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Abstract: This study presents numerical solutions for initial boundary value problems of homogeneous and non-
homogeneous Helmholtz equations using first- and second-order difference schemes. The stability of these methods is 
rigorously analyzed, ensuring their reliability and convergence for a wide range of problem instances. The proposed 
schemes’ robustness and applicability are demonstrated through several examples, accompanied by an error analysis 
table and illustrative graphs that visually represent the accuracy of the solutions obtained. The results confirm the 
effectiveness and efficiency of the proposed schemes, making them valuable tools for solving Helmholtz equations in 
practical applications.
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1. Introduction
Partial differential equations (PDEs) are widely used in various fields of science and engineering to model complex 

physical phenomena. Solving PDEs analytically is often impossible or impractical; therefore, numerical methods 
are commonly used [1, 2]. The Helmholtz equation is a second-order partial differential equation that arises in many 
physical systems involving wave phenomena, such as acoustics, electromagnetics, and quantum mechanics [3-9]. It 
describes the behavior of waves propagating in a medium with a given propagation constant, or wave number [6]. The 
Helmholtz equation has been extensively studied and has numerous applications in seismology, medical imaging, and 
telecommunications. Some notable references for the Helmholtz equation include the works of Hermann von Helmholtz, 
who originally derived the equation in the 19th century, and the textbooks of Mathews and Walker [10] and Morse and 
Feshbach [11], which provide comprehensive treatments of the equation and its applications. 
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The numerical solution of partial differential equations is a fundamental problem in many areas of science and 
engineering [12]. Recently, many works have been done to find numerical solutions for different kinds of partial 
differential equations and fractional differential equation. Novel numerical methods proposed for solving distributed 
order fractional differential equations in the time domain using different types of wavelet and hybrid functions 
approaches [13-15]. Ahmad et al. [16] investigate the resonance, fusion, and fission dynamics of bifurcation solitons 
and hybrid rogue wave structures of the Sawada-Kotera equation. Saifullah et al. [17] analyze the interaction of 
lump solutions with kink-soliton solutions of the generalized perturbed Korteweg–de Vries (KdV) equation using the 
Hirota-bilinear approach. Khaliq et al. [18] propose a novel expansion method to obtain new wave solutions of the 
(2+1)-dimensional generalized Hirota-Satsuma-Ito equation. These studies contribute to understanding PDEs and their 
solutions and can be useful in various fields such as physics, engineering, and applied mathematics. 

Numerical methods for solving the Helmholtz equation are widely used due to their efficiency and accuracy [19]. 
Several numerical methods have been proposed for solving the Helmholtz equation in recent years. Canino et al. [7] 
proposed a high-order Nyström discretization method for numerically solving the Helmholtz equation in two and three 
dimensions. The method was efficient and accurate for high-frequency waves. Kress and Sloan [8] presented a numerical 
method for solving a logarithmic integral equation of the first kind, which arises in the context of the Helmholtz 
equation. The method was efficient and accurate, especially for small wave numbers. Wang et al. [4] developed an 
efficient and accurate numerical method for solving the Helmholtz equation in polar and spherical coordinates. The 
method was based on a high-order finite difference scheme. It was more efficient than other existing methods.

Bayliss et al. [9] proposed a numerical method for solving the Helmholtz equation for wave propagation problems 
in underwater acoustics. The method was based on a finite difference scheme and was accurate and efficient. Hamzah 
et al. [3] developed a numerical method for solving anisotropic boundary value problems governed by the Helmholtz 
equation. The method was based on a finite element method and was efficient and accurate. Erlangga [5] proposed a 
robust and efficient iterative method for solving the Helmholtz equation. The method was based on a preconditioned 
conjugate gradient method. It was found to be more efficient than other existing methods.

Bao et al. [6] present a numerical method for solving the Helmholtz equation with high wavenumbers, which is 
used to model wave propagation in various fields of science and engineering. The method proposed in the paper is 
able to accurately and efficiently solve the Helmholtz equation, even for high-frequency waves. Kabanikhin et al. [20] 
studied initial boundary value problems (IBVP) for Helmholtz equations and they have made a comparative analysis of 
methods for regularizing Helmholtz equations under initial boundary conditions.

