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Abstract: To maintain system security and other essential parameters like reliability and quality, continuous monitoring 
of the system is very important. Considering the distribution network, state estimation (SE) methods can be adopted. 
The purpose of the method is to identify and estimate unknown variables based on the online measurements of test data. 
The primary objectives considered in this paper are: To choose the exact SE method and the artificial neural network (back 
propagation algorithm), which can be used for determination in the islanding mode of distribution network states, the 
composite load model is considered for the estimation of states and further enhancement. By adopting the system, state 
variables in terms of error are measured in the 12-bus distribution network with precise measurements and compared 
with practical values. The SE proposed includes results with the load flow backward-forward sweep method to satisfy 
the system state variables. Numerical results indicate that the model performs better for error measurement data with 
states and in the case of state forecasting.

Keywords: distribution network, distribution state estimation, backward-forward sweep load flow, load modeling, 
composite load model
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1. Introduction
In electrical power systems, online monitoring is essential for control and operation applications such as voltage 

control, load frequency control, and power generation. Parameters required to be controlled are system frequency, 
optimal dispatch power, voltages, and power flows, which are regularly controlled in the distribution network. The 
information collected in the control unit by using remote terminal units (RTUs) for real-time or online monitoring was 
adopted for operation and control applications. A measurement with online data is extensively necessary for proper 
control of the power system. In practical terms, devices for estimation are very less and necessary because the cost 
is high. Locations are selected and monitored continuously in the areas that are critical to government administrative 
centers and industrial applications. In many conventional distribution systems, measuring equipment is identified. A 
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commonly monitored distribution network with controlled primary connections and equipment is in a substation to 
capture the perfect picture of the distribution network for its smooth control operation.

The devices that are monitored with limitations on state conditions in the distribution network are identified with 
the state estimation (SE) method. SE in distribution networks is considered by implementing constant and steady 
conditions [1]. In the late 1960s, SE was implemented in power systems [1]. The state estimator method includes 
proper estimation with approximate load flows (reactive and active powers) and bus voltages that can be measured. 
The estimation of states in a power system measures electrical quantities like real and reactive load flows in power 
transmission lines by injecting real and reactive power into the buses [2]. The SE method is one of the main data 
processing schemes to estimate the easiest way for state variables at instants of time. In the SE program, the energy 
management system (EMS) has modern processes. The set of measurement data is raw in nature and includes a real-
time solution on the basis of advanced functions for system security with monitoring and control [3]. The mathematical 
relations from the SE method are based on the system state variables and their measurements. 

To process the available information and provide the best, the state estimator is used on the SE of the power 
system. The ability is to achieve SE with robustness and high-level efficiency. It is very important in the electric utility 
of today’s industry, which is mainly interconnected with different loads. From the starting point, an algorithm must 
be convergent and necessary to solve both ill-conditioned and well-conditioned problems. To address the limitations 
of the distribution network and to solve the number of measurements, including their limitations, include pseudo-
measurements. Pseudo-measurement with customer loads are obtained with historical load forecasting, data, and other 
similar methods approximated from the point of view of the customer. Hence, a few numbers of real-time measurements 
in a system are acceptable when using SE. To obtain a solution for SE with various techniques and surveys based on 
different SE algorithms, which are found in [4], two data types are required for SE: network data and measurement data. 

A central control system in real-time can be used to improve the reliability of electrical power systems [5]. In [6], 
integrated methods like fuzzy SE are presented, as is load flow analysis in distribution networks. A multi-area SE for the 
distribution network is considered [7]. Local SE is executed in each area of the distribution network with a minimum 
amount of information about the border, which is to perform the SE of the whole network. A SE algorithm based on the 
forward-backward propagation of lines with a higher resistance/reactance ratio (R/X) ratio has been considered [8]. An 
estimation branch based on the SE method suitable for real-time monitoring of the distribution network is presented in [9].

The enhancement of the SE method is considered in this paper, which presents a composite load model by 
incorporating it into a distribution network application. The composite load model is to compute and incorporate 
accurate values of active and reactive powers, which include various types of loads such as commercial, industrial, and 
domestic [10, 11]. The distribution SE (DSE) proposed is based on the weighted least squares (WLS) method to find 
and capture a network operation point. A minimum number of real-time measurements, as in a practical distribution 
network, are used in the proposed algorithm. The proposed method is used for pseudo-measurement, which is utilized to 
limit the number of measurements. Two WLS approaches to the problem of load estimation (LE) in unbalanced power 
distribution networks are: (1) the WLS load parameter method is restated more rigorously; (2) a constrained DSE-based 
method is introduced to consider operating and loading constraints. The test results include two distribution networks, 
which have significantly improved the system state in terms of overall voltage profiles [12-15].

