
Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

Controllability of Impulsive Damped Fractional Order Systems Involv-
ing State Dependent Delay

Arthi G.* , Vaanmathi M.

Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore 641004, India
E-mail: arthi@psgrkcw.ac.in; 19phdms004@psgrkcw.ac.in

Received: 21 March 2023; Revised: 21 October 2023; Accepted: 27 October 2023

Abstract: In this article, the concept of controllability on fractional order impulsive systems involving state dependent
delay and damping behavior is analysed by utilizing Caputo fractional derivative. The main motivation is to derive the
sufficient conditions for the controllability of the considered systems. Based on the Laplace transform and inverse Laplace
transform, the solution of fractional-order dynamical systems are obtained. The results are established by utilizing basic
ideas of fractional calculus, Mittag-Leffler function and Banach fixed point theorem. Finally, an application is provided
to illustrate the derived result.
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1. Introduction
Differential equations involving fractional derivatives is more precise in describing fractional order models of

particular systems with derivatives of non-integer order. Fractional derivatives capture memory effects in systems. In
control theory, memory or hereditary effects are often essential to model systems with long-term dependencies, delays,
or non-local interactions. These systems can be found in areas such as viscoelasticity, finance, biology, and many more.
Caputo fractional derivative incorporates initial conditions naturally which is suitable for solving fractional differential
equations with initial values and it is well-suited for modeling real-world phenomena with memory effects. This derivative
is often used to describe systems where the initial condition is meaningful and represents a physical state at time t = 0.
This is especially relevant in areas like viscoelasticity, where fractional calculus plays a crucial role. The controllability
problem is to demonstrate that a control function moves the system from intial state to final state. The applications
of fractional differential equations have been discussed in [1–4]. Controllability is the primary qualitative feature of
dynamical systems. Because of its relevance, in [5–7] many authors have expanded their results of linear and nonlinear
systems beyond integer order to fractional systems.

Apart from these works, delay differential equation arises in predeictions and analysis for life sciences including
immunology, population dynamics and neural networks. Damping behaviour is when an oscillatory system is affected
which limits oscillations. Examples include resistance in electrical oscillators, scattering in optical oscillators and so on.
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Damping effects became an active area of research due to this reason that it describes practical problems like viscous drag
in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators.
Fractional derivative terms have been presented in order to develop the models of viscoelastic materials. As reported in
[8–13], damping behaviour with delay involving control and state is a factor in controllability issues of linear and nonlinear
systems.

Research on impulsive dynamical systems are characterized by rapid events that cause sudden changes and affect the
dynamics of emerging processes in the state of the system. The abrupt changes in dynamical system are seen in harvests,
thresholds and frequency-modulated systems as impulses. The monograph by Bainov and Simeonov [14] contains the
fundamental understanding of impulsive differential equations. Study on controllability criteria for impulsive fractional
systems with damping behaviour have been reported in [15]. Schauder [16] fixed point approach has been utilized for
deriving the controllability results for impulsive system with distributed delay. Changes in the state of a physical system
at a given time depend its past history by state variable rather than the state variable derivative. The past dependence
on a variable is state dependent delay (SDD). The study of interest in SDD type systems are enormous in recent years.
According to [17], the theory of existence yields a fractional system with resolvent operators and SDD. Existence theory
of integro-differential and SDD in fractional order have been studied in [18, 19]. Moreover, second-order systems for
controllability results with SDD have been established in [20, 21]. Necessary criteria for the existence of solutions for
impulsive fractional system involving SDD has been discussed in [22].

Moreover, approximate controllability can be directed to any small area around the intendent state. Numerous
authors have emphasised how approximate controllability systems are increasingly common and adequate in fractional
differential system, impulsive effects and SDD in [23–25]. The conditions for approximate controllability problem
has been established utilizing semigroup theory, fixed point approch with SDD in [26] for nonlinear system. Based
on the above analysis, it is valuable to study the controllability concept for fractional-order system with impulsive
effects and SDD involving damping behaviour. Eventhough many authors have emphasized how controllability systems
are increasingly common and adequate in applications the controllability criteria of fractional-order systems featuring
damping behaviour, impulsive effects and SDD using fixed point techniques has not yet been analysed.

