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1. Introduction

We consider the complex Hilbert space H = H, © H, (two-channel), which is the direct sum of H, := C (channel
1 — a one-dimensional “molecular” space) and H;(channel 2 — a “nuclear” space). The elements of H are vectors with
two coordinates: f = ( Jo fl) with f, € H, and f; € H,. For convenience, we remind that the scalar product of f = ( Jo>
fi)eH and g =(gy,g,) € H is defined as

fs&n = 1o& +{/1-81)

using the scalar products in the spaces H, and ;.
In the Hilbert space H, we consider the operator matrix

_ @ <',V>
H.—(v h]’ (1)

where w € R is a triamolecular energy, v € H; provides the coupling between the channels and / is the (self-adjoint)
nuclear Hamiltonian in ;. The Hamiltonian (1) can be considered a soluble model of coupled molecular Hamiltonian and
nuclear Hamiltonian and is recognized as the generalized Friedrichs model [1, 2].

We aim to determine the special type of nuclear Hamiltonian 4, the so-called Friedrichs model. Let D,,i=1, ..., n
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(n € N) be the bounded domains with Eucledian measure in the d-dimensional space R, such that D, "D, =J, i # j,
and D = Ul_n:1 D . In the nuclear space H, := L, (D), we introduce Hamiltonian % as

(h)(p) =u(p)fi(p) = ﬂJ.DK (p.0) /1 (D)dt, 2

in the latter formula x> 0 is a coupling constant, K (-,-) is a real-valued bounded symmetric function on D*:= D x D, and
u(.) is a real-valued piecewise continuous bounded function on D. Let v(.) also be a real-valued bounded function on D.
Under these conditions, one can easily show that the model Hamiltonian, /H is bounded and self-adjoint.

A similar Hamiltonian (1) with (2) was introduced in [3] as the generalized Friedrichs model, where its eigenvalues
and resonances were studied. This model was also studied and considered in the literature [4], where the problems of
the random walk were targeted and the results obtained for the generalized Friedrichs model were applied. The bound
states of such families of the generalized Friedrichs models are investigated in the work [5]. The spectrum and structure
of the eigenvectors of the generalized Friedrichs model for small values of the coupling constant were studied in [6]. In
[7], the existence and analyticity of eigenvalues are studied for the generalized Friedrichs model. The essential spectrum
corresponding to H as a 3 x 3 block operator matrix is studied in [8].

The main goal of our paper is to provide and characterize the complete investigations for the number of discrete
eigenvalues of H. More precisely:

(1) To determine the Faddeev equation for A and prove some of its important properties corresponding to the number
of eigenvalues.

(i1) To provide the formula for the multiplicity of eigenvalues of A. The formula allows us to find the asymptotics
for the distribution of the discrete spectrum lying in a spectral gap. Furthermore, we show that the number of discrete
eigenvalues of H is finite.

2. The construction and main properties of Faddeev equation (operator) related
with H

For further convenience, we rewrite the Hamiltonian (1) with (2) in the following form:

Hy,, H
H:=[ Y 01} 3)
HOl Hll

with the entries H; :Hj — H;,i< j, i,j=0,1 defined by

Hyly=0fy  Hyfi=[ vOfod.

Hy=H)y~K. HLHP)=up) (P (Kh)(p) =] Kp.ofid

Here, f; e H;, i=0,1.

We noticed that threshold eigenvalue, virtual level (threshold energy resonance), and threshold energy expansion
for the associated Fredholm determinant of a generalized Friedrichs model with x = 0 have been studied in [9-12]. The
localization and number of discrete eigenvalues of this model are investigated in [13]. In [14-16], using the spectral
information about the Hamiltonian A with the rank-1 generated kernel, the number of eigenvalues located respectively in
the gap, inside, and below the bottom of the essential spectrum of the operator matrices is studied.