2. SE problem formulation
The WLS algorithm with the SE algorithm is necessary to minimize the sum of the squared weighted errors 

between the actual and estimated measurements in the distribution network. Commercial state estimators in the 
method include weights, which are selected and directly proportional to the measurement’s accuracy. In high-
accuracy measurement with a high weight in a power system that includes distribution and transmission systems, the 
measurement vector is considered a global variable and is indicated by Z [16-20].

                                                                   ( ) , 1, 2,3,i i iZ h x r i m= + =                                                                 (1)

For a power system with N-bus ‘m’ measurements, assume ‘r’ error vector, which is taken from a standard Gaussian 
that has a mean of zero and covariance of σ. Let i be the index of the measurements. The equations of measurement are 
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considered in equation (1).
Considering Zi, the measurements of vectors, where the state vector is X, the measurement matrix is hi(x), including 

nonlinear functions, and ri is the measurement error vector, the measurement vector with residual values can be 
formulated and defined with equation (2), as mentioned below:

                                                                    ( ), 1, 2,3,i i ir Z h x i m= − =                                                                 (2)

By method, the WLS is applied to minimize the objective function, as mentioned in equation (3):

                                                                          1
( ) ( )2 /m

i i ii
J x Z h x R

=
= −∑                                                                       (3)

Diagonal matrix Ri of [1/σ1
2, 1/σ2

2, 1/σm2] σm2 for the mth error measurement of covariance.
X is represented as the state vector and the best solution obtained for the equations. To estimate the required 

accuracy of the meters measured adopted. 

                                                             [ ] [ ] 11( ) ( ) [ ( )]
Tk k kG x x H x R Z h x−+   ∆ = −                                                            (4)

The Jacobian matrix is represented by H(x) and is also known as a measurement function. h(x) is considered from 
equation (1). The gain matrix is represented as G(x) in equation (5), as mentioned below:

                                                                    [ ] [ ] 1( ) ( ) ( )
Tk kG x H x R H x−   =                                                                      (5)

                                                                    1
( cos sin )i i ij ij ij i jj

m

i
P V G B Vθ θ

=
= +∑                                                                

(6)

                                                                      1
( sin cos )i i ij ij i j

m
j ii jQ V G B Vθ θ

=
= +∑

                                                                
(7)

The equation (4) is used to solve and minimize errors to estimate an optimal estimate, which includes system states 
to be solved iteratively. SEs like WLS in this paper with mathematical analysis tools are the best iterative solutions, 
which are interpreted to filter out errors for estimating an optimal estimate of system states in a distribution network. 
The measurement matrix is the most used measurement in the practical system. Bus power injections, line power flows, 
bus voltage magnitudes, and line current flows are common measurements in a real power system. The proposed DSE 
uses line power flows, bus power injections, and bus voltage magnitudes to construct the measurement matrix. Real and 
reactive power injection, Pi and Qi, equations at bus ith can be expressed below [21, 22].

The DSE proposed method for measuring voltage is based on a proper selection of an estimation method. The 
injection of power comes from load flow studies, which are computed with the equations (6), (7), (8), and (9) at different 
buses in the distribution network. Finally, values are estimated and calculated with the measurement matrix (hi) for 
solving equation (4). With the information available in real-time for conventional distribution networks being limited, 
the state estimator may not achieve convergence. Therefore, measurements of pseudo-nature are estimated with the 
proper assistance of state estimator convergence in the distribution network. At some buses, the pseudo-measurements 
may not be real and considered.

3. Modeling of load model by SE
For the modeling of the load model, the parameters considered in real-time are dependent on system frequency and 

system voltage. Different loads are considered with constant current, constant impedance, and constant power. There are 
different state estimators, like the open loop. Closed loop and reduced order. To include all models with SE methods for 
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producing precise and reliable estimations. For a variety of composite load models, which include combinations of loads 
adopted. The values of the composite load are given in Table 1.

