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Abstract: This paper is concerned with the study of the asymptotic behavior of a generalization of the Caginalp phase-
field model subject to homogeneous Neumann boundary conditions and regular potentials involving two temperatures. 
This work follows on from a paper in which the well-posedness of the problem, the dissipativity of the system, and the 
existence of global and exponential attractors were demonstrated. In addition, a study on the semi-infinite cylinder was 
also carried out. Indeed, if it is true that the existence of a global attractor makes it possible to predict the asymptotic 
behavior of solutions on a bounded domain, it does not say that these solutions converge. After having shown the 
existence of the global attractor, it is therefore important to look at the convergence of the solutions over time. There are 
several methods for determining the asymptotic behavior of the solutions of a differential system. We can mention the 
one that consists of transforming the given differential equations into integral equations and then applying the classical 
Picard successive approximation procedure to them. This work is devoted to the study of the convergence of solutions 
to steady states, adapting a well-known result concerning Lojasiewicz-Simon’s inequality.
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1. Introduction
Let us consider the model problem defined by

( ) ,u u f u
t

ϕ ϕ∂
− ∆ + = − ∆

∂
(1)

,u
t t t
ϕ ϕ ϕ∂ ∂ ∂
− ∆ − ∆ = −

∂ ∂ ∂
(2)

0 on ,u ϕ
ν ν
∂ ∂

= = ∂Ω
∂ ∂

(3)
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0 0| 0 | 0 ,,
t t

u u ϕ ϕ
= =
= =       (4)

arising from the Caginalp phase-field system (see [1]), namely,

( ) ,u u f u
t

θ∂
− ∆ + =

∂
(5)

,u
t t
θ θ∂ ∂
− ∆ = −

∂ ∂
(6)

called a non-conservative system, in the sense that, when it has Neumann boundary conditions, the spatial average of u 
is not conserved.

The variable u denotes the order parameter, and θ is the conducting temperature. More precisely, this model takes 
into account two temperatures (see [2-6]): the conductive θ and the thermodynamic φ. They are linked by the linearized 
law

 .θ ϕ ϕ= − ∆       (7)

For time-independent problems, the difference between these temperatures is proportional to the heat supply; they thus 
coincide when there is no heat supply. However, for time-dependent problems, they are generally different, even in the 
absence of heat supply; this is in particular the case for non-simple materials.

The function f is the derivative of the double-well potential F (typically 2 21( ) ( 1)
4

F s s= − ). In addition, for 

convenience, we set all physical parameters equal to one. This system has been introduced to model phase transition 
phenomena, such as melting-solidification phenomena, and has been studied extensively from a mathematical point of 
view (see, e.g., [7-22]).

An important aspect of these equations is the consideration of thermal conductivity. In particular, in this model, the 
classical Fourier law for heat conduction is considered

  ,q θ= −∇      (8)

where q is the heat flux.
It is also well known that the Fourier law allows the thermal wave to propagate instantaneously. This fact violates 

the causality principle. For this reason, several authors have proposed alternative laws for heat flow that overcome this 
drawback. We can mention, among others, the Maxwell-Cattaneo law, the Green and Naghdi law, and other constitutive 
laws for heat flux coming from thermomechanics; see, e.g., [20, 23-33].

Furthermore, let us introduce the total Ginzburg-Landau free energy in terms of the conduction temperature θ   
defined by

2 21 1( , ) | | ( ) ,
2 2

( )u u F u u dxψ θ θ θ
Ω

= ∇ + − −∫ (9)

where Ω is the domain occupied by the system (here, we assume that it is a bounded and smooth domain of , 1, 2n n =  
or 3, with a boundary ∂Ω) and the enthalpy

.H u uθ ϕ ϕ= + = + − ∆       (10)