The study includes the contributions, which are specified as follows:
·Most of the prior investigation on fractional systems have been discussed with single order. So, it is important to

pay consideration to the study of multi-order fractional impulsive systems.
·Compared with several previous analyses, controllability of multi-order fractional impulsive system involving SDD

is firstly presented for designing more general fractional-order model.
·Caputo fractional derivative and Banach contraction principle are utilized to derive the sufficient conditions for

the controllability of nonlinear multi-order fractional impulsive system involving SDD, it can be expressed in terms of
Mittag-Leffler function.

Structure of the article is as follows: Review of basic definitions and lemma is provided in Section 2. Controllability
results is derived for damped impulsive system with SDD via contraction principle in Section 3. In Section 4,
demonstration for the illustrated result is given.

2. Problem formulation and preliminaries
Consider the damped nonlinear impulsive fractional-order system with SDD
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C
0 Dγ1

t y(t)−AC
0 Dγ2

t y(t) = C u(t)+h(t, yρ̂(t, yt )), t ∈ [0, T ] = I ′, (1)

y(0) = y0, y′(0) = y1, (2)

∆y(t) = I j(y(t j)),

∆y′(t) = J j(y′(t j)), t = t j, j = 1, 2, . . . , k, (3)

where y denotes the state variable in Banach space X . C
0 Dγ2

t ,A C
0 Dγ1

t indicates fractional order derivatives of γ2(0< γ2 ≤ 1)
and γ1(1< γ1 ≤ 2) in caputo sense. A, C are the known constant matrices. u(t)∈ L2(I

′,U ) is control vector. C : U → X
is a continuous bounded operator. PC = {y: (−∞, I ′]→ X} is piecewise continuous such that y(t j) = y(t−j ) and y(t+j )
exist for j = 1, 2, . . . , k. Except for some t j, the norm ∥y∥PC = supt∈I ′ |y(t)|< ∞ is continuous. ∆y(t j) = y(t+j )− y(t−j )
indicates the right and left bounds of y(t) where limδ→0+ y(t j + δ ) = y(t+j ) and limδ→0− y(t j + δ ) = y(t−j ). Similarly
∆y′(t j) is definied. The function h, ρ̂ , I j, J j are appropriated function to be mentioned.

Now, we provide several earlier definitions and lemmas which support to obtain the main results.
Definition 1 [2, 27] For a function h: R+ → R, the fractional order derivative γ1 (0 ≤ p1 ≤ γ1 < p1 +1) is defined

in caputo sense as

C
0 Dγ1

t h(t) =
1

Γ(p1 − γ1 +1)

∫ t

0

h(p1+1)(θ)
(t −θ)γ1−p1

dθ .

The Laplace transform (LT) of C
0 Dγ1

t is

L {C
0 Dγ1

t h(t)}(s) = sγ1h(s)−
m−1

∑
i=0

h(i)(t)sγ1−1−i.

Definition 2 [2, 27] For γ1 > 0, the Mittag-Leffler function (MLF) Eγ1(z) is

Eγ1(Z) =
∞

∑
j=0

z j

Γ(γ1 j+1)
, γ1 > 0, Z ∈ C.

The two-parameter Eγ1, γ2(Z)(MLF) with γ1, γ2 > 0 is

Eγ1, γ2(Z) =
∞

∑
j=0

z j

Γ(γ1 j+ γ2)
, γ1 > 0, Z ∈ C.

The LT of Eγ1, γ2(Z) is
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L {tγ1−1Eγ1, γ2(±atγ1)}(s) = sγ1−γ2

sγ1 ∓a
.

For γ2 = 1,

L {Eγ1(±atα)}(s) = sγ1−γ2

sγ1 ∓a
.