The model is considered in DSE by substituting the load power with a constant value, which eventually depends on 
the following equations:

                                                              ( )0

2
1 2 3 2 .,* , 1, ,i i i iP mP iC C V C V = …= + +                                                         (8)

                                                            ( )0

2
1 2 3 2 .,* , 1, ,i i i iQ mQ id d V d V = …= + +                                                        (9)

Constant load compositions of power like c1, d1, and c2 and d2 are constant load compositions of current, and 
constant load compositions of impedance like c3 and d3. By considering 

0i
P  and 

0i
Q  of the nominal powers with rated 

voltages, model parameters of load like 
0i

P  and 
0i

Q  were considered with the initial values of system operating conditions. 
The proposed DSE includes the load values, which are to be updated with the number of iterations. In Figure 1, the 
radial distribution network represents the line model with loads connected as i and j at both ends of the load line. The 
calculated value of load is adopted in equations (10) and (11).

                                                                                 0 0( ) ( / )P V P V V α=                                                                           (10)

                                                                                0 0( ) ( / )Q V Q V V β=                                                                           (11)

                                                       

Vi∟θi Vi∟θi

Rij + Xij

Pij + Qij

Figure 1. Model of line section of radial distribution system

In the composite load model, the constant variable is considered as shown in Table 1. Noncritical (redundant) and 
critical measurements make up the two main categories of measurements (nonredundant). A critical measurement is one 
that, when removed from the set of measurements, makes the network impossible to observe. Noncritical measurements 
feature nonzero residuals, allowing detection and perhaps identification of their errors. Critical measurements contain 
negligible residuals, making it impossible to identify their inaccuracies. If the removal of any measurement from a set 
of measures makes the remaining measurements important, the set is said to be a minimally dependent set (MDS) [23-
28]. The absolute values of the normalized residuals for each measurement in an MDS are equal. Each bus’s voltage 
and angle magnitudes are depicted in Figures 1 and 2 depict about the voltages and angles at buses, which are estimated 
by load flow methods. A practical 12-bus distribution system with composite loads is considered, as shown in Figure 
2. Three findings are shown in each table from 2 to 8: DSE with and without a load model, and load flow with a load 
model (% of error). The backward-forward sweep method is the foundation of the load flow. As seen, the voltage profile 
produced by the DSE with load modeling is fairly similar to the voltage profile produced by the load flow. Similar to 
the voltage profile, the phase angle profile exhibits the same pattern. The system state accuracy is likewise seen to be 
deteriorating as the bus distance increases from the measurement place.

Table 1. Description of parameters

Load type c1 and d1 c2 and d2 c3 and d3

Active power 0.4 0.3 0.2

Reactive power 0.4 0.3 0.2
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Figure 2. Practical 12-bus distribution system 

The load types considered composite loads are active power and reactive power, with a variation of coefficients 
within the range of 0.3 to 0.4.

3.1 SE method: Load flow with load (backward-forward sweep method)

The SE method is an algorithm considered for reducing % of error by considering load modeling by initiating 
backward sweep and forward sweep and settled at seven iterations (Table 2).

Table 2. SE with load modeling

Iteration number Process Result

1
Initiating backward sweep 

Not converged
Initiating forward sweep 

2
Initiating backward sweep 

Not converged
Initiating forward sweep 

3
Initiating backward sweep 

Not converged
Initiating forward sweep 

4
Initiating backward sweep 

Not converged
Initiating forward sweep 

5
Initiating backward sweep 

Not converged
Initiating forward sweep 

6
Initiating backward sweep 

Not converged
Initiating forward sweep 

7
Initiating backward sweep Converged and calculating 

lossesInitiating forward sweep 

The SE method is an algorithm considered for reducing % of error without load modeling by initiating backward 
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sweep and forward sweep and settling at eight iterations, which is comparably higher than with load modeling (Table 3).

Table 3. SE without load modeling

Iteration number Process Result

1
Initiating backward sweep 

Not converged
Initiating forward sweep 

2
Initiating backward sweep 

Not converged
Initiating forward sweep 

3
Initiating backward sweep 

Not converged
Initiating forward sweep 

4
Initiating backward sweep 

Not converged
Initiating forward sweep 

5
Initiating backward sweep 

Not converged
Initiating forward sweep 

6
Initiating backward sweep 

Not converged
Initiating forward sweep 

7
Initiating backward sweep 

Not converged
Initiating forward sweep 

8
Initiating backward sweep Converged and calculating 

lossesInitiating forward sweep 

Table 4 describes the voltages and bus angles with load modeling at all the buses to see the variation of voltage 
states and bus angles w.r.t. change in algorithm and with load modeling.