Since K (-,-) is a bounded function on D?, the operator K is a Hilbert-Schmidt. The Weyl theorem yields the equalities

0N _Tariin
Ous (H) = 0(Hy)) = Ran(u).
In the rest of the work, we suppose that K is a positive operator and that it is an element of the trace class.
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Lemma 1. The relation
K" )Py =u| Kip.)f(erd

is valid. Here, the kernel of K'” is formally denoted by K(-,-) and it is a square-integrable on D,
Proof. Since K is positive, every nontrivial eigenvalue 4_is a positive number. Applying the Hilbert-Schmidt theorem
[17], we have that

K=" 20000

with Z An <o0; where ¢ is the eigenfunction corresponding to the eigenvalue /4 . For positive square root K", we have
m

K2 =Zm\/ﬂ<¢m"> ?,.-

Since we know that z Y <0, K 2 belongs to the Hilbert-Schmidt operator, therefore, the function K(-,-) is an
m
element of L (D?).
Let I, be the identity operator on H;, i = 0,1 and R\(z) = (H), - zI,)"". We consider

Ty (2) Ty (2)

T(z)=
=) (Tlo(z) T (2)

], zeC\o(H)

in the Hilbert space H, where T};(z) : H; — 'H;, i, j = 0,1 has the following formulations:
Too(2) = (1+2) 1y = Hop +Ho R\ (2)Hys  Toy(2) = —Ho R (2)K'2,
To(2) =-K"*Riy(2)Hyy, Ty (2) =K Ry ()K",
The following statement describes a well-known Birman-Schwinger principle [11, 12, 14-16] (relation between the
eigenvalues of H and T{(z).
Lemma 2. The quantity z e C\o(H 101) is a discrete eigenvalue of H if the quantity 4 = 1 is an discrete eigenvalue of
T(z). Moreover, the multiplicities of eigenvalues z and 1 are the same.

Proof. Assume f =(f, /;) € H is the eigenvector of H corresponding to the eigenvalue z € C\o(H 0. Then, the
coordinates f; and f, satisfy

{(Hoo —zly) fo+Hy /i =0;
Hofo +(Hyy = 21) f; = Kf; =0. )

Since z € C\o(H, 101), then from the second relation of (4) for the coordinate f|, we find that

fi= R101 (2)Kf _RIOI(Z)H;lfO' ®)

172

Next, we find the action of K™ to the coordinate f, defined by (5):
K" f; = K2R (2)KSfy — K" R}, (2)Ho, fo.-

Setting /;1 =K" /1, from the last equality, we obtain that

Volume 5 Issue 1|2024| 845



J;1 = K1/2R101 (Z)K1/2J;1 _K1/2R101 (Z)HglfO' (6)
Now, we rewrite the equality (5) in the form

fi =RY()K"? £, = R\ (2)Hy, fo.- (7)

Substituting the relation (7) into the first relation of (4), we receive that (4) has a nonzero solution if the system

(Hoy — = _H01R101(Z)H;1)fo +H01R101(Z)K1/2f~1 =0
KR\ (2)Ho fy + (I KRN (2)K") f; =0

or the matrix equation ® —T(z)® =0, ® =(f,, fl) € 'H has a nontrivial solution. It is clear that the linear subspaces of
solutions of (4) and the equation ® —7'(z)® = 0 have the same dimension. Therefore, the multiplicities of the eigenvalues
z and 1 of the operators H and 7(z) coincide, respectively.

Remark 1. We call the equation 7(z)® =® z € C\ O'(Hlol) the Faddeev equation corresponding to H. The operator
T(z) is the Faddeev operator.

Remark 2. The function 7' (.) is not monotone in z € R\ G(Hlol ), and hence, the method of [18] is not applicable to
the proof of the main theorems of this work.

It is easy to obtain information about the fact that the determinant D(4,z) := det[/ - A'r (2)] of the operator
1-2'T (2) is well-defined and is analytic for 4 # 0 where / = diag{]o,l1 } The following lemma is implied by Theorem
XIMI.105 in [17].

