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Abstract: Gaussian hypergeometric function has been investigated in the context of geometric function theory regarding
many aspects. Obtaining univalence conditions for this function is a line of research followed by many scholars. In the
present study, methods specific to the differential superordination theory are used for obtaining properties of the Gaussian

hypergeometric function regarding convexity of order
(
−1

2

)
. Also, a necessary and sufficient condition is proved such

that Gaussian hypergeometric function is a close-to-convex function. The applicability of the theoretical findings is
demonstrated by a numerical example.

Keywords: holomorphic function, analytic function, convexity of negative order, close-to-convex function, differential
superordiantion, best subordinant
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1. Introduction and preliminaries
When it started to be studied in relation to univalence requirements, the famous Gaussian hypergeometric function

attracted the attention of scholars in geometric function theory. Miller and Mocanu presented one of the earliest articles
to demonstrate specific starlikeness and convexity features of this function in 1990 [1]. Miller and Mocanu regarded a, b,
and c as real numbers in their research. Also, other authors who took into account the same restriction on parameters a, b,
and c obtained additional univalence conditions [2–5].

In recent publications, interesting conditions for starlikeness and convexity of the Gaussian hypergeometric function
were established considering a, b, c complex numbers. Two criteria for univalence are stated in [6], the relationship
between the results provided in the research and the results Miller and Mocanu previously achieved in 1990 being
highlighted. Other two univalence criteria for Gaussian hypergeometric function are stated in [7] as extensions of Miller
and Mocanu’s results seen in [1] using certain differential inequalities and the geometrical interpretation is given using
particular sets inclusions in the complex plane. Carathéodory properties are shown for Gaussian hypergeometric function
in [8] by employing methods specific to differential superordination theory.
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In this paper, criteria for the Gaussian hypergeometric function to be convex of order
(
−1

2

)
are obtained by means

of the theory of differential superordination developed by Miller and Mocanu [9]. Additionally, it is demonstrated that a
necessary and sufficient condition exists for the Gaussian hypergeometric function to be a close-to-convex function.

The research’s broad context is first established.
Denote by U = {z ∈ C : |z|< 1} the unit disc of the complex plane and write U = {z ∈ C : |z| ≤ 1} and ∂U = {z ∈

C : |z|= 1}.
Let H(U) be the class of holomorphic functions in U and for a ∈ C, n ∈ N∗, the following subclasses of H(U) are

known:

H[a, n] = { f ∈ H(U) : f (z) = a+anzn +an+1zn+1 + · · · , z ∈U},

and

An = { f ∈ H(U) : f (z) = z+an+1zn+1 +an+2zn+2 + · · · , z ∈U},

with A1 written simply A.
Let 0 ≤ α < 1 and define the class of stralike functions of order α by:

S∗(α) = { f ∈ A : Re
z f ′(z)
f (z)

> α, z ∈U}.

For α = 0, S∗ denotes the class of starlike functions.
For 0 ≤ α < 1,

K(α) = { f ∈ A : Re
[

z f ′′ (z)
f (z)

+1
]
> α, z ∈U},

identifies all convex functions of order α . The class of convex functions, denoted by K, is found when α = 0.
The class of functions f ∈ A which are holomorphic and univalent inU and normed by f (0) = 0, f ′(0) = 1 is denoted

by S and defined as:

S = { f ∈ A : f (z) = z+a2z2 +a3z3 + · · · , z ∈U}.

The theory of differential subordination is extensively presented in [10]. Miller and Mocanu proposed its dual,
differential superordination theory, in [9]. The definitions and lemmas linked to the two dual theories that are necessary
for the research examined in this paper are listed below.

Definition 1 Let f and F be members of H(U). The function f is said to be subordinate to F , or F is said to be
superordinate to f , if there exists a function w, analytic inU , with w(0) = 0 and |w(z)|< 1 and such that f (z) = F(w(z)).
In such a case we write f ≺ F or f (z)≺ F(z). If F is univalent, then f ≺ F if and only if f (0) = F(0) and f (U)⊂ F(U).

