface	isquickly	spread	as	what	expected.	Because,	 the	transformation	of	fluid	
kinetic	energy	into	the	fluid	internal	energy	is	caused	due	to	Eckert	number	and	this	work	is	completed	against	 the	
viscous	fluid	stresses.	
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Figure 9. (a)	Skin	friction	coefficient	- f ''(0)	with	Rd	for	different	values	of	φ;	(b)	Local	Nusselt	number	θ'(0)	with	Rd	for	different	values	of	φ 

Figure	9(a)	to	11(b),	demonstrates	the	variations	of	skin	friction	co-efficient	and	the	rate	of	heat	transfer	of	Cu-
water	and	Pure	water	for	various	values	of	particles	volume	fraction,	magnetic	field	parameter,	suction	parameter	against	
radiation	parameter,	Eckert	number	and	magnetic	field	parameter,	respectively.	From	the	figures,	it	is	observed	that	skin	
friction	coefficient	is	enhanced	for	the	φ	and	M;	while	reverse	act	is	found	in	Nusselt	number	case.	Both	 f ''(0)	and	–θ'(0)	
are	increased	for	suction	parameter	cases.	
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Figure 10. (a)	Skin	friction	coefficient	- f ''(0)	with	Ec	for	different	values	of	M;	(b)	Local	Nusselt	number	θ'(0)	with	Ec	for	different	values	of	M
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Figure 11. (a)	Skin	friction	coefficient	- f ''(0)	with	M	for	different	values	of	S;	(b)	Local	Nusselt	number	θ'(0)	with	M	for	different	values	of	S

8. Conclusions
In	this	paper,	the	influence	of	suction	and	thermal	radiation	on	the	MHD	flow	and	heat	transfer	of	a	water-based	

Cu-water	incompressible	nanofluid	flow	over	an	exponentially	shrinking	sheet	is	analyzed.	The	numerical	results	are	
shown	graphically	in	order	 to	 investigate	the	impacts	of	physical	aspects	on	velocity	and	temperature	distributions.	
Some	of	the	findings	from	the	present	investigations	are:

•	An	 increase	 in	 the	particle	volume	fraction,	magnetic	 field	parameter,	and	both	velocity	and	 temperature	
distributions	on	both	occasions,	Cu-water	nanofluid	performance	in	terms	of	velocity	and	temperature	is	significantly	
higher	than	that	of	pure	water	flow.

•	Fluid	velocity	increased,	but	temperature	distribution	reduced	in	the	presence	of	the	suction	parameter.
•	Temperature	distributions	are	boosted	up	with	accelerating	values	of	 the	radiation	parameter,	Eckert	number,	

while	decreasing	for	Prandtl	number.
•	The	influence	of	the	suction	parameter	decreases	both	the	skin	friction	coefficient	and	the	rate	of	heat	transfer.
•	An	increment	in	the	values	of	the	magnetic	field	parameter	and	radiation	parameter	reduces	the	coefficient	of	skin	

friction	but	accelerates	the	rate	of	heat	transfer.
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