Taking into account (7), (8), (9), and (10), the derivation of the model (1)-(4) is easily shown (see [6]).
In the paper [6], several results have been proven. These include the existence and uniqueness of the solution 

obtained, respectively, using the Galerkin approximation scheme and Gronwall’s lemma (see [11, 12]), and the 
regularity of H2(Ω) acquired by Agmon, Holder, and Sobolev injections (see [18, 34]). The application of the uniform 
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Gronwall lemma allowed to show the dissipativity of the system (see [18, 34]). The existence of the global attractor 

required a semi-group decomposition. This is due to the presence of the 
t
ϕ∂

∆
∂

 term, which by its strong dissipativity 

leads to a loss of the regularisation effect (see [21]).
In this work, we are interested in the Caginalp system endowed with homogenous boundary conditions in the 

framework of the two-temperature theory with a regular potential f. Precisely, we focus on the associated stationery 
problem, namely:

( ) ,u f u ϕ−∆ + =  (11)

0,ϕ∆ = (12)

0 on ,ϕ
ν
∂

= ∂Ω
∂  (13)

which can be considered as the asymptotic case of (1)-(4). Indeed, the existence of the global attractor allows us to 
predict the asymptotic behavior of the solution in a bounded domain without giving more precision. An important issue 
is whether any trajectory converges to some steady state as time goes to infinity. It is important to notice that such a 
question is not a trivial one, as there may be a continuum of steady states. In particular, according to [13], we can prove 
the convergence of trajectories to the steady state by using an approach based on Lojasiewicz-Simon’s inequality and the 
analyticity of the nonlinear terms. Such an approach, first considered in [35] and then simplified and further developed 
in [22], has been applied with success to many equations and, in particular, to models in phase separation and transition 
(see [12, 18, 36-38]).

1.1 Notation

We introduce the following Hilbert spaces

     1 2 2 3( ) ( ) and ( ) ( ).H H W H HΦ = Ω × Ω = Ω × Ω (14)

It appears clearly that the average (in space) of the function u + φ in the problem (1)-(4) is conserved in time, namely

0 0( ) ( ) , 0.u dx u dx tϕ ϕ
Ω Ω

+ = + ∀ >∫ ∫   (15)

In fact, integrating (2) over Ω and taking into account (3), we get (15). And then, we introduce the following 
functional spaces:

1( , ) ; ( ) , 0
| |

u u dxβ ϕ ϕ β β
Ω

 ∈Φ + =Φ = ≥ Ω 
∫ (16)

and

, 0,α β
αβ

φ α
≤

= Φ ≥


(17)

which are subspaces of the phase space Φ. We define the quantity a〈 〉 by:

1: ,
| |

a adx
Ω

〈 〉 =
Ω ∫ (18)
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where | |Ω  is the volume of the domain Ω. For a given space H, we denote the norm in H by ||.|| .H  Throughout this 
paper, the inner product and the norm of the 2 ( )L Ω  space will be denoted by (.,.) and ||.||, respectively.

2. Convergence to an equilibrium
This section is devoted to the study of the convergence of solutions. We prove that solutions converge to steady

states when time goes to infinity using Lojasiewicz’s inequality and the analyticity of the nonlinearity f. For this, we 
consider the equilibrium problem corresponding to (1)-(4)

( )u f u ϕ−∆ + =  (19)

0ϕ∆ = (20)

0 on .ϕ
ν
∂

= ∂Ω
∂

(21)

We also note that 0 0 0 .I u uϕ ϕ= 〈 + 〉 = 〈 + 〉
But, (20)-(21) implies that φ is constant, i.e., 0 .I uϕ = − 〈 〉  As a result, the corresponding equilibrium problem reads

0

( ) 0,

0 on ,

.

u f u
u
v

I u

ϕ

ϕ

−∆ + − =
∂ = ∂Ω
∂
= − 〈 〉 (22)

We now assume that the nonlinearity f is analytic in .

2.1 Main result

Theorem 2.1. We take 1 2
0 0 0( , ) : {( , ) ( ) ( ) :| | }.Mu u H H I Mϕ ϕ∈Φ = ∈ Ω × Ω ≤  Let ( , )u ϕ  be the solution to (1)-(4).

