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1. Introduction
In order to divide larger dynamical systems to smaller and more precise systems the concept of differential calculus

was introduced, as it was necessary to monitor the changes happening in the system at certain times [1, 2]. As an expansion
of the ordinary differential calculus, the fractional calculus was introduced to study the integral and derivative parts of a
function. Later on, due to many developments in the field, it has materialized into a very dominant resource to consider all
kinds of problems in various fields of science, including machine learning, control systems, biology and finance. A major
expansion in fractional calculus was fractional differential equations (FDE) rather than the integer differential equations,
as it generalised the derivatives of integer order systems to arbitrary order systems for easy computation [3, 4]. In recent
days FDE is been widely used in various fields like mechanics, neural networking, ecology, optics and image processing
[5–11].

Fractional derivatives are extensively used to study and model control systems and to scrutinize the qualitative
behaviours of system such as the observability, stability, stabilizability and controllability [12–14]. FDE has been the
most popular topic for research, to predict the controllability behaviours by scrutinizing and constructing a control system
[15–17]. A controllable system is when a state function observed can be transformed into another desired state function by
representing amost appropriate solution for the system, at a definite time duration, with an adequate input function [18, 19].
The controllability etiquette of dynamical linear and nonlinear systems with several initial and boundary conditions was a
subject of interest for many research works [20–22]. In Hilbert spaces, approximate controllability of an abstract neutral
and analytic resolvent integro differential inclusions was discussed by Vijayakumar [23, 24]. Sheng et al. discussed
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about controllability of nonlinear system using a M-L Kernel [25]. For a class of second order evolution inclusion
systems without compactness the controllability analysis was studied by the authors in [26]. Delays are primarily certain
disturbances happening either within the system or around the surroundings that may cause adverse effects in the solution
representation of the system, hence it becomes unavoidable to calculate the solution representations using delay terms
[27–29]. There is always a complexity in solving the control systems with delay terms, to overcome this a delayed M-L
matrix function was found as an extension of the classical M-L function which gives an explicit formula as a solution to
the delayed FDE [30–32]. In [33, 34], the control concept has been analyzed by utilizing the delayed M-L function of
Grammian matrix solution representations.

The impulsive conditions taken in a system are considered to be shorter input functions whose time derivative
is very brief compared to the time variations of the system. They are taken to indicate brief interference such as
shock, natural calamities in the system [35–37]. Vijayakumar et al. discussed the controllability analysis without
measures of compactness for a second order Cauchy problem with nonlocal conditions [38]. Debbouche et al. [39]
discussed the nonlinear system’s controllability with distributed delays and impulsive conditions. In [40], the authors
have investigated the controllability of fractional semilinear system with control delay. Li et al. [41] verified the relative
controllability behaviour of a fractional pure delay system using delayedM-L functions. Nawaz et al. [42] have explored
the controllability of fractional systems with both state and control delays. Encouraged by the above mentioned results,
the paper reports the controllability of a nonlinear system with a delay in state, impulsive conditions and a delay in control,
by using a delayedM-L function to represent the solution. Consider a nonlinear impulsive control system with state delay
and control delay as follows:

CD
ρ
0+z(t) = A z(t − p)+Bũ(t)+C ũ(t − p)

+ f̃ (t, z(t − p), ũ(t), ũ(t − p)), z(t) ∈ [0, t1], p > 0, (1)

z(t) = φ̃(t), t ∈ [−p, 0], (2)

ũ(t) = Ψ̃(t), t ∈ [−p, 0], (3)

z(t+i )− z(t−i ) = J (z(ti)) = Ji, (4)

where CD
ρ
0+ is the fractional derivative of Caputo, of order ρ and 0 < ρ < 1, z(t) ∈ Rn is the state vector, where z(t) :

[−p, t1]→Rn is a continuous differentiable function on [0, t1]with t1 is the integral multiple of p. ũ(t)∈Rm is the control
vector, A ∈ Rn×n, B, C ∈ Rn×m are some positive definite matrices, f̃ : J ×Rn ×Rm ×Rm ∈ Rn is a continuous
differential function with state delay and control delay, p > 0 denotes time delay, φ̃(t) denotes the initial function of
state such that φ̃ ∈ C([−p, 0], Rn) and Ψ̃(t) is the initial function of control. Define a piecewise continuous function
CPC : (J , Rn) → Rn, that is continuous on intervals 0 < ti < ti+1 and here z(t+i ) and z(t−i ) denotes the right and left
limits of z(t) where t = ti.