Table 4. Bus voltages and bus angles with load modeling - 1

Bus voltage values Bus angle values

Bus no. Bus voltage Bus no. Bus angles

1.0000 1.0000 1.0000 -0.0000

2.0000 0.9958 2.0000 -0.0673

3.0000 0.9925 3.0000 -0.1216

4.0000 0.9877 4.0000 -0.2609

5.0000 0.9839 5.0000 -0.3705

6.0000 0.9808 6.0000 -04625

7.0000 0.9746 7.0000 -0.7188

8.0000 0.9704 8.0000 -0.8913

9.0000 0.9655 9.0000 -1.1007

10.000 0.9630 10.000 -1.2063

11.000 0.9619 11.000 -1.2516

12.000 0.9615 12.000 -1.2707
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Table 5 describes the voltages and bus angles without load modeling at all the buses, foreseeing the variation of 
voltage states and bus angles w.r.t. change in algorithm and without load modeling.

Table 5. Bus voltages and bus angles without load modeling - 1

Bus voltage values Bus angle values

Bus no. Bus voltage Bus no. Bus angles

1.0000 0.9985 1.0000 0.0000

2.0000 0.9918 2.0000 0.0007

3.0000 0.9878 3.0000 0.0012

4.0000 0.9827 4.0000 0.0026

5.0000 0.9782 5.0000 0.0037

6.0000 0.9732 6.0000 0.0046

7.0000 0.9667 7.0000 0.0072

8.0000 0.9621 8.0000 0.0089

9.0000 0.9567 9.0000 0.0110

10.000 0.9541 10.000 0.0121

11.000 0.9528 11.000 0.0125

12.000 0.9521 12.000 0.0127

3.1.1 Load flow with load modeling - 2

Calculating losses:
Table 6 describes the voltages and bus angles with load modeling at all the buses, foreseeing the variation of 

voltage states and bus angles w.r.t. change in algorithm and load modeling.

Table 6. Bus voltages and bus angles with load modeling - 2

Bus voltage values Bus angle values

Bus no. Bus voltage Bus no. Bus angles

1.0000 0.9992 1.0000 0.0000

2.0000 0.9940 2.0000 0.0673

3.0000 0.9898 3.0000 0.1216

4.0000 0.9846 4.0000 0.2609

5.0000 0.9805 5.0000 0.3705

6.0000 0.9764 6.0000 0.4625

7.0000 0.9690 7.0000 0.7188

8.0000 0.9636 8.0000 0.8913

9.0000 0.9552 9.0000 1.1007

10.000 0.9526 10.000 1.2063

11.000 0.9491 11.000 1.2516

12.000 0.9478 12.000 1.2702



Contemporary Mathematics 534 | B. Praveen Kumar, et al.

Table 7 describes the voltages and bus angles with load modeling at all the buses, foreseeing the variation of 
voltage states and bus angles w.r.t. change in algorithm and without load modeling.

Table 7. Error table with and without load modeling - 1

Bus no. SE without load
modeling

SE with load
modeling

Load flow with load 
modeling Error %

1.0000 1.0000 0.9997 0.9997 -0.0000

2.0000 0.9958 0.9955 0.9929 0.0026

3.0000 0.9925 0.9911 0.9894 0.0018

4.0000 0.9877 0.9862 0.9828 0.0034

5.0000 0.9839 0.9810 0.9790 0.0021

6.0000 0.9808 0.9778 0.9720 0.0059

7.0000 0.9746 0.9714 0.9657 0.0059

8.0000 0.9704 0.9558 0.9591 0.0079

9.0000 0.9655 0.9610 0.9524 0.0089

10.000 0.9630 0.9571 0.9495 0.0080

11.000 0.9619 0.9544 0.9481 0.0066

12.000 0.9615 0.9520 0.9475 0.0047

Figure 3 describes the % of error with and without load modeling at all the buses for the variation of voltage states 
and bus angles w.r.t. the change in algorithm for all the 12 buses in the radial distribution system.

                                

21 3 4 5 6 7 8 9 10 11 12

Without load With load Load flow with load modeling Error %

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3. Error estimation with and without load modeling (x-axis is the bus number and y-axis voltage states) 

Table 8 describes about the comparison of load flow with and without loadings.
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Table 8. Load flow with and without load modeling - 2