Then, there exists a solution ( , )u ϕ  to (22), such that

1

2

( , ) ( ) strongly in ( ),

( , ) ( ) strongly in ( ),

u t x u x H

t x x Hϕ ϕ

→ Ω

→ Ω

as time goes to infinity.
The proof of Theorem 2.1 is based on results below. We first give the following definitions.
Definition 2.2. We assume that X is a complete metric space, T(t), a semigroup defined from X to itself, and (.,.)  

a Lyapunov functional. Then, the system ( , ( ), )X T t   is termed gradient system if it satisfies the following conditions:
(i)	 Let 0 0( , ) .u Xϕ ∈  If for all 0 0 0 00, ( ( )( , )) ( , ),t T t u uϕ ϕ> =   then 0 0( , )u ϕ  is a fixed point of the semigroup T(t).
(ii) For every 0 0( , ) ,u Xϕ ∈  it exists t0 > 0, such that the orbit 

0 0 0( )( , )t t T t u ϕ≥∪  is relatively compact in X.
We can define, according to [14], the solving semigroup associated with problem (1)-(3), namely,

0 0( ) : , ( )( , ) ( ( ), ( )), S t S t u u t tϕ ϕΦ →Φ = 

where ( ( ), ( ))u t tϕ  is the unique solution to problem (1)-(3) with initial data (u0, φ0) and

{ }0( , ) :| | , 0 ( )u IϕΦ = ∈Φ ≤ ∀ ≥ Φ ⊂ Φ   

endowed with the norm 1 2
2 2 2 .|| ( , ) || || || || ||

H H
u uϕ ϕΦ = +


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Let us introduce the functional :E Φ→   defined as follows:

2 2 21 1 1( ( ), ( )) | ( ) | ( ( )) | ( ) | | ( ) | ,
2 2 2

( )E u t t u t F u t t t dxϕ ϕ ϕ
Ω

= ∇ + + + ∆∫

where 
0

( ) ( ) .
s

F s f t dt= ∫
Theorem 2.3. ( , ( ), )S t EΦ  is a gradient system, where 1 2( ) ( )H HΦ = Ω × Ω  and S(t), t ≥ 0 is the semigroup 

associated to our dynamical system.
The proof of Theorem 2.3 leans on the three lemmata below.
Lemma 2.4. The functional E is a Lyapunov function for our problem.
Proof. Indeed, the functional E satisfies

2

2

2
2 2

( , ) ( ), 2 , ,

, , ,

, ,

0.

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

d uE u u f u
dt t t t

u u
t t t t t

u
t t t

u
t

ϕ ϕϕ ϕ ϕ ϕ

ϕ ϕ ϕϕ ϕ ϕ ϕ

ϕ ϕϕ ϕ ϕ ϕ

ϕ ϕ

∂ ∂ ∂
= −∆ + + − ∆ + ∆ ∆

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= − + − ∆ + − ∆ + ∆ ∆

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
= − + − ∆ ∆ + ∆ + ∆ ∆

∂ ∂ ∂

∂
= − − − ≤∇ ∆

∂
(23)

Lemma 2.5. Let 0 0( , ) .u ϕ ∈Φ  If for all 0 0 0 00, ( ( )( , )) ( , ),t E S t u E uϕ ϕ> =  then 0 0( , )u ϕ  is a fixed point of the
semigroup S(t).