The structure of the paper is as follows: Section 2 states some important definitions and lemmas used to prove the
results. Section 3 represents the linear system with both delays and impulsive terms. Section 4 provides the proof of the
nonlinear system with some conditions using fixed point techniques. Section 5 illustrates a numerical example to signify
the acquired results.
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2. Preliminaries
Definition 1 [19] Consider a function f̃ : [0, ∞)→R, then the Caputo derivative of a fractional differential equation

with order (0 < ρ < 1) is given by

CD
ρ
0+z(t) =

1
Γ(1−ρ)

∫ t

0

z′(ν)
(t −ν)ρ dν , t > 0.

Definition 2 [19] The integral term of the fractional derivative function f̃ : [0, ∞)→Rwith order 0 < ρ < 1 is given
by

I
ρ

0+ f̃ (t) =
1

Γ(ρ)

∫ t

0
(t −ν)ρ−1 f̃ (ν)dν .

Definition 3 [42] Consider a matrix εA .ρ
p : R→Rn×n which can be expressed as a delayed M-L matrix function of

one parameter as follows:

εA tρ
p =


Θ, −∞ < t <−p,

In, −p ≤ t ≤ 0,

In +A
(t)ρ

Γρ +1
+A 2 (t − p)2ρ

Γ2ρ +1
+·+A q (t − (q−1)p)qρ

Γqρ +1)
, (q−1)p ≤ t ≤ qp, q ∈ N ,

here Θ and In represents the zero matrix and identity matrix respectively.
Definition 4 [22] Let t ∈ ((q−1)p, qp], q= 1, 2, . . . , n, the impulsive delayedM-Lmatrix function zp, ρ(.) :R→Rn

is given by

zp,ρ(t) = ∑
0<ti<t

εA (t−ti−p)ρ
Ji,

and for t ∈ (qp, (q+1)p], ti = qp, q = 1, 2, . . . , n−1 it becomes,

zp, ρ(t) =
q

∑
k=1

εA (t−(k+1)p)ρ
Jk.

The following lemma can be used to formulate the solution of the considered system (1)-(4).
Lemma 1 [42] Let f̃ : [0, t] → Rn be a continuous function with vector values, then a solution vector z ∈

C([−p, t], Rn) of (1)-(4) can be given by
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z(t) =εA tρ
p φ̃(−p)+

∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr+
∫ t

0
εA (t−p−r)ρ

p Bũ(r)dr

+
∫ t

0
εA (t−p−r)ρ

p C ũ(r− p)dr+
∫ t

0
εA (t−p−r)ρ

p f̃ (r, z(r), ũ(r))dr+ ∑
0<ti<t

εA (t−ti−p)ρ
p Ji.

Lemma 2 [22] For any impulsive term εA tρ
p , the delayed M-L function can be taken as follows:

Let z ∈ ((q−1)p, qp], q ∈ N and ti ∈ (0, t) is an impulsive point that is fixed arbitrarily, then

CD
ρ
0+(ε

A (·−ti−p)ρ
p Ji) = A εA (t−ti−2p)ρ

p Ji.

Lemma 3 From Lemma 1 and Lemma 2, the solution of the nonlinear system (1)-(4) can be composed as follows:

z(t) =εA tρ
p φ̃(−p)+

∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr+
∫ t−p

0
εA (t−p−r)ρ

p Bũ(r)dr

+
∫ t

t−p
εA (t−p−r)ρ

p C ũ(r)dr+
∫ 0

−p
εA (t−2p−r)ρ

p C Ψ̃(r)dr

+
∫ t

0
εA (t−p−r)ρ

p f̃ (r, z(r), ũ(r), ũ(r− p)dr)+ ∑
0<ti<t

A εA (t−ti−2p)ρ
p Ji. (5)

Lemma 4 [42] Consider a beta function, β (c, d) =
∫ 1

0 rc−1(1− r)d−1dr, where c and d are positive real numbers,
then

β (c, d) =
Γ(c)Γ(d)
Γ(c+d)

.

Also for qp ≤ t ≤ (q+1)p, q ∈ N ,

∫ t

qp
(t − r)−ρ(r−qp)((q+1)ρ−1)dr = (t −qp)qρ β [1−ρ, qρ].

Lemma 5 [41] For a delayedM-L matrix, say εA ·ρ
p : R→Rn×n and

CD
ρ
0+(ε

A tρ
p ) = A εA (t−p)ρ

p (6)

with initial conditions εA tρ
p = I , −p ≤ t ≤ 0, then εA tρ

p is a solution of (CD
ρ
0+x)(t) = A x(t − p).