Bus no. SE without load 
modeling

SE with load 
modeling Load flow Error %

1 1 0.999714 0.999718 0

2 0.995829 0.995493 0.992911 0.002594

3 0.992476 0.991117 0.989377 0.001755

4 0.987670 0.986171 0.982822 0.003394

5 0.983917 0.981008 0.978965 0.002082

6 0.980782 0.977761 0.972033 0.005857

7 0.974564 0.971388 0.965685 0.005872

8 0.970421 0.966782 0.959104 0.007941

9 0.965457 0.960972 0.952412 0.008906

10 0.962982 0.957089 0.94946 0.007971

11 0.961945 0.954409 0.948142 0.006566

12 0.961534 0.951996 0.947491 0.004732

The outcome in Figure 4 demonstrates that for buses where measurements are taken, the voltage magnitudes are 
close to one another. When comparing the SE and artificial neural network (ANN) algorithms with and without load 
modeling to the load flow, it can be seen that there has been a considerable improvement when compared to the SE 
without the load model. Both test cases showed that the suggested DSE approach with load modeling greatly increased 
the anticipated voltage and angle to be nearly identical to those in load flow with load modeling.

                                 

21 3 4 5 6 7 8 9 10 11 12

SE without load modeling

With load

Load flow with load modeling

Load flow error %

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4. SE with and without load modeling (x-axis is the bus number and y-axis voltage states)

3.2 SE method – Load flow with load modeling (including optimization technique)

M-file code for estimation at each bus in radial distribution system:
% Voltage measurements are phase to phase
% Current measurements are per phase
%% General information of the system

noBranches = 32;                % number of branches
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noNoP = 5;                      % number of normally-open points (tielines) 
noBuses = 12;                   % number of buses
noMeaurements = noBranches;     % number of V and I measurements

%% Initialization of the circuit breaker input vector
% Simulation time 0.2 s with step size of 1 ms

timeTS = (0:0.001:0.2)’;        
% Set the circuit breaker status, close all branches and open all NoPs
% (syntax is like that in the MATPOWER case branch data)

CBStats = [ones(length(timeTS), noBranches), zeros(length(timeTS),noNoP)];
% Change the CBStats variable to change the branch connections in the system
% EXAMPLE: disconnect Branch 16, close all other branches and open all NoPs
% CBStats = [ones(length(timeTS),15),zeros(length(timeTS),1),...
%    ones(length(timeTS),noBranches-16),zeros(length(timeTS),noNoP)];
% initialize the timeseries for simulation input

siminCB = timeseries (CBStats,timeTS);
%% Simulation phase
% Prepare simulation 

simName = ‘IEEE33BusTestSystem’;
simIn = Simulink.SimulationInput(simName);
simIn = simIn.setVariable(‘siminCB’,siminCB);

% Run simulation
simout = sim(simIn);

% Output: Voltage and Current Measurements
% Each output matrix has 32 branches x 3 phases = 96 entries

ISimMat = simout.simOutputI.data;
VSimMat = simout.simOutputV.data;

% Obtain the average of the three phases for each branch 
% 96 entries / 3 phases = 32 branches

IRMSMat = zeros(size(ISimMat,1),size(ISimMat,2)/3);
for iterS = 1:size(ISimMat,2)/3

IRMSMat(:,iterS) = mean(ISimMat(:,(iterS-1)*3+1:(iterS-1)*3+3),2);
end

VRMSMat = zeros(size(VSimMat,1),size(VSimMat,2)/3);
for iterS = 1:size(VSimMat,2)/3

VRMSMat(:,iterS) = mean(VSimMat(:,(iterS-1)*3+1:(iterS-1)*3+3),2);
end

Table 9 describes the voltages and bus angles with and without load modeling at all the buses, foreseeing the 
variation of voltage states and bus angles w.r.t. change in algorithm with optimization techniques, which is more 
efficient than without optimization.
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Table 9. Comparison of different load modeling methods

Bus no. SE without load 
modeling

SE with load 
modeling

Load flow
with load modeling 

and optimization
Error %

1 1 0.999714 1.0000 0.0113

2 0.995829 0.995493 0.9992 0.0103

3 0.992476 0.991117 0.9925 0.0094

4 0.987672 0.986172 0.9900 0.0082

5 0.983917 0.981008 0.9845 0.0075

6 0.980782 0.977762 0.9824 0.0069

7 0.974564 0.971388 0.9798 0.0049

8 0.970421 0.966782 0.9773 0.0029

9 0.965457 0.960974 0.9752 0.0023

10 0.962982 0.957089 0.9749 0.0016

11 0.961945 0.954409 0.9746 0.0012

12 0.961534 0.951996 0.9738 0.0006

Figure 5 describes the voltages and bus angles with and without load modeling at all the buses, foreseeing the 
variation of voltage states and bus angles w.r.t. change in SE algorithm with optimization techniques, which is more 
efficient than without optimization.