Using the ideas and notations developed in [28], the abstract space (B, ∥·∥B) is a seminorm linear space. ys

represents ys(θ) = y(s+θ) ∈B in the function ys: (−∞, 0]→ X and the following axioms hold:
·If y: (−∞, T ]→ X , is a continuous function such that y0 ∈B, ∀ t ∈ [0, T ),
(i) yt ∈B;
(ii) ∥y(t)∥ ≤ R1 ∥yt∥B;
(iii) ∥yt∥B ≤ R2(t)∥y0∥B+R3(t)sup{∥y(s)∥: 0 ≤ s ≤ T},

holds and R1 > 0 is a constant, R2, R3: [0, ∞)→ [0, ∞) such that R3 is continuous and R2 is locally bounded.
Lemma 1 ([29]) For y0 = φ and y(·)|I ′ ∈ PC such that y: (−∞, T ]→ X be a function. Then

∥ys∥B ≤
(
MT +J φ

0

)
∥φ∥B+RT sup{∥y(θ)∥; θ ∈ [0, max{0, s}]}, s ∈ Z

(
ρ̂−)∪I ′.

Consider the following fractional order system as treated in [6]

C
0 Dγ1

t y(t)−AC
0 Dγ2

t y(t) = h(t, y), t ∈ [0, T ] = I ′,

y(0) = y0, y′(0) = y1.

with 0 < γ2 ≤ 1 < γ1 ≤ 2y denotes state variable, A ∈ Rn×n and h: J → Rn is a continuous function. Applying the LT to
establish the solution of the system mentioned above,

sγ1y(s)− sγ1−1y(0)− sγ1−2y′(0)−Asγ2y(s)+Asγ2−1y(0) = H(s).

Applying the inverse LT to both sides of the previous formula,

L −1{Y (s)}(t) =L −1
{

sγ1−γ2−1 (sγ1−γ2I −A
)−1
}
(t)y0 −AL −1

{
s−1 (sγ1−γ2I −A

)−1
}
(t)y0

+L −1
{

sγ1−γ2−2 (sγ1−γ2I −A
)−1
}
(t)y′0 +L −1

{
H(s)× s−γ2

(
sγ1−γ2I −A

)−1
}
(t).

Finally, by replacing the Laplace transformation of the ML function and the Laplace convolution operator, we obtain
the system solution as

Contemporary Mathematics 4924 | Arthi G., et al



y(t) =Eγ1−γ2

(
Atγ1−γ2

)
y0 −Atγ1−γ2Eγ1−γ2, γ1−γ2+1

(
Atγ1−γ2

)
y0 + tEγ1−γ2, 2

(
Atγ1−γ2

)
y′0

+
∫ t

0
(t − s)γ1−1Eγ1−γ2, γ1

(
A(t − s)γ1−γ2

)
h(s)ds.

Definition 3 A function y: (−∞, T ] → X be the solution of the impulsive damped system (1)− (3), if y(0) =
y0, y

′
(0) = y1 and yρ̂(s, ys) ∈B for every y(·)|I ′ ∈ PC then

y(t) =Eγ1−γ2(AT γ1−γ2)y0 −AT γ1−γ2Eγ1−γ2, γ1−γ2+1(AT γ1−γ2)y0 +T Eγ1−γ2, 2(AT γ1−γ2)y1

+
k

∑
j=1

Eγ1−γ2(A(T − t j)
γ1−γ2)I j(y(t j))−

k

∑
j=1

A(T − t j)
γ1−γ2Eγ1−γ2, γ1−γ2+1

× (A(T − t j)
γ1−γ2)I j(y(t j))+

k

∑
j=1

(T − t j)Eγ1−γ2, 2(A(T − t j)
γ1−γ2)J j(y′(t j))

+
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)h(s, yρ̂(s, ys))ds

+
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)C u(s)ds, t ∈ I

′
.