Proof. For any arbitrary −∞ < t ≤−p,
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εA tρ
p = εA (t−p)ρ

p = Θ.

Then (1) holds for t ∈ (−p, 0],

εA tρ
p = In,

εA (t−p)ρ
p = Θ,

=⇒ CD
ρ
0+In = Θ = A Θ.

Using the method of mathematical induction to obtain the results.
Case 1When q = 1, 0 ≤ t ≤ p,

z(t) = εA tρ
p = In +

A (t)ρ

Γ(ρ +1)
,

z′(t) = 0+
1

Γ(ρ +1)
(A (t)ρ−1ρ).

Then by Caputo’s fractional expression of εA .ρ
p ,

(CD
ρ
0+εA rρ

p )t =
1

Γ(1−ρ)
.

1
Γ(ρ +1)

(ρA )
∫ t

0
(t − r)−ρ(r)ρ−1dr = A .

Case 2When q = 2, p ≤ t ≤ 2p,

z(t) = εA tρ
p = In +

A (t)ρ

Γ(ρ +1)
+

A 2(t − p)2ρ

Γ(2ρ +1)
,

z′(t) = 0+
1

Γ(ρ +1)
(A (t)ρ−1ρ)+

1
Γ(2ρ +1)

(A 2(t − p)2ρ−12ρ).

Similarly by Caputo’s fractional expression εA .ρ
p ,
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(CD
ρ
0+εA rρ

p )t =
1

Γ(1−ρ)
.

1
Γ(ρ +1)

(ρA )
∫ t

0
(t − r)−ρ(r)α−1dr

+
1

Γ(1−ρ)
.

1
Γ(2ρ +1)

(2ρA 2)
∫ t

p
(t − r)−ρ(r− p)2ρ−1dr

= A +
A 2(t − p)ρ

Γ(ρ +1)
.

Case 3When q = 3, 2p ≤ t ≤ 3p, by continuing the same process,

(CD
ρ
0+εA rρ

p )t = A +
A 2(t − p)ρ

Γ(ρ +1)
+

A 3(t −2p)2ρ

Γ(2ρ +1)
.

Case 4When q = k, (k−1)p ≤ t ≤ kp and k ∈ N ,

z(t) = εA tρ
p = In +

A (t)ρ

Γ(ρ +1)
+

A 2(t − p)2ρ

Γ(2ρ +1)
+ . . .+

A k(t − kp)(kρ)

Γ(kρ +1)
,

z′(t) = 0+
1

Γ(ρ +1)
(A (t)ρ−1ρ)+

1
Γ(2ρ +1)

(A 2(t − p)2ρ−12ρ)+ . . .

+
1

Γ(k+1)ρ +1
(A (k+1)(t − kp)(k+1)ρ−1)(k+1)ρ.

Now by Caputo’s fractional expression of εA .ρ
p ,

(CD
ρ
0+εA rρ

p )(t) = A +
A 2(t − p)ρ

Γ(ρ +1)
+

A 3(t −2p)2ρ

Γ(2ρ +1)
+ . . .+

A k(t − (k1)p)(k−1)ρ

Γ((k−1)ρ +1)
.

Hence this shows that the lemma can be satisfied for any values of q say (q+1)p ≤ t ≤ (q−1)p and (q+1) ∈ N .

The proof is completed which leads to the conclusion

CD
ρ
0+(ε

A (t−p−r)ρ
p ) = A εA (t−2p−r)ρ

p . (7)

Definition 5 [15] The dynamical system is controllable on J if there exists z0, z1 ∈ Rn with a control ū(t) has a
solution at z(t) that satisfies the condition z(0) = z0 and z(t) = z1.
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3. Linear system
Consider the linear dynamical system as follows:

CD
ρ
0+z(t) = A z(t − p)+Bũ(t)+C ũ(t − p), z(t) ∈ [0, t1], p > 0, (8)

z(t) = φ̃, t ∈ [−p, 0], (9)

ũ(t) = Ψ̃(t), t ∈ [−p, 0], (10)

z(t+i )− z(t−i ) = J (z(ti)) = Ji. (11)

where A , B, C , z(t), ũ(t), φ̃ and Ψ̃(t) are defined as same as in Section 1.
Theorem 1 The system (8)-(11) is controllable on [0, t1] iff the Grammian controllability matrix