                            

21 3 4 5 6 7 8 9 10 11 12

SE without load modeling
Load flow with load modeling and optimization

Load flow with load modeling
Load flow error %

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5. Load flow with and without load modeling (x-axis is the bus number and y-axis voltage states)

3.2.1 SE method – Load flow with load modeling (fast decoupled method)

The SE problem may be formulated and solved by distinct methods, with fast-decoupled WLS being the most 
widely applied technique in control centers around the world. The controller’s equivalent reactance is included in the 
active sub-problem of the proposed fast-decoupled formulation as a new state variable along with the conventional 
system states. 

Table 10 describes the voltages and bus angles with and without load modeling at all the buses, foreseeing the 
variation of voltage states and bus angles w.r.t. changes in algorithms like SE and load flow with fast decoupled 
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optimization techniques, which is more efficient than without optimization.

Table 10. Load flow with fast decoupled

Load flow 
with fast 

decoupled
SE without load 

modeling
SE with load 

modeling
Load flow

with load modeling 
and optimization

Error %

1 1 0.999714 1.0600 0

2 0.995829 0.995493 1.0450 0.0870

3 0.992476 0.991117 1.0100 0.2223

4 0.987677 0.986177 1.0142 0.1790

5 0.983917 0.981008 1.0172 0.1529

6 0.980782 0.977763 1.0700 0.2516

7 0.974564 0.971388 1.0503 0.2312

8 0.970421 0.966782 1.0900 0.2312

9 0.965457 0.960973 1.0337 0.2588

10 0.962982 0.957089 1.0325 0.2625

11 0.961945 0.954409 1.0474 0.2591

12 0.961534 0.951996 1.0535 0.2664

Figure 6 describes the voltages and bus angles with and without load modeling at all the buses, foreseeing the 
variation of voltage states and bus angles w.r.t. changes in algorithms like SE and load flow with fast decoupled 
optimization techniques, which is more efficient than without optimization.

                               

21 3 4 5 6 7 8 9 10 11 12

SE without load modeling

Load flow with fast decoupled

SE with load modeling

Load flow with fast decoupled error %
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Figure 6. Load flow with fast coupled (x-axis is the bus number and y-axis voltage states)

The percentage of error for load flow with load modeling obtained by three algorithms (backward-forward sweep 
method, optimization method, and fast decoupled method) is shown in Figure 7. From the tabular column (Table 11), it 
is observed that load flow with load modeling, including optimization methods, has less than 0.0006% error reduction 
for the IEEE 12-bus system by minimizing losses.
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Figure 7. Comparison of three different algorithms (x-axis is the bus number and y-axis voltage states)

Table 11. Comparison of load flow algorithms combined error (%) for three load modeling

Error %

Bus no. Load flow
with load modeling

Load flow
with load modeling and 

optimization
Load flow with fast 

decoupled

1 0 0.0113 0

2 0.002594 0.0103 0.0870

3 0.001755 0.0094 0.2223

4 0.003394 0.0082 0.1790

5 0.002082 0.0075 0.1529

6 0.005857 0.0069 0.2516

7 0.005872 0.0049 0.2312

8 0.007941 0.0029 0.2312

9 0.008906 0.0023 0.2588

10 0.007971 0.0016 0.2625

11 0.006566 0.0012 0.2591

12 0.004732 0.0006 0.2664

3.3 ANN

Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological 
nervous systems. As in nature, the function of the network is determined largely by the connections between elements. 
Neural networks are trained to perform a particular function by adjusting the values of the connections (weights) 
between elements. Commonly, neural networks are adjusted, or trained, so that a particular input leads to a specific 
target output. There, the network is adjusted based on a comparison of the output and the target until the network output 
matches the target. Typically, many such input/target pairs are used in supervised learning to train a network.

Batch training of a network proceeds by making weight and bias changes based on an entire set (batch) of input 
vectors. Incremental training changes the weights and biases of a network as needed after the presentation of each 
individual input vector. Incremental training is sometimes referred to as training. Neural networks have been trained to 
perform complex functions in various fields of application, including pattern recognition, identification, classification, 
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speech, and vision and control systems. Today, neural networks can be trained to solve problems that are difficult for 
conventional computers or human beings.