Lemma 3. Let z € C\ o-(HIOI). The quantity 4 # 0 is a discrete eigenvalue of 7(z) if D(4,z) = 0.

By Lemmas 2 and 3, we obtain the following lemma.

Lemma 4. The quantity z e C\ o-(Hlol) is a discrete eigenvalue of Hif D(1,z)=0.

We remember that for f},g, € L, (T, the inner product is defined as

(fi.&1)= Ld £ (g ().

Note that the operator matrix 7{(z) is determined for any z € C\ o-(Hlo1 ).
Lemma 5. If the quantity 4 # 0 is a discrete eigenvalue of 7(z) for some z € C\ o-(Hlo1 ), in this case, Im z = 0.
Proof. Assume ® = (¢,,¢,) € H is the eigenvector with norm-1 corresponding to the discrete eigenvalue 4 # 0 of
1(z) for some z € C\ o (H, 101 ). Separating the imaginary and real parts of the function (u(p) — z)!, we rewrite Rlo1 (z) as the
sum Rlo1 (z)= 1@101 (z)+ilm z -15101 (z), where 1%101 (2), kfl (z) are multiplication operators to

u(p)—Rez 1
(u(p)—Rez)2 +(lrnz)2 ’ (u(p)—Rez)2 +(Imz)2 ’

respectively. Therefore, 7(z) can be written as the sum 7'(z) = T (z)+ilmz-T(z), where the operators T(z), and T(z) are
defined as

T(z)=

. (1+Rez) Iy — Hyy + Hy R (2)Hg,  —Hy R} ()K"
_K”zﬁlol (Z)Hgl Kl/zl%g (2)K"?

T(z) = 10+H011§101(Z)H31 _H01R101(Z)K1/2
-K"?R\(2)Hy, KPR (2K

First, taking the scalar product of the relation AD = T ()@ +ilmz-T(z)® and the vector @, then using the fact that 7'(2),
T(z), and T'(z) are the self-adjoint, we obtain
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(T(2)®, D), Imz=0. ®)

Now, we show that Imz = 0. Since ||(D|| =1, for® = (goo,q)l ), we receive g, = 0 or g, #0. If g, =0, then ||CD|| = ||q)1|| =1.
In this case, we obtain that

(T(2)D, D)y, = (K"’ RN (DK p1.00) = (R ()K" 01, K ).

From definition of R (z), it follows that (R (z)K"?p,, K"?¢,) = 0 if and only if K"?¢, = 0. On the other hand, the
equality K"°¢, = 0 contradicts the fact that the quantity A # 0 is a discrete eigenvalue of 7(z). Therefore, (T(z)®, @), > 0.
Assume that ¢ # 0. Furthermore, we denote

¢ =H\ 0y, ¢ = K1/2¢’13
4;(p)=Re(d;(p)). ¢,(p)=Im(g;(p)). j=0.1.
Then, using the identity, we have that
|+l o) ~2Ret6r (02 o0 = ([ (| | ) + ()] - Jdbp)])

after simple calculations, we have that

(F(2)0, D)y, =|y|* +(RY (2o ) — 2R(R) () ) + (R (2)h, )

R 1 2 2 — 2
ol O BT - 2RAA PR 2 >

So, (f(z)CD,d))H > 0. Therefore, the equality (8) imply Im z = 0.
In the complex Hilbert space H, we consider the bounded self-adjoint operator B. For the real number A, we set

Hy ( /1) c H a subspace such that (Bf, /), > ﬂ" f ||2 for any f" € Hz(A), and determine [19] the quantity # (4, B) by

n(A,B) = sup dimHz(A).
Hy (1)

The quantity n (4, B) is equal to infinity if A is smaller than max o, (B);if n (4, B) is a finite quantity, then it is equal to the
number of the eigenvalues of B bigger than A.

Lemma 6. The quantity z € R\ o-(Hlol) is a regular point of A if n (1, 7(.)) is continuous at z = z.