Definition 2 [9] Let φ(r, s, t; z) : C3 ×U → C and let h be analytic in U . If p and φ(p(z), zp′(z), z2 p′′(z); z) are
univalent in U and satisfy the (second-order) differential superordination.
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h(z)≺ φ(p(z), zp′(z), z2 p′′(z); z) (1)

then p is called a solution of the differential superordination. An analytic function q is called a subordinant of the solutions
of the differential superordination or more simply a subordinant, if q ≺ p for all p satisfying (1). A subordinant q̃ that
satisfies q ≺ q̃ for all subordinants q of (1) is said to be the best subordinant of (1). Note that the best subordinant is unique
up to a rotation of U .

Definition 3 [9]. We denote by Q the set of functions f that are analytic and injective on U\E (q) where

E( f ) =
{

ζ ∈ ∂U : lim
z→ζ

f (z) = ∞
}

and are such that f ′(ζ ) ̸= 0, for ζ ∈ ∂U\E( f ). The subclass of Q for which f (0) = a is denoted by Q(a).
Definition 4 [9] Let Ω be a set in C and q ∈ H[a, n]. The class of admissible functions ϕn[Ω, q] consists of those

functions φ : C3 ×U → C that satisfy the admissibility condition

φ(r, s, t; ζ ) ∈ Ω (2)

whenever

r = q(z), s =
zq′ (z)

m
, Re

( t
s
+1
)
≤ 1

m
Re
[

zq′′ (z)
q′ (z)

+1
]
, ζ ∈ ∂U, z ∈U, m ≥ n ≥ 1.

When n = 1, ϕ1[Ω, q] is written as ϕ [Ω, q].
In the special case when h is an analytic mapping of U onto Ω ̸= C we denote the class ϕn[h(U), q] by ϕn[h, q].
If φ : C2 ×U → C then the admissibility condition (2) reduces to

ϕ(r, s, t; ζ ) ∈ Ω (3)

where ζ ∈ ∂U, z ∈U, m ≥ n ≥ 1.
Lemma 1 [11] Let h be analytic inU , q ∈ H[a, n], φ : C2 ×U →C and suppose that φ(q(z), tzq′(z); ζ ) ∈ h(U), for

z ∈U , ζ ∈ ∂U and 0 < t ≤ 1
n
≤ 1.

If p ∈ Q(a) and φ(p(z), zp′(z); z) is univalent in U , then

h(z)≺ φ(p(z), zp; (z); z)

implies

q(z)≺ p(z), z ∈U.
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Furthermore, if φ(q(z), zq′(z); z) = h(z) has a univalent solution q ∈ Q(a), then q is the best subordinant.
Lemma 2 [12] A necessary and sufficient condition for a function f , analytic inU satisfying the condition f ′(z) ̸= 0,

to be close-to-convex is:

∫ θ2

θ1

Re
(

1+
z f ′′ (z)
f ′ (z)

)
dθ >−π, z = reiθ ,

for all θ1, θ2 satisfying 0 < θ1 < θ2 < 2π and any r ∈ (0, 1).
Lemma 3 [12] Let f ∈ H(U) satisfying f ′(0) ̸= 0. Then,

Re
(

z f ′′ (z)
f ′ (z)

+1
)
> 0,

implies

Re
(

z f ′ (z)
f (z)

+1
)
> 0, z ∈U.

If f ∈ An, f is called starlike with respect to the origin ( or simply starlike).
If f ∈ H[a, 1], then

Re
(

z f ′′ (z)
f ′ (z)

+1
)
> 0,

implies

Re
z f ′ (z)

f (z)−1
> 0, a, z ∈U,

and f is called starlike with respect to a.
The domain f (U) is called starlike with respect to f (0) = a if for any z ∈U , the segment which unites a to f (z) is

included into f (U).
The definition of Gaussian hypergeometric function is given as found in [1]:
Definition 5 [1] Let a, b and c be complex numbers with c ̸= 0, −1, −2, . . . The function