3. Main results
In this part, assume the following hypothesis to demonstrate the controllability result for systems (1)-(3).
(H1) Lh: [0, ∞)→ (0, ∞) be a continuous function and an integrable function α: I ′ → [0, ∞) exist such that

∥h(t, ψ)∥ ≤ α(t)Lh(∥ψ∥B), liminf
ω→∞

Lh(ω)

ω
= ω̃ ≤ ∞.

(H2) The functions h: I ′×B→ X , I j, J j: B→ X are continuous and ∃ constants Lh, ϕ j, σ j such that

∥h(t, y1)−h(t, y2)∥ ≤ Lh∥y1 − y2∥2, ∥I j(y1)− I j(y2)∥2 ≤ ϕ j∥y1 − y2∥2,

∥J j(y1)− J j(y2)∥2 ≤ σ j∥y1 − y2∥2.

(H3) The maps I j, J j are continuous and the continuous non-decreasing functions β j, γ̃ j: [0, ∞)→ (0, ∞), j = 1, 2,
. . ., k exist such that
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∥I j(y)∥2 ≤ β j(∥y∥2), liminf
r→∞

β j(r)
r

= ϒ j ≤ ∞,

∥J j(y)∥2 ≤ γ̃ j(∥y∥2), liminf
r→∞

γ̃ j(r)
r

= ζ j ≤ ∞.

(H4) Let Z(ρ̂−) = ρ̂(s, φ) ∈ I ′×B. A continuous and bounded function J φ :Z(ρ̂−)→ (0, ∞) is well definied in
t → φt from Z(ρ̂−) intoB such that ∥φ∥B ≤ J φ(t)∥φ∥B ∀ t ∈ Z(ρ̂−).

(H5) The linear operatorW is defined by

Wu =
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)C u(s)ds

has a bounded invertible operator W−1 exists in L2(I ′, U )/kerW such that ∥W−1∥ ≤ l and C : U → X is bounded,
continuous ∃ a constant M such that

M = ∥(T − s)γ1−1[Eγ1−γ2, γ1(A(T − s)γ1−γ2)]C ∥2.

For brevity,

C1 = supt∈I ′∥Eγ1−γ2(AT γ1−γ2)∥2,

C2 = supt∈I ′∥AT γ1−γ2Eγ1−γ2, γ1−γ2+1(AT γ1−γ2)∥2,

C3 = supt∈I ′∥T Eγ1−γ2, 2(AT γ1−γ2)∥2,

C4 = ∥(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)∥2

Determining the control function

C ∗[(T − s)γ1−1Eγ1−γ2, γ1(A(T − t)γ1−γ2)]∗W−1ŷ = u(t),

where
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ŷ =yT −Eγ1−γ2(AT γ1−γ2)y0 +AT γ1−γ2Eγ1−γ2, γ1−γ2+1(AT γ1−γ2)y0

−T Eγ1−γ2, 2(AT γ1−γ2)y1 −
k

∑
j=1

Eγ1−γ2(A(T − t j)
γ1−γ2)I j(y(t j))

+
k

∑
j=1

A(T − t j)
γ1−γ2Eγ1−γ2, γ1−γ2+1(A(T − t j)

γ1−γ2)I j(y(t j))

−
k

∑
j=1

(T − t j)Eγ1−γ2, 2(A(T − t j)
γ1−γ2)J j(y′(t j))

−
∫ T

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)h(s, yρ̂(s, ys))ds.

∥u(t)∥2 ≤M2l2T
(
∥yT∥2 +C1∥y0∥2 +C2∥y0∥2 +C3∥y1∥2

+C1

k

∑
j=1

β j(r)∥y(s)∥2 +C2

k

∑
j=1

β j(r)∥y(s)∥2 +C3

k

∑
j=1

γ̃ j(r)∥y(s)∥2

+C4
T 2γ1−1

2γ1 −1
Lh[(MT +J φ

0 )∥φ∥B+RT r]

[∫ T

0
(α(s))ds

])