G(t) =
∫ b

0
(εA (b−p−r)ρ

p B)(εA (b−p−r)ρ
p B)∗dr

+
∫ b−p

0
(εA (b−2p−r)ρ

p C )(εA (b−2p−r)ρ
p C )∗dr, (12)

is positive definite for some b > 0.
Proof. The positive definite Grammian matrix is not singular hence the inverse can be defined asG−1(t). The control

function is taken as follows:

ũ(t) = B∗C ∗εA ∗(b−p−r)ρ
p G−1[z1 − εA tρ

p φ̃(−p)−
∫ 0

−p
εA (b−p−r)ρ

p Ψ̃(r)drz0], (13)

here ∗ indicates the transpose of each matrix. The system gets steered from z0 to z1 by the control ũ(t).
The solution of the linear system is

z(t) =εA tρ
p φ̃(−p)+

∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr+
∫ t−p

0
εA (t−p−r)ρ

p Bũ(r)dr

+
∫ t

t−p
εA (t−p−r)ρ

p C ũ(r)dr+
∫ 0

−p
εA (t−2p−r)ρ

p C Ψ̃(r)dr+ ∑
0<ti<t

A εA (t−ti−2p)ρ
p Ji. (14)

Substitute t = b in (14),
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z(b) =εA bρ
p φ̃(−p)+

∫ 0

−p
εA (b−p−r)ρ

p φ̃ ′(r)dr+
∫ b−p

0
εA (b−p−r)ρ

p Bũ(r)dr

+
∫ b

b−p
εA (b−p−r)ρ

p C Ψ̃(r)dr. (15)

Substituting ũ(t) in (15),

z(b) = εA bρ
p φ̃(−p)+

∫ 0

−p
εA (b−p−r)ρ

p φ̃ ′(r)dr+
∫ b−p

0
εA (b−p−r)ρ

p BB∗C ∗εA ∗(b−p−r)ρ
p

×G−1[z1 − εA tρ
p φ̃(−p)−

∫ 0

−p
εA (b−2p−r)ρ

p Ψ̃(r)drz0],

=⇒ z(b) = z1. (16)

Next, to prove that G(t) is positive definite. Consider y ≠ 0 such that y∗Gy = 0.

y∗
∫ b

0
(εA (b−p−r)ρ

p B)
∫ b

0
(εA (b−p−r)ρ

p B)∗dr+
∫ b−p

0
(εA (b−2p−r)ρ

p C )(εA (b−2p−r)ρ
p C )∗dr.y = 0

on [0, b]. Then

z(b) = 0 = εA bρ
p φ̃(−p)+

∫ 0

−p
εA (b−p−r)ρ

p φ̃ ′(r)dr+
∫ b−p

0
εA (b−p−r)ρ

p Bũ(r)dr

+
∫ b

b−p
εA (b−p−r)ρ

p C ũ(r)dr,

=⇒ 0 = y+
∫ b

0
εA (b−p−r)ρ

p (B+C )ũ(r)dr,

=⇒ 0 = y∗y+
∫ b

0
y∗εA (b−p−r)ρ

p (B+C )ũ(r)dr.

But the second integral becomes zero. Hence,

y∗y = 0,

=⇒ y = 0,
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which is a contradiction. Hence the system (8)-(11) is controllable on J .

4. Nonlinear system
Consider a Banach space X of the real continuous valued functions Rn ×Rm ×Rm defined on J , that satisfies the

norm

∥(z, ũ)∥= ∥z∥+∥ũ∥,

and here

∥z∥= sup|z(t)| : t ∈ J , ∥ũ∥= sup|ũ(t)| : t ∈ J ,

where X = Cn(J )×Cm(J )×Cm(J ) denotes the Banach space ofRn real valued continuous functions on the interval J
with the supremum norm for each (µ, ν) ∈ X where µ and ν are some variable that belongs to X. Now assign a value
h = (z, ũ) ∈Rn ×Rm, then at t ∈ [0, p], with control ũ(t) = φ̃(t) at the interval −p ≤ t ≤ 0, it becomes |h|= |z|+ |ũ|.

Theorem 2 The nonlinear impulsive delayed system (1)-(4) is controllable onJ , if a continuous function f̃ satisfies

lim
|h|→∞

| f̃ (t, h)|
|h|

= 0, (17)

for some h, uniformly in t ∈J . Also, ∥(z, ũ)∥= ∥z∥+∥ũ∥, where z is the state vector and ũ is the delayed control which
are admissable.