Proof. Necessity. For the regular point z = z, € R\O'(Hlol) of H using Lemma 2, one can know that / - T (z))

is invertible. It follows from the continuity of the operator-function ' 7(z) with respect to (4, z) in (0, ©) X R\ o (H, 10 D)
and from the compactness of 7(z) that / — 1! T(z) is an invertible for any pair (1, z) in some neighborhood of
(1,z,). Therefore, it means that for some p > 0, the identity o'(7(z)) " (1- p,1+ p) = @is valid forany z €[ z, — p,zy + p |
By the determination of n (a, T'(.)), yields

n(1£8,7(zp £&))=n(LT(z) £ &))
for any &,6 €0, p). Furthermore, applying Weyl inequality [2], we have that
n(ay+ay, 4 +4,)<n(ay, 4)+n(ay, 4,) )

for the sum of compact self-adjoint and positive operators 4, and 4,, this allows to have that
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n(1+1,,T(zg £8)) <n(1,T(zy £ &) +n(17y, T (29 £ &) = T(24)) = n(1,T(zy))

for a fixed 7, € (0,9) and for small £ > 0. Similarly, for small values of & > 0, we obtain that n(1,7(z, £<&)) = n(1,7(z,)).
Therefore, the relation n(1,7(z, £ £)) = n(1,7(z,)) holds for all small £ > 0, i.e., it means that n (1, 7'(.)) is continuous at
z=2z,
Sufficiency. On the contrary, suppose that n (1, T (.)) is continuous at z = z, point z is a discrete eigenvalue of H.
Arguing as above and using the Weyl inequality (9), we verify that there exist quantities &, > 0 and ¢, = ¢, () > 0,
so that the relations

n(LT(zy)) =n(l+6y,T(zy)) =n(1+ 6, /4,T(z, +¢)) (10)

hold for all £ € [-¢, ¢, |. By Lemma 4, we have D(1, z)) = 0. Let I'; be the boundary of the complex 6 —neighborhood U
(z,) of the point z,. In this case, by virtue of the smallness of J, we have that D(l,z,) # 0 for all z € I'5. We set

d:= mirn|D(1, 2), w,.(2)=D(+¢,2)-D(,z).
ze S5

By the continuity of D(.,-), we find p = p(0) >0, so that the condition |l//g (z)| <d 1is vanish for any quantity
e [— 0, p] and for any point z € I' . Therefore, for fixed ¢ € [— 0, p], the maps D(1, .) and y(.) determined on the closed

set Us(z,) satisfies all main assertions of theorem of Rouché. Therefore, the number of zeros D(1, .) and D(1 +e, .)
belonging to open set Us(z,) coincides. Assume that D(1+¢,z) = 0, ¢ > 0 for some fixed point z, € U;(z,). Using Lemma
4, one can prove that the quantity 1+¢ is a discrete eigenvalue of the operator T (z,) for any quantity £ € (0, o). Applying
Lemma 5, we obtain that the quantity z_ is a real quantity. This, together with the relation (10), implies the inequalities

n(1,T(z,))—n(L,T(zy)) 2n(l+¢e/2,T(z,)—n(,T(zy)) 21+ n(1+ 6,/ 4,T(z,))—n(L,T(zy)) =1

for all & € (0, p). Consequently, n(1,7(z,)) # 1ir% n(1,T(z,)), i.e., the function n (1, 7(.)) is not continuous at the point
£

z =z, which contradicts our assumption.
Lemma 7. Let z, € o4 (/). Then, for all small ¢ > 0, there exists 0 > 0 such that

card{z e Us(zy) : D(1+¢&,z) =0} =card{z e Us(z,) : D(1-¢,z) = 0}
=card{z e Ug(z,): D(1,z) = 0},

where card M denotes the cardinality of M.