F (a, b, c; z) = 2F1 (a, b, c; z) = 1+
ab
c
· z

1!
+

a(a+1)b(b+1)
c(c+1)

· z2

2!
+ ..., z (4)

is called Gaussian hypergeometric function, is analytic in U and satisfies the hypergeometric equation:

z(z−1) ·w′′(z)+ [c− (a+b+1)z] ·w′(z)−ab ·w(z) = 0.
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If we let

(d)k =
Γ(d + k)

Γ(d)
= d(d +1)(d +2) . . .(d + k−1) and (d)0 = 1

then (4) can be written in the form

F (a, b, c; z) =
∞

∑
k=0

(a)k · (b)k
(c)k

· zk

k!
=

Γ(c)
Γ(a)Γ(b)

∞

∑
k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)

· zk

k!
,

with

Γ(z) =
∫ ∞

0
tz−1 · e−tdt, Rez > 0, z ∈U,

or,

Γ(z) =
∞

∑
n=0

(−1)n

n!
· 1

z+n
+
∫ ∞

0
tz−1 · e−tdt,

where points z = 0, −1, −2, . . . are pols of first order for function Γ.
Next, the definition of the subordination chain is recalled as found in [10]:
Definition 6 [10] A function L(z, t), z ∈U , t ≥ 0 is a subordination chain if L(·, t) is analytic and univalent inU for

all t ≥ 0, L(z, ·) is contiunously differentiable on R+ for all z ∈U and L(z, s)≺ L(z, t) when 0 ≤ s ≤ t.
A sufficient condition for a function L(z, t), z ∈U , t ≥ 0, to be a subordination chain is found in the next lemma:
Lemma 4 [10] The function L(z, t) = a1(t)z + a2(t)z2 + . . . with a1(t) ̸= 0 for t ≥ 0 and lim

t→∞
|a1 (t)| = ∞ is a

subordination chain if

Re
z

∂L(z, t)
∂ z

∂L(z, t)
∂ t

> 0, z ∈U, t ≥ 0.

Definition 7 [12] A function f ∈ H(U) is called close-to-convex if there exists a function g, convex in U , such that:

Re
f ′ (z)
g′ (z)

> 0, z ∈U.

In particular, if Re f ′(z) > 0, z ∈ U , we say that function f is close-to-convex with respect to the identical function
g(z) = z, z ∈U .

Recent studies have focused on the convexity of Gaussian hypergeometric function [14–16]. Our novel convexity
results are shown in the following section utilizing certain distinct differential superordinations. A differential superordina-
tion is examined in the first theorem, and its best subordinant is provided. By using certain convex functions in
the differential superordination examined in this theorem, its outcome is employed in the subsequent corollary to
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get the convexity of order
(
−1

2

)
for Gaussian hypergeometric function. The second theorem establishes Gaussian

hypergeometric function characteristic of being a close-to-convex function using the convexity of negative order already
established. The study is ended by providing an illustration of how the findings from this paper can be put to use.

2. Main results
The best subordinant for a particular differential superordination studied is determined in the first theorem proved in

this study.
Theorem 1 Let h ∈ H(U) be given by:

h(z) = q(z)−a+ zq′(z)(q(z)−a), z ∈U, (5)

where q ∈ H[a, 1] is convex in U satisfying:

Re(q(z)−a)> 0, z ∈U. (6)

Let p ∈ H[a, 1]∩Q be convex in U and let φ : C2 ×U → C, φ(p(z), zp′(z); z) be univalent in U .
If

h(z) = q(z)−a+ zq′(z)(q(z)−a)≺ φ(p(z), zp′(z); z) (7)

then

q(z)≺ p(z), z ∈U,

and q is the best subordinant.
Proof. In the proof of this result, Lemma 1.will be applied. For that, consider the function L : U × [0, ∞)→ C given

by:

L(z, t) =φ(q(z), tzq′(z); z) = a1(t)z+a2(t)z2 + . . .