Proof. Define an operator W : X → X by W (z, ũ) = (µ, ν), t ∈ [0, p].
Consider the Grammian matrix

G(t) =
∫ b

0
(εA (b−p−r)ρ

p B)(εA (b−p−r)ρ

p B)∗dr

+
∫ b−p

0
(εA (b−2p−r)ρ

p C )(εA (b−2p−r)ρ

p C )∗dr,

and let
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ν(t) = B∗εA ∗(t−p−r)ρ
p G−1[z1 − εA tρ

p φ̃(−p)−
∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr]

−
∫ t

0
εA (t−p−r)ρ

p f̃ (r, z(r), ũ(r), ũ(r− p))dr,

µ(t) = εA tρ
p φ̃(−p)+

∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr+
∫ t

0
εA (t−p−r)ρ

p Bũ(r)dr

+
∫ 0

−p
εA (t−2p−r)ρ

p C Ψ̃(r)dr+
∫ t

0
εA (t−p−r)ρ

p f̃ (r, z(r), ũ(r), ũ(r− p)dr)

+ ∑
0 < ti <t

A εA (t−ti−2p)ρ
p Ji.

Consider the following assumptions for brevity,

â1 = sup∥εA (t−p−r)ρ
p B∥, â2 = sup∥εA tρ

p φ̃(−p)+
∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr∥,

sup| f̃ |= sup| f̃ (r, z(r− p), ũ(r), ũ(r− p)dr| : r ∈ J ,

â3 = sup∥
∫ 0

−p
εA (t−2p−r)ρ

p C Ψ̃(r)dr∥, â4 = ∑
0<ti<t

∥A εA (t−ti−2p)ρ
p Ji∥, â5 = sup∥εA (t−p−r)ρ

p ∥,

d̂1 = 4ââ1∥G−1∥|z1|+ â2, ĉ = 4ââ5, d̂2 = 4â(â3 + â4),

d̂ = max{d̂1 + d̂2},

where â, ĉ, d̂ are some constants. Then

|ν(t)| ≤ â1∥G−1∥[|z1|+ â2]+ [â5sup| f̃ |]

≤ [â1∥G−1∥|z1|+ â2]+ [â5sup| f̃ |]

≤ d̂1

4â
+

ĉ
4â

sup| f̃ |

≤ 1
4â

(d̂1 + ĉ)sup| f̃ |, (18)
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and

|µ(t)| ≤ â2 + â1 + â3 + â5sup| f̃ |+ â4

≤ â3 +[â1 + â2 +
ĉ

4â
sup| f̃ |]+ â4

≤ â3 + â4 +[
d̂1

4â
+

ĉ
4â

sup| f̃ |]

≤ d̂2

4â
+[

d̂1

4â
+

ĉ
4â

sup| f̃ |]

≤ d̂
4â

+
ĉ

4â
sup| f̃ |. (19)

From (18) and (19), the function f̃ fulfils the following conditions:
For a constant r1 such that if |h| ≤ r1 and t ∈ [0, p] = J , then ĉ| f̃ (t, h)|+ d̂ ≤ r1, where ĉ and d̂ are constants.

Suppose for a constant r2 such that r1 < r2, then ĉ| f̃ (t, h)|+ d̂ ≤ r2.
For all r ∈ J , suppose that ∥z∥ ≤ r1

2
and ∥ũ∥ ≤ r1

2
gives |h| ≤ r1

2
+

r1

2
which implies |h| ≤ r1.

ĉ sup| f̃ |+ d̂ ≤ r,

|ũ(r)| ≤ r1

4â
,

=⇒∥t∥ ≤ r1

2
, ∀ t ∈ J .

Hence the considered operator W maps X(r) into itself with the condition

X(r) = {(z, ũ) ∈ X : ∥ũ∥ ≤ r
2
, ∥z∥ ≤ r

2
}.

Next, to prove that the operator W has a point fixed in X(r). By the Arzela Ascoli’s theorem if the function f̃ is
continuous thenW is continuous which impliesW is completely continuous. Also, the fixed point theorem of Schauder’s
suggests that if X is closed, bounded and convex then (z, ũ) ∈ X(r) such that W (z, ũ) = (µ, ν), so

z(t) =εA tρ
p φ̃(−p)+

∫ 0

−p
εA (t−p−r)ρ

p φ̃ ′(r)dr+
∫ t−p

0
εA (t−p−r)ρ

p Bũ(r)dr+
∫ 0

−p
εA (t−2p−r)ρ

p C Ψ̃(r)dr

+
∫ t

0
εA (t−p−r)ρ

p f̃ (r,z(r− p), ũ(r), ũ(r− p)dr)+ ∑
0<ti<t

A εA (t−ti−2p)ρ
p Ji, (20)
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which provides the solution of the considered system and it can be computed that z(t) = z1. Hence the system (1)-(4) is
controllable on J .