Finite difference schemes are one such method that has been extensively used for the numerical solution of the 
Helmholtz equation [19, 21]. Finite difference schemes have been extensively used for the numerical solution of the 
elliptic equation due to their simplicity, low computational cost, and ease of implementation. Several authors have 
proposed different finite difference schemes with varying degrees of accuracy and computational complexity [22-25]. 
Conversely, there has been considerable research on the numerical solution of inhomogeneous Helmholtz equations. 
Karachik and Antropova [26] presented a solution to the inhomogeneous polyharmonic equation and the inhomogeneous 
Helmholtz equation. At the same time, Yang et al. [27] proposed a truncation method for the Cauchy problem of 
the inhomogeneous Helmholtz equation. Zhang et al. [28] developed a sixth-order finite difference scheme for the 
Helmholtz equation with inhomogeneous Robin boundary conditions. Muleshkov et al. [29] found particular solutions 
for axisymmetric Helmholtz-type operators. These studies demonstrate the importance of finding efficient and accurate 
numerical solutions for inhomogeneous Helmholtz equations and provide a foundation for future research in this area.

In this paper, we present an efficient finite difference approach for solving initial boundary value problems 
in Helmholtz equations. Our proposed approach reduces the computational cost and memory requirements while 
maintaining high accuracy. We demonstrate the effectiveness of our method through several numerical examples. 

2. The problem
The Helmholtz equation, attributed to Hermann von Helmholtz, has applications in Physics and Mathematics. This 

PDE is expressed mathematically as:
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                                                               ∇2u + A2u = 0

where, ∇2 is Laplacian operator, wave number, is amplitude. When A2 = 0, the Helmholtz equation reduces to Laplace’s 
equation. When A2 < 0, the Helmholtz equation becomes the space part of the diffusion equation. In this study, we will 
consider the following IBVP Helmholtz equation: 
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Where ψ(x), φ(x) (x∈[0,π]), ((x,t)∈[0,π]×[0,1]) are smooth functions; problem (1) presents an IBVP Helmholtz equation 
[30].

3. First- and second-order difference schemes for Helmholtz equation
In this section, we introduce the explicit and implicit methods for the approximate solution of the IBVP Helmholtz 

equation in (1). By using central differences with respect to x and t, we get the following difference equation: 
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By rewriting in terms of un in (2), we get
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By supposing that 2 2
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Equation (4) can be transformed into matrices according to [31].
Similarly, we will introduce an implicit difference scheme for the problem (1) and the first-order difference scheme 

in (2), By substituting all terms on the right side of equation (2) with an average derived from the values at time steps  
k − 1 and k + 1, we obtain:
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The difference equation in (5) is called the second-order difference scheme for the problem (1). The stability of the 
difference scheme (5) is guaranteed in [23, 31-34]. By rewriting (5)  in terms of un, we obtain:
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By putting 
2
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The difference equations found in both (3) and (7) can be reformulated into the corresponding matrix expressions, 
as demonstrated in references [23, 31]:

                                                    1 1 0,1 1, 0,n n n n MAU BU CU D n M u uϕ+ −+ + = ≤ ≤ − = =                                                (8)

where, A, B, and C are (N + 1) × (N + 1) matrix, Un+1, Un, Un-1 and φn is (N + 1) × 1 vectors [30, 31]. We have applied 
a modified Gauss elimination method for solving (8). Next, we seek solutions in the form of a matrix equation, as 
described in reference [35]:

                                                            1 1 1; 0; 1, , 2, 1.j j j j Mu u u j Mα β+ + += + = = − 

Where αj are (N + 1) × (N + 1) square matrices and are column vectors presented by