Proof. Let T > 0 be fixed, such that 0 0 0 0( ( )( , )) ( , ).E S T u E uϕ ϕ=  Then, from (23) we deduce that

 
( ) ( ) ( ) 0, (0, ),u t t t t T

t
ϕ∂

= ∆ = ∆ = ∀ ∈
∂

and according to (2), we get

  
( ) ( ) 0, (0, ).u ut t t T

t t
∂ ∂

= ∇ = ∀ ∈
∂ ∂

Consequently, 0 0( , )u ϕ  is a stationary solution.
Lemma 2.6. For every 0 0( , ) ,u ϕ ∈Φ  it exists t0 > 0, such that the orbit 

0 0 0( )( , )t t S t u ϕ≥∪  is relatively compact in .Φ  
Proof. We are going to prove that there exists a time t0 > 0, such that the orbit actually lies in 2 3( ) ( ).H HΩ × Ω  To 

this end, we now perform a priori estimates. We first differentiate (1) with respect to time, obtaining

  

2

2 ( ) .u u uf u
t t t tt

ϕ ϕ∂ ∂ ∂ ∂ ∂′− ∆ + = − ∆
∂ ∂ ∂ ∂∂

Owing to the equation (2), we obtain

  

2

2 ( ) .u u u uf u
t t tt

ϕ∂ ∂ ∂ ∂′+ − ∆ + = ∆
∂ ∂ ∂∂ (24)

Multiplying (24) by 
2

2

u
t

∂
∂

 and integrating over Ω, one has
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22 2 22
2

2 .d uu u uc
dt tt t t

ϕ
   ∂∂ ∂ ∂+ ≤+ ∇ + ∆   

∂∂ ∂ ∂   

Noting that

2 22 2 2 2

,d d u uu u u ut t
dt dt t tt t t t

     ∂ ∂ ∂ ∂ ∂ ∂= + + ∇+ ∇ + ∇    
∂ ∂∂ ∂ ∂ ∂     

the previous inequality yields

2 2 2 2 2
2

0 0
,

t tu u u u ut ct ds ds
t t t t t

ϕ
 ∂ ∂ ∂ ∂ ∂≤ ++ ∇ + + ∇∆ 
∂ ∂ ∂ ∂ ∂ 

   
  

   
∫ ∫

which gives, according to the estimates above,

2 2

, 0.C tu u
t t η η∂

+ ≤ ∀
∂

∂ ∂
>∇ ≥ (25)

Rewriting (1) as

( ) .uu f u
t

ϕ ϕ∂
∆ = + − + ∆

∂

And from (25) and previous estimates, we infer

0 1, 0.( ) ( ( )) ( ) ( )( )u C t tu t f u t t tt
t

ϕ ϕ∂≤ + + + ≤ ∀ ≥ >∆ ∆
∂

We deduce that

2 1 1( ) ,  ,( ) H C t tu t Ω
′≤ ∀ ≥

where 1C′  depends on initial data and t1. Now, rewriting (2) as

.u
t t t

ϕ ϕϕ ∂ ∂ ∂
∆ = + − ∆

∂ ∂ ∂

Taking into account (25) and the estimates performed above, we get

1 1, 0,( ) u C t tt
t t t

ϕ ϕ
ϕ

∂ ∂ ∂ ′′≤ ∇ + ∇ + ∇∆ ≤ ≤ ∀ ≥ >∇∆
∂ ∂ ∂

and we deduce that 3 ( )( ) Htϕ Ω  is bounded for any t ≥ t1. Finally, the orbit 
1 0 0( )( , )t t S t u ϕ≥∪  is relatively compact in Φ. 

Proof of the Theorem 2.3. In the light of Definition 2.2 and Lemmata 2.4, 2.5, and 2.6, it appears clearly that 
( , ( ), )S t EΦ  is a gradient system. As a result, the ω-limit set 0 0( , )uω ϕ  consists of equilibria.