5. Example
The concluded result from the previous section is illustrated with a numerical example for an impulsive system with

state and control delays, given by

CD0.2
0+ z(t) = A z(t −0.3)+Bũ(t)+C ũ(t −0.3)

+ f̃ (t, z(t −0.3), ũ(t), ũ(t −0.3)), z(t) ∈ [0, t1], p > 0, (21)

z(t) = φ̃(t), t ∈ [−0.3, 0], (22)

z(t+i )− z(t−i ) = J (z(ti)) = Ji, (23)

Now for the system (21)-(23), let ρ = 0.2, t = 1.2, n = 2, p = 0.3, t = ti.

A =

(
1 1
0 1

)
, B =

(
0.09 0

0 0.09

)
, C =

(
0.2 0
0 0.2

)
,

f̃ (t,h) =


1

1+ z2
2(t − p)+ ũ2(t)+ ũ2(t − p)

1
1+ z2

1(t − p)+ ũ2(t)+ ũ2(t − p)

 , where z(t) =
(

z1(t)
z2(t)

)
.

Considering the delayed fractional grammian matrix of the system with impulsive terms,

G(t) =
∫ t

0
(εA (t−p−r)ρ

p )BB∗(εA ∗(t−p−r)ρ
p )dr+

∫ t−p

0
(εA (t−2p−r)ρ

p )C C ∗(εA ∗(t−2p−r)ρ
p )dr

+ ∑
0 < ti < t

A εA (t−ti−2p)ρ
p .

From Definition 3, the solution can be obtained,
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G(1.2) =
∫ 1.2

0
εA (1.2−0.3−r)0.2

0.3 B2εA ∗(1.2−0.3−r)0.2

0.3 dr+
∫ 0.9

0
εA (1.2−0.6−r)0.2

0.3 )C 2εA ∗(1.2−0.6−r)0.2

0.3 dr

+A εA (−0.6)0.2

0.3 ,

G(1.2) = GB1 +GB2 +GB3 +GC1 +GC2 +GC3 +GIm.

By the delayed M-L derivative,

GB1 =
∫ 0.4

0
(I +A

(1.2− r)0.2

Γ(1.2)
+A 2 (0.9− r)0.4

Γ(1.4)
)B2(I +A T (1.2− r)0.2

Γ(1.2)
+A T 2 (0.9− r)0.4

Γ(1.4)
)dr,

GB2 =
∫ 0.8

0.4
(I +A

(1.2− r)0.2

Γ(1.2)
)B2(I +A T (1.2− r)0.2

Γ(1.2)
)dr,

GB3 =
∫ 1.2

0.8
(I )B2(I )dr,

GC1 =
∫ 0.3

0
(I +A

(1.2− r)0.2

Γ(1.2)
+A 2 (0.6− r)0.4

Γ(1.4)
)C 2(I +A T (1.2− r)0.2

Γ(1.2)
+A T 2 (0.6− r)0.4

Γ(1.4)
)dr,

GC2 =
∫ 0.6

0.3
(I +A

(1.2− r)0.2

Γ(1.2)
)C 2(I +A T (1.2− r)0.2

Γ(1.2)
)dr,

GC3 =
∫ 0.9

0.6
(I )C 2(I )dr,

GIm = A (I +A
(−0.6)0.2

Γ(1.2)
+A 2 (−0.9)0.4

Γ(1.4)
).

By simple computations and calculations the acquired Grammian matrix is

G(t) =

(
1.432 1.3412
0.3412 1.096

)
.

Hence the obtainedmatrix is a nonsingular matrix and its inverseG−1(t) exists. Also, the linear system is controllable
and f̃ (t, h) satisfies the assumption of Theorem 2. Hence, the considered system (21)-(23) based on Theorem 2 is
controllable on J .
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The controllability results of both linear and nonlinear fractional dynamical systems with impulsive conditions and

delays in state and control have been studied by using delayed M-L functions and fixed point techniques under certain
criteria. A numerical example is provided to validate the results obtained. Further, the proposed result can be extended to
system with multiple delay and distributed delay, which are likely to give useful results.
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