                                                                              1
1( ) ,j jB C Aα α+
−= − +

and

                                                         
1

1 ( ) ( ), 1, 2, , 1,j j jB C D C j Mβ α ϕ β−
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where j = 1, 2,…, M – 1, β1 is the (N + 1) × 1 zero column vector, and α1 is the (N + 1) × (N + 1) zero matrix. Matlab 
software was implemented for computing results for different values of N and M. Comparison was made between 
numerical and exact solutions. The maximum error is indicated where h = π/M, and τ = 1/N. Maximum absolute error 
calculated by 

                                                                                                                                                                                            (9)
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Here, the approximation solution is represented by k
nu  while the analytical solution represented by u(tk, xn) at points  

(tk, xn).
Remark 1: For proving the stability of (3), we examine the amplification factor (it must have a magnitude less than 

1); we’ll assume that the solution has the form:

                                                                                       
k n k
nu G H=

where G is the amplification factor in the spatial variable (n), and H is the amplification factor in the time variable (k), 
putting it in (3), and dividing both sides by Gn Hk, we obtain:
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This equation depends on G and H. The difference equation (3) is stable when |G| ≤ 1 and |H| ≤1.
Remark 2: To prove the stability of (5), we’ll use the Von Neumann stability analysis. Substitute the Fourier mode 

k iwn k
nu e g=  in (5), where w is the angular frequency and g is the growth factor, divide both sides of the equation by eiwn:
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the scheme is stable if the absolute value of the growth factor is less than or equal to 1 for all values of w: |g| ≤ 1.

4. Numerical experiments
In this section, we apply the first-order difference scheme from (2) and the second-order scheme from (5) to several 

distinct numerical examples of Helmholtz PDEs with initial-boundary conditions. All examples have known analytical 
solutions, which will be compared to the numerical results to test the method’s efficacy. We will consider the general 
form of the IBVP Helmholtz partial differential equation in our applications. 
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Example 1. Investigate the following IBVP for Helmholtz PDE, where A2 = 2
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The exact solution of (11) can be found as u(x,t) = sin (x) cos (t). First-order difference scheme for problem (11) is given 
by:
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The second-order difference scheme for (11) can be derived as follows:
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The error analysis for the problem (11) can be found in Table 1. In contrast, the visualizations for the exact and 
approximate solutions are displayed in Figure 1.

Table 1. Absolute error and relative error difference scheme in (11)

h = π/M, τ = 1/N N = M = 10 N = M = 30 N = M = 45

First-order difference in (12) 3.8618 × 10-2 1.6242 × 10-2 9.6724 × 10-3

Second-order difference in (13) 1.4633 × 10-3 1.8094 × 10-4 2.0007 × 10-2
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Figure 1. Numerical solution and exact solution of (11), where M = N = 30
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Absolute error for (12)
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Figure 2. Absolute error of first-order and second-order difference scheme for (11), where M = N = 30

Figure 2 shows the absolute error for presented difference schemes in (12) and (13), it shows that the second-order 
difference scheme is more accurate than the first-order difference scheme.
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Figure 3. Error analysis of (12) and (13) in different points of N and M

Figure 3 shows the maximum absolute error of the first- and second-order difference schemes for example 1 that 
presented in equation (12) and equation (13), respectively, as a function of the N-stepsize on the X-axis. The Y-axis 
represents the maximum absolute error for each N-stepsize. From the graph, it can be observed that the maximum 
absolute error decreases as the N-stepsize increases for both schemes. However, the second-order difference scheme 
has a significantly lower maximum absolute error compared to the first-order difference scheme. This indicates that the 
second-order difference scheme is more accurate in approximating the derivative of the function than the first-order 
difference scheme.

It can also be seen that the rate of decrease in maximum absolute error decreases as the N-stepsize increases. 
However, the graph of error analysis in (13) shows that the second-order difference scheme is appropriate for N values 
less than 40; larger values will lose accuracy, as shown in Remark 3.
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Example 2. Consider the following problem for a homogenous Helmholtz equation
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The exact solution to the problem depends on the value of the first-order difference scheme for the problem (14) 
can be present as follows:

                                                                                                                                                                                          (15)
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Second-order difference scheme for the problem (14) is defined as follows:
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In the following table, three different examples have been presented for homogenous IBVP Helmholtz equation; 
exact solutions have been presented according to the value of A2.