Remark 2.7. The equilibria points coincide with critical points of the functional E.
Proof of Theorem 2.1. By virtue of the definition of ω-limit set 0 0( , ),uω ϕ  it exists 0 0( , ) ( , )u uϕ ω ϕ∈  and a 

sequence ,nt → +∞  such that
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1

2

( )  strongly in ( )

( )  strongly in ( ).

n

n

u t u H

t Hϕ ϕ

→ Ω

→ Ω

Now, from (23), we have

( ( ), ( )) ( , ) 0, 0.E u t t E u tϕ ϕ− ≥ ∀ ≥

First, we assume that it exists ,t +∈  such that

1( ( ), ( )) ( , ) 0,  .E u t t E u t tϕ ϕ− = ∀ ≥

Then, (23) implies that

        1( ) , ( ) , ,u t u t t tϕ ϕ= = ∀ ≥

which gives the expected result.
Now, assuming that ( ( ), ( )) ( , ), 0.E u t t E u tϕ ϕ> ≥  We have from (23) that

2
2 2( ( ), ( )) ( , ) 0.( )d uE u t t E u

dt t
ϕ ϕ ϕ ϕ

∂
− + + + =∇ ∆

∂

Consequently,

( ){ }

( )

( )

2
1 2 2

2
1

( ( ), ( )) ( , )

( ( ), ( )) ( , ) ( ) ( ) ( )

( ) ,( ( ), ( )) ( , ) ( ) ( )
4

d
E u t t E udt

uE u t t E u t t t
t

u tE u t t E u t t
t

θ

θ

θ

ϕ ϕ

θ ϕ ϕ ϕ ϕ

θ
ϕ ϕ ϕ ϕ

−

−

− −

∂= − + +∇ ∆
∂

∂
≥ + +− ∇ ∆

∂

 
 
 

 
 
 

from Lojasiewicz-Simon’s inequality, it exists TL, such that ,Lt T∀ ≥  we write

( ) ( ) .( ( ), ( )) ( , ) ( ) ( )
4

d u tE u t t E u t t
dt c t

θ θ
ϕ ϕ ϕ ϕ

 ∂ 
− + +− ∇ ∆ ∂ 

≥

Integrating this inequality on ( , ),LT +∞  one finds that

1 2 1 2 1 2( , , ( )), ( , , ( )), ( , , ( )).L L L
u L T L L T L L T L
t

ϕ ϕ∂
∈ +∞ Ω ∇ ∈ +∞ Ω ∆ ∈ +∞ Ω

∂

Since

1
1 1 1

.H
H H H

u uC
t t t t t
ϕ ϕ ϕ

ϕ ϕ−

− − −

∂ ∂ ∂  ∂ ∂ 
≤ ∆ + + ≤ ∇ + +∆ ∇ ∂ ∂ ∂ ∂ ∂ 

We already proved that 
t
ϕ∂

∇
∂

 is bounded, we finally have that 1 1( , , ( )),LL T H
t
ϕ −∂
∈ +∞ Ω

∂
 and we conclude that the 
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limit

lim( ( ), ( )) ( , )
t

u t t uϕ ϕ
→∞

=

exists in 2 1( ) ( ),L H −Ω × Ω  and that ( , )u ϕ  is a solution to the stationary problem associated to (1)-(4). Thus, on account 
of the relative compactness of the orbit, this limit also exists in the space Φ.

Finally, we conclude that

1

2

( )  strongly in ( ),

( )  strongly in ( ),

u t u H

t Hϕ ϕ

→ Ω

→ Ω

where ( , )u ϕ  is a solution to (22).

3. Conclusion
We have considered in this paper that the system (1)-(4) in a bounded smooth domain Ω of 3. This system of

equations generalizes the one proposed by Caginalp in [6] in order to model the melting-solidification phenomenon in 
certain classes of materials. Here, φ corresponds to the thermodynamic temperature, and u is the order parameter or 
phase-field, which describes the proportion of either of the phases. Following the paper [14], in which we proved the 
existence of global and exponential attractors, we were interested in the question of the convergence of the solution 
towards a state of equilibrium as time goes to infinity. Indeed, we were able to demonstrate the convergence to a steady 
state by using Lojasiewicz-Simon’s inequality. As a perspective on this work, it would be interesting to study the 
asymptotic solution in space and, obviously, to make a numerical study of such a system of equations.
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