=q(z)−a+ tzq′(z)(q(z)−a), a1(t) ̸= 0, t ≥ 0.

(8)

Using Definition 1.and Lemma 1., we show that L(z, t) given by (8) is a subordination chain. For that, relation (8) is
derived with respect to z:

∂L(z, t)
∂ z

= a1 (t)+2a2 (t)z+ ...

= q′ (z)+ tq′ (z)(q(z)−a)+ ztq′′ (z)(q(z)−a)+ tz
(
q′ (z)

)2
.

(9)

Differentiating (8) with respect to t, we have:
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∂L(z, t)
∂ t

= zq′ (z)(q(z)−a) , z ∈U. (10)

We now evaluate:

Re
z

∂L(z, t)
∂ z

∂L(z, t)
∂ t

= Re
[

1
q(z)−a

+ t
(

1+
zq′′ (z)
q′ (z)

+
zq′ (z)

q(z)−a

)]
, z ∈U, t ≥ 0. (11)

From the hypothesis it is known that q ∈ K, hence we know that:

Re
(

zq′′ (z)
q′ (z)

+1
)
> 0, z ∈U. (12)

Since q ∈ H[a,1], by employing results given in Lemma 3, we can write:

Re
z f ′ (z)

f (z)−a
> 0, a, z ∈U. (13)

and f is starlike with respect to a in U .
Using the relations (6), (12) and (13) in (11), we write:

Re
z

∂L(z, t)
∂ z

∂L(z, t)
∂ t

> 0, z ∈U, t ≥ 0. (14)

By replacing z = 0 in (9), we write:

∂L(0, t)
∂ z

= a1 (t) = q′ (0)+ tq′ (0)(q(0)−a) . (15)

Since Re(q(z)−a)> 0 given by (6) in the hypothesis, for z = 0 we obtain:

Re(q(0)−a)> 0, z ∈U, (16)

from which we conclude that q(0)−a ̸= 0.
Since q ∈ K, it is univalent in U and we have that q′(0) ̸= 0. Using this and relation (16) in (15), we obtain:

∂L(0, t)
∂ z

= a1 (t) = q′ (0) [1+ t (q(0)−a)] .
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We evaluate

lim
t→∞

|a1 (t)|= lim
t→∞

∣∣q′ (0) [1+ t (q(0)−a)]
∣∣= ∞. (17)

Using (14) and (17) in Lemma 1., we conclude that function L(z, t) given by (8) is a subordination chain. By using
Definition 6 we can write:

L(z, t)≺ L(z, 1), z ∈U, 0 ≤ t ≤ 1. (18)

If we use t = 1 in relation (8), we get:

L(z,1) = φ(q(z), zq′(z); z) = q(z)−a+1 · zq′(z)(q(z)−a) = h(z). (19)

Using (19) in (18) we get:

L(z, t)≺ h(z), z ∈U, t ≥ 0. (20)

By considering Definition 1, relation (20) is equivalent to:

φ(q(z), tzq′(z); z) ∈ h(U), z ∈U. (21)

Since L(z, t) = φ(q(z), tzq′(z); z) is a subordination chain and differential superordination (7) holds, by applying
Lemma 1, we assess that

q(z)≺ p(z), z ∈U. (22)

We acknowledge that the function q is the best subordinant since it is a univalent solution for the equation given by
(2).

Remark In Corollary 2 from [7], it was proven that function F(a, b, c; z) given by (4) with ab ̸= 0 is convex, written
equivalently as:

Re
{

1+
z [F (a. b. c; z)]′′

[F (a, b, c; z)]′

}
> 0, ab ̸= 0, z ∈U.

If we take in Theorem 1 the convex functions

q(z) = 1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

, ab ̸= 0, p(z) =
1+2z
1− z

, z ∈U,
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the resulting corollary can be expressed as:
Corollary 1 Let h be an analytic function in U given by:

h(z) = 1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

+ z
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)′
·
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)

and

q(z) = 1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

, q(0) = 1,

is a convex function in U satisfying:

Re
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