Table 2. Approximate solution of (14) in different values of A2, where h = π/M, τ = 1/N

First-order difference in (15) Second-order difference in (15)

A2 Exact solution N = M = 30 N = M = 45 N = M = 30 N = M = 45

0 sin(x) exp(–t) 1.9751e-02 1.4115e-02 6.0666e-04 2.1278e-02

0.5 sin(x) exp( 0.5 )t 9.7218e-03 7.1699e-03 3.8760e-04 3.4590e-02

1 sin(2x) exp( 3 )t 9.7516e-02 6.2312e-02 9.0827e-03 4.3965e-02

2 sin(x) cos(t) 1.3614e-02 9.6665e-03 1.8094e-04 2.0007e-02

5 sin(2x) cos(t) 8.0118e-03 6.9133e-03 5.8944e-03 2.1376e-02

Example 3. Consider the following problem for the inhomogenous Helmholtz equation:
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Where the exact solution is u(x,t) = sin (x) exp (–t).
First-order difference scheme for the problem (17) is 
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Similarly, the second-order difference scheme is obtained in the following manner:
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Table 3. Approximate solution of (19) in different values of A2, where h = π/M, τ = 1/N

First-order difference in (15) Second-order difference in (16)

A2 f(x,t) N = M = 30 N = M = 45 N = M = 30 N = M = 45

0.1 exp(–t) sin(x)/10 1.9446e-02 1.3313e-02 6.2092e-04 1.4849e-02

0.5 exp(–t) sin(x)/2 1.8257e-02 1.2753e-02 6.7284e-04 2.4926e-02

1 exp(–t) sin(x) 1.6834e-02 1.2130e-02 7.3088e-04 1.5081e-02

2 2 exp(–t) sin(x) 1.4193e-02 9.6916e-03 8.2487e-04 1.8062e-02

5 5 exp(–t) sin(x) 8.4301e-03 5.6192e-03 9.6208e-04 2.2145e-02

10 10 exp(–t) sin(x) 5.5885e-03 3.7153e-03 9.3278e-04 1.4466e-02

From Table 2, we conclude that the method is accurate and applies to homogenous types of IBVP Helmholtz 
equations. It is observed that the second-order difference scheme exhibits greater accuracy compared to the first-order 
approach in small values of N and M. Regarding the first-order difference scheme, the correct result is accurate when N = 
M = 45. By giving examples in the table, we demostrate that the method is applicable for different values of A2 Helmholtz. 
Table 3 presents different examples of inhomogeneous Helmholtz equations, where first- and second-order difference 
schemes are applied for different values of A2. Results show that the second-order difference scheme is more accurate 
than the first-order difference scheme in small stepsize. By increasing the stepsize, the first-order difference scheme is 
more accurate. Moreover, the value of A2 affects the results of the inhomogenous IBVP Helmholtz equation; the result’s 
accuracy increases by increasing the value of A2.

Remark 3. The present method is applicable to small values of N and M. By increasing the values of N and M, the 
singular matrix will appear and result in loss of accuracy.

5. Conclusion
The present study presents numerical solutions for the IBVP of the Helmholtz equation. Both first- and second-

order difference schemes were proposed, and the stability of the problem was guaranteed. Several examples were 
provided to demonstrate the accuracy and efficiency of the method. Comparisons have been made between numerical 
and exact solutions, and the error analysis table and illustration graphs are presented. The results showed that the 
proposed method was accurate and efficient for both homogenous and non-homogenous types of Helmholtz equations. 
Overall, this study provides valuable insights into the numerical solution of the Helmholtz equation and demonstrates 
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the effectiveness of the proposed method in solving IBVP.

5.1 Future works

Future work could focus on extending the proposed method to higher dimensions and expanding its applicability to 
other partial differential equations. Additionally, further refinement of the error analysis could enhance the understanding 
of the method’s performance under different conditions, paving the way for more advanced and efficient numerical 
techniques in numerical analysis.
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