Proof. If z, € o4 (H), then by Lemma 4, we have that D(1, z,) = 0. Then, there exists the quantity 6, > 0, so that
D(1, z)) # 0 or any point z € I's. For that case, we show during the proof of the assertion of Lemma 6 for small quantity
p > 0, the number of zeros of D(1,.) belonging to the open set Ug(z,), and the number of zeros of
D(+e¢,.)=y,.(.)+D(1,.) belonging to the open set U ;(z,) coincides for all fixed quantity ¢ € [—p,p].

3. Formula for the number of eigenvalues of H

The number of discrete eigenvalues of H belonging to the interval (a,b) c R\ o (H, 101) are denote by N, ().

The formulation of the main theorem of the present article is given as.

Theorem 1. The quantity z € R\U(H]O]) is a discrete eigenvalue of A if n(1, 7(.)) and is discontinuous at z = z .
Moreover, the multiplicity k of the discrete eigenvalue z, satisfies the identity

k [n(1,T(zo +&)) = n(1,T(zp))]+ glinjo[n(l, T(zg =&)) =n(1,T(z))]-

= lim
E—>+0
Proof. Using the assertion of Lemma 6, we receive that the quantity z € R\ O'(HIOI) is a discrete eigenvalue of H if
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n(1, 7(.)) is discontinuous at z = z.
By k, we denote the multiple of the eigenvalue z, of H. We prove the formula

k [n(1,T(zo + &) +n(1,T(zo = &)~ 2n(1,T(2))]. (11)

= lim
E—>+0

Since T'(z,) is a compact operator, there exists 77, > 0 such that n(1,7(z,)) = n(1+7,,T(z,)). Then, from the Weyl inequality
(9), it follows that

n(1+19,7(z9)) < n(L,T(zg +&)) +n(179,T(20) = T(29 + &) = n(1,T(zy + &),

for small |£|. Therefore, n(1,7(z,)) < n(1,T(z, +&)) for small || and the right-hand side of (11) is nonnegative.

Using Lemma 2, we obtain that the quantity 4 = 1 is a k-multiple eigenvalue of 7{(z ). The function T'(z)® is a
vector-valued analytic function of z in the neighborhood of z = z, for every ® € H. Therefore, by Theorem XII.13
in [17], the operator 7(z) has exactly k eigenvalues 4,(2), ..., 4,(z) (counting multiplicities) in the neighborhood of z =
z,. By Lemma 5, if the numbers 4 (2), ..., 4,(z) are real, then z is also real. Let > 0 be a number such that the inclusion
Ai(zg +&) e (1-6,1+6) holds with & € (—c,¢5) forall i e {1, ..., k} and for some constant c;> 0. Since the multiplicity of
the zero of the determinant D(1, z) at the point z = z is at least equal to the geometric multiplicity of discrete eigenvalue
1 of 7(z), Lemma 7 implies the relation

card{z € (—c5,c5): D(1t &,z) =0} = card{z € (—c5,c5) : D(1,2z) =0} = k +5,
where s is a nonnegative integer. It follows that
card{i: 4;(z) =1-¢} =card{i: 4,(z) =1+¢} =k.

Taking into account 4,(z,) =1and 4, (z) #1 as z # z,, we can split the set {1, ..., k} into the two nonintersecting
subsets

M =i ,(zg —cs) < A(29) < 4(zg +¢5)}s
(M N} =i (20 —c5) > A(20) > 429 +¢5)}-

Then,

card{i: A, (zy +&)>1, £€(0,¢5)} =card{M 7},
card{i: A, (zy—&)>1, £€(0,¢5)} =card{M \J}.

Consequently,
card{i: A, (zy + &) >1, £e(0,¢5)}+card{i: 4;(zy—&)>1, £e€(0,c5)} =k.

On the other hand, we have the relations

card{i: 4;(zp +&)>1, £e€(0,c5)} =n(,T(zy +&)—n(1+06/2,T(zy+ <)),
card{i: 4;(zy —&)>1, £e€(0,¢5)} =n(L,T(zyg—&))—n(1+0/2,T(z, —&)).