Theorem 1 The nonlinear system (1)-(3) is controllable on I ′ if

1 ≥

(
[(C1 +C2)

k

∑
j=1

ϕ j +C3

k

∑
j=1

σ j]+C4
T 2γ1−1

2γ1 −1
Lh(ω̃)

)
[1+M2l2]

provided that the hypothesis (H1)-(H5) are true.
Proof. Define an operator Φ as,
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(Φy)(t) =Eγ1−γ2(AT γ1−γ2)y0 −AT γ1−γ2Eγ1−γ2, γ1−γ2+1(AT γ1−γ2)y0 +T Eγ1−γ2, 2(AT γ1−γ2)y1

+
k

∑
j=1

Eγ1−γ2(A(T − t j)
γ1−γ2)I j(y(t j))−

k

∑
j=1

A(T − t j)
γ1−γ2Eγ1−γ2, γ1−γ2+1

× (A(T − t j)
γ1−γ2)I j(y(t j))+

k

∑
j=1

(T − t j)Eγ1−γ2, 2(A(T − t j)
γ1−γ2)J j(y′(t j))

+
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)h(s, yρ̂(s, ys))ds

+
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)C u(s)ds.

Using the concept of Banach contraction mapping principle, it has been proved that Φ has a fixed point and the
system (1)-(3) is controllable on I ′.

The setBr = {x ∈B: ∥y∥∞ ≤ r}, whereBr is closed, bounded and convex set inB ∀ r,
then by Lemma 1,

∥∥yρ̂(t, xt )

∥∥
B

≤
(
MT +J φ

0

)
∥φ∥B+RT (r)

Divide the proof into two parts:
Step 1: ΦBr ⊂Br.
Assume ΦBr ⊂Br is not valid, then y ∈Br for every r ≥ 0 for t ∈ I ′. Then

r ≤∥Φy(t)∥2

≤∥Eγ1−γ2(AT γ1−γ2)y0∥2 +∥AT γ1−γ2Eγ1−γ2, γ1−γ2+1(AT γ1−γ2)y0∥2

+∥T Eγ1−γ2, 2(AT γ1−γ2)y1∥2 +∥
k

∑
j=1

Eγ1−γ2(A(T − t j)
γ1−γ2)I j(y(t j))∥2

+∥
k

∑
j=1

A(T − t j)
γ1−γ2Eγ1−γ2, γ1−γ2+1(A(T − t j)

γ1−γ2)I j(y(t j))∥2

+∥
k

∑
j=1

(T − t j)Eγ1−γ2, 2(A(T − t j)
γ1−γ2)J j(y′(t j))∥2
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+∥
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)h(s, yρ̂(s, ys))ds∥2

+∥
∫ t

0
(T − s)γ1−1Eγ1−γ2, γ1(A(T − s)γ1−γ2)C u(s)ds∥2

r ≤[C1 +C2]

[
∥y0∥2 +

k

∑
j=1

β j(r)∥y(s)∥2
]
[1+M2l2T ]

+C3

[
∥y1∥2 +

k

∑
j=1

γ̃ j(r)∥y(s)∥2
]
[1+M2l2T ]

+C4
T 2γ1−1

2γ2 −1
[Lh][(MT +J φ

0 )∥φ∥B+RT r]
(∫ T

0
(α(s))ds

)]

× [1+M2l2T ]+M2l2T (E∥yT∥2)

and hence

1 ≤

(
k

∑
j=1

[ϒ j +ζ j]+
T 2γ1−1

2γ1 −1
ω̃[
∫ T

0
(α(s))ds]

)
[1+M2l2T ]

which is contrary to the assumption. Hence Φ mapsBr into itself.
Step 2: Φ is a contraction mapping.
Let y1, y2 ∈Br,

∥Φy1(t)−Φy2(t)∥2 ≤C1(
k

∑
j=1

ϕ j)∥y1(t)− y2(t)∥2 +C2(
k

∑
j=1

ϕ j)∥y1(t)− y2(t)∥2

+C3(
k

∑
j=1

σ j)∥y1(t)− y2(t)∥2 +C4
T 2γ1−1

2γ1 −1
[Lh]