Supervised training methods are commonly used, but other networks can be obtained from unsupervised training 
techniques or from direct design methods. Unsupervised networks can be used, for instance, to identify groups of 
data. Certain kinds of linear networks and Hopfield networks are designed directly. The back propagation algorithm is 
considered for a 12-bus load flow study with composite loads, as shown in Figures 8 and 9.

load n
k1=max(i’);
k2=max(o1’);
P=i’/k1;
T=o1’/k2;
n=157128;
net = newff(minmax(P),[5 1],{‘tansig’ ‘purelin’});
net.trainParam.epochs = 200;
net = train(net,P,T);
Y = sim(net,P);
plot (P,T,P,Y,’o’)
gensim(net,-1)
function [ mean_timeline_ANN ] = get_ann_result_from_trainedANN_model00( ...

trained_ANN, ...
d_inMicroMeters, ...
tx_r_inMicroMeters, ...
rx_r_inMicroMeters, ...
D_inMicroMeterSqrPerSecond, ...

desired_delta_t, tend, ntx )
system_params_1.distance_inMicroMeters      = d_inMicroMeters;
system_params_1.r_tx_inMicroMeters          = tx_r_inMicroMeters;
system_params_1.r_rx_inMicroMeters          = rx_r_inMicroMeters;
system_params_1.D_inMicroMeterSqrPerSec     = D_inMicroMeterSqrPerSecond;
system_params_1.ntx                         = ntx;
modelfunc = str2func(‘model_function_00_primitive’);
f_1 = @(b,t) modelfunc(b,t,system_params_1);
tval = desired_delta_t: desired_delta_t: tend;
% Get ANN Output
input_params = [d_inMicroMeters  tx_r_inMicroMeters  rx_r_inMicroMeters  D_inMicroMeterSqrPerSecond];
nn_output = trained_ANN(input_params’);
nn_output = nn_output’;
mean_timeline_ANN = f_1(nn_output, tval);
end
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Figure 8. Subsystem of back propagation algorithm - feedforward (ANN)

M-file program for linking ANN:
function [baseMVA, bus, gen, branch, areas, gencost] = case14
%%system MVA base
baseMVA = 100;
%%bus data
%  bus_i  type  Pd  Qd  Gs  Bs  area  Vm  Va  baseKV  zone  Vmax  Vmin
bus = [

1  3  0  0  0  0  1  1.06  0  0  1  1.06  0.94;
2  2  21.7  12.7  0  0  1  1.045  -4.98  0  1  1.06  0.94;
3  2  94.2  19  0  0  1  1.01  -12.72  0  1  1.06  0.94;
4  1  47.8  -3.9  0  0  1  1.019  -10.33  0  1  1.06  0.94;
5  1  7.6  1.6  0  0  1  1.02  -8.78  0  1  1.06  0.94;
6  2  11.2  7.5  0  0  1  1.07  -14.22  0  1  1.06  0.94;
7  1  0  0  0  0  1  1.062  -13.37  0  1  1.06  0.94;
8  2  0  0  0  0  1  1.09  -13.36  0  1  1.06  0.94;
9  1  29.5  16.6  0  19  1  1.056  -14.94  0  1  1.06  0.94;
10  1  9  5.8  0  0  1  1.051  -15.1  0  1  1.06  0.94;
11  1  3.5  1.8  0  0  1  1.057  -14.79  0  1  1.06  0.94;
12  1  6.1  1.6  0  0  1  1.055  -15.07  0  1  1.06  0.94;];

save baseMVA baseMVA;
save bus bus;
%%generator data
%  bus  Pg  Qg  Qmax  Qmin  Vg  mBase  status  Pmax  Pmin
gen = [

1  232.4  -16.9  10  0  1.06  100  1  332.4  0;
2  40  42.4  50  -40  1.045  100  1  140  0;
3  0  23.4  40  0  1.01  100  1  100  0;
6  0  12.2  24  -6  1.07  100  1  100  0;
8  0  17.4  24  -6  1.09  100  1  100  0;];
save gen gen;

%%branch data
%  fbus  tbus  r  x  b  rateA  rateB  rateC  ratio  angle  status
branch = [