From here, while making use of

n(1+8/2,T(zyg— &) =n(1+8/2,T(zy + &) = n(1,T(z,))
with |£] < ¢5, we derive (11).
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Remark 3. In [18], it was established that if the quantity z_ is the discrete eigenvalue of /| and k is its multiplicity,
then

k= gli—grlo n(LT(zy +&))—n(1, T (20))-

We formulate and prove two corollaries of Theorem 1.
Corollary 1. For any (a,b) c R\ o (H,)), the equality

b
Nap)(H) = V(n(L,T()))

b
holds true, where v( f ) is the total variation of f in (a, b). Using the monotonicity property of n (1, 7(.)) in

(—o0,min & (H}))), we have that

N2y (H) =n(1,T(2)), z < mino(H,)). (12)

Proof. Let the operator H have no eigenvalues on the interval (a, b), where (a,b) N O'(Hlol) = . In other words, let

b
N, b)(H) = 0. Then, Lemma 6 implies that n (1, T'({')) = const for all £ € (a,b). It follows that v(n(1,7(.))) = 0. Let

Oaise ()M (a,,5,) = {&,},  oae(H) N (a,b) = J1,}-
Then, for the multiplicity £, of the eigenvalue ¢, we have that

Naw(H) =) k,

Theorem 1 implies that

zn kn = Z n {EILHJEO[”(L T(‘fn + g)) - I’l(l, T(gn ))] + gll)n;lo[n(l’ T(§n - g)) - I’l(l, T(‘}v:n ))]
b
=v((LT().

This finishes the proof.
Remark 4. In [18], it was shown that for any closed interval (a,b) c R\ o(H, 101) the following equality

N (Hyy) =n(L 1 () —n(1, T (a))

holds true.

Corollary 2. Let (a,b) C R\G(Hlol) and let the operator-function 7(.) be uniformly convergent to some operators
T(a) and T(b) as z — a+0 and z — b —0, respectively. Then, H has a finite number of discrete eigenvalues located in (a,
b).

Proof. The operators 7(a) and 7(b) are compact, and hence, the equality n(1,7(¢)) =n(1+0,7(<{)) holds with
¢=a and = b for some J > 0. Since ||T(.) is continuous, there is ¢ > 0 so that ||T(a)—T(z)|| <6 for ze[a,a+¢] and
||T b)-T (z)|| <oforze [b - g,b]. Therefore, the Weyl inequality (9) implies that

n(1,T(a))=n(1+0,T(a))<n(1,T(z)), zela,a+é&],
n(1,T(b))=n(1+0,T(b)) <n(1,T(z)), zel[b-g,b],
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i.e., the function n(1,7 (.)) is a monotone on the intervals (a, a + ¢) and (b — &, b). It follows that

a+ée

v (n(LTO)=n(l,T(a+¢e))—n(1,T(a)) <o,

b\f/ (n(LT()=n1,T®)-n(,T(b-¢)) <oo.

Applying the Corollary 1, we obtain that the number of discrete eigenvalues of H located in (a,a + 8) u(b—g,b)
are finite. The analyticity of D(1, .) in some complex neighborhood of the closed interval (a + &, b - ¢) implies that the set

{zela+¢e,b—¢]:D(l,z) =0}

is finite. Consequently, applying Lemma 4, we obtain that the operator H have finite number of discrete eigenvalues
located in [a + &, b - €].

In the next example, we show that in Corollary 2, the compactness of the operator 7(5) is a sufficient condition for
the finiteness of the number of discrete eigenvalues of H on (a,b) R\ G(Hl0 -

4. Conclusion

In this paper, we have analyzed and provided the spectral properties of a special type of soluble model of coupled
molecular and nuclear Hamiltonians H, the so-called generalized Friedrichs model. We have studied several important
properties of the well-known Faddeev equation corresponding to H. These properties are related to the number of discrete
(isolated and with finite multiplicity) eigenvalues. We have provided a new formula for the multiplicity of the discrete
eigenvalues of H. Finally, we have provided the results on the number of discrete eigenvalues of H.
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