∫ T

0
∥[y1ρ̂ (s, ys)− y2ρ̂ (s, ys)]∥

2ds

+M2l2
[
C1(

h

∑
j=1

ϕ j)∥y1(t)− y2(t)∥2 +C2(
k

∑
j=1

ϕ j)∥y1(t)− y2(t)∥2

+C3(
k

∑
j=1

σ j)∥y1(t)− y2(t)∥2 +C4
T 2γ1−1

2γ1 −1
[Lh]

∫ T

0
∥[y1ρ̂ (s, ys)− y2ρ̂ (s, ys)]∥

2ds
]
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≤

(
[(C1 +C2)

n

∑
j=1

ϕ j +C3

k

∑
j=1

σ j]+
T 2γ1−1

2γ1 −1
Lh(ω̃)

)

× [1+M2l2] sup
0≤s≤T

∥y1(s)− y2(s)∥2

Therefore,

(
[(C1 +C2)

n

∑
j=1

ϕ j +C3

k

∑
j=1

σ j]+C4
T 2γ1−1

2γ1 −1
Lh(ω̃)

)
[1+M2l2]≤ 1.

This implies that Φ has a fixed point. Hence, the nonlinear system (1)-(3) is controllable on I ′.

4. Application
Impulsive damped fractional-order system with SDD of the form



CDγ1
t y(t, z)+λCDγ2

t y(t, z) =C u(t, z)+ k2 ∂ 2

∂ z2 y(t, z)

+
∫ t

−∞
g(s− t)y(s− ρ̂1(t)ρ̂2(∥y(t)∥), z)ds, t ∈ I ′ = [0, T ],

y(0, z) = y0(z), y′(0, z) = y1(z),

y(t, 0) = y(t, π) = 0,

∆y(t j, z) =
∫ t j
−∞ q(t j − s)y(s, z)dz, j = 1, 2, . . . , k,

∆y
′
(t j, z) =

∫ t j
−∞ q̃(t j − s)y(s, z)dz, j = 1, 2, . . . , k.

(4)

Here, Caputo derivatives C
0 Dγ1

t , C
0 Dγ2

t are of order 0 < γ2 ≤ 1, 1 < γ1 ≤ 2, h: I ′×B→ X and a: R → R is continuous
then,

h(t, ψ)(z) =
∫ 0

−∞
g(s)ψ(s, z)dz.

And, ρ̂: I ′×B→ X , then ρ̂i: [0, ∞)→ [0, ∞), i = 1, 2.

ρ̂(t, ψ)(z) = t − ρ̂1(t)ρ̂2(∥ψ(0, z)∥).
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For z ∈ [0, π], C u(t, z): U ⊂ I ′ → X is bounded linear operator and C u(t, z): [0, T ]× [0, π] → X is continuous.
Defining the operatorW as,

(Wu)(ξ ) =
∞

∑
n=1

∫ π

0

1
n

sinns(C (s, ξ ), zn)znds, ξ ∈ [0, π].

Also, I j, J j: B→ X and q, q̃ > 0 for j = 1, 2, . . . , k,

I j(ψ)(z) =
∫ t j

−∞
q(t j − s)y(s, z)dz,

J j(ψ)(z) =
∫ t j

−∞
q̃(t j − s)y(s, z)dz.

Furthermore, ∥h∥ ≤ Lh, ∥I j∥ ≤ LI j , ∥J j∥ ≤ LJ j are bounded linear operators.
Hence, the impulsive damped fractional order system with SDD (1)-(3) is represented in the abstract form (4).

Therefore, the system (1)-(3) is controllable on I ′ as (4) satisfies the conditions of Theorem 1.

5. Conclusion
The controllability of fractional order damped system with impulsive effects and SDD have been examined in this

article. Under specific asumptions, sufficient conditions of the considered nonlinear system have been stated using fixed
point techniques. An example has been included to validate the illustrated result. Further, the result can be extended to
stochastic effects.
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