1  2  0.01938  0.05917  0.0528  9900  0  0  0  0  1;
1  5  0.05403  0.22304  0.0492  9900  0  0  0  0  1;
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2  3  0.04699  0.19797  0.0438  9900  0  0  0  0  1;
2  4  0.05811  0.17632  0.034  9900  0  0  0  0  1;
2  5  0.05695  0.17388  0.0346  9900  0  0  0  0  1;
3  4  0.06701  0.17103  0.0128  9900  0  0  0  0  1;
4  5  0.01335  0.04211  0  9900  0  0  0  0  1;
4  7  0  0.20912  0  9900  0  0  0.978  0  1;
4  9  0  0.55618  0  9900  0  0  0.969  0  1;
5  6  0  0.25202  0  9900  0  0  0.932  0  1;
6  11  0.09498  0.1989  0  9900  0  0  0  0  1;
6  12  0.12291  0.25581  0  9900  0  0  0  0  1;
6  13  0.06615  0.13027  0  9900  0  0  0  0  1;
7  8  0  0.17615  0  9900  0  0  0  0  1;
7  9  0  0.11001  0  9900  0  0  0  0  1;
9  10  0.03181  0.0845  0  9900  0  0  0  0  1;
9  14  0.12711  0.27038  0  9900  0  0  0  0  1;
10  11  0.08205  0.19207  0  9900  0  0  0  0  1;
11  12 0.22092  0.19988  0  9900  0  0  0  0  1;];

save branch branch;
%%-----  OPF Data  -----%%
%%area data
areas = [  1  1;];
%%generator cost data
%  1  startup  shutdown  n  x1  y1  ...  xn  yn
%  2  startup  shutdown  n  c(n-1)  ...  c0
gencost = [

2  0  0  3  0.0430293  20  0;
2  0  0  3  0.25  20  0;
2  0  0  3  0.01  40  0;
2  0  0  3  0.01  40  0;
2  0  0  3  0.01  40  0;];

return;
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Figure 9. Comparison of three different algorithms (x-axis is the bus number and y-axis voltage states)
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Table 12. Comparison of load flow algorithms combined error (%) for three load modeling

Error %

Bus no. Load flow
with load modeling

Load flow
with load modeling and 

optimization
Load flow with fast 

decoupled Load flow with ANN

1 0 0.0113 0 0.001123

2 0.002594 0.0103 0.0870 0.06251

3 0.001755 0.0094 0.2223 0.13254

4 0.003394 0.0082 0.1790 0.15422

5 0.002082 0.0075 0.1529 0.14558

6 0.005857 0.0069 0.2516 0.23145

7 0.005872 0.0049 0.2312 0.2111

8 0.007941 0.0029 0.2312 0.2089

9 0.008906 0.0023 0.2588 0.2499

10 0.007971 0.0016 0.2625 0.2588

11 0.006566 0.0012 0.2591 0.2448

12 0.004732 0.0006 0.2664 0.2768

The challenging solutions to real-life problems are to find out the dimensions in the exact form of the problems, 
which are significant. A multi-threading inventory model is tested in this 12-bus system through an ANN when 
experiencing an uncertain environment. Whenever faults are present in power systems with sudden loading, a neural 
network with multi-threading is one of the optimization procedures to find the best optimal solution with an inflation 
and time value of money [29, 30].

4. Conclusion
This paper discusses an analysis of distribution system SE. The concept of DSE estimation methods and their 

applications to the 12-bus radial distribution system are discussed in detail. According to the study, the majority of the 
authors mostly focused on modified SE methods to improve efficiency. The mathematical analysis of SE and ANN has 
been presented. The WLS method was found to be more efficient when compared to other methods in terms of various 
factors such as robustness, accuracy, and time of computation. The scope of this review is to set up a wide range of 
platforms for future studies to realize the vision of smarter grids. A SE with an optimization method is considered in 
this paper to improve the distribution network, which includes a minimum number of measurements. The implemented 
DSE includes modeling of composite loads. The modeled load model with different loads in distribution networks and 
their estimation methods and results are considered to be accurate. The 12-bus distribution network is considered by 
improving the voltage profiles rapidly by 0.5047% and 1.4972%. The results that are tested are considered to improve 
the robustness of this proposed method and solve problems like DSE with different measurements that are selectively 
considered. 

5. Further extensions
Distribution network SE is an algorithm that is mainly based on data processing and converts measurement 

data and other exiting data into different radial distribution network state estimates, which can quickly and mainly 
determine the real-time operating state of the system. It plays an important role in the management system. With the 
development of distribution networks and the emergence of renewable energy and distributed generation (DG), the 
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scale of distribution networks is larger and the topology is more complex, posing significant challenges in computing 
the performance of the traditional centralized SE (CSE) of distribution networks. By dividing the distribution networks 
into several sub-regions, DSE can reduce the computational complexity and meet the performance requirements of the 
active distribution network for the SE method, which can be implemented in larger power distribution systems [31, 
32]. The linear and nonlinear extended fast-decoupled state estimator algorithms, referred to as XDC-SE and XFD-SE, 
respectively, are applied in distinct power systems, and the scenarios for the chosen networks are the IEEE 14- and 118-
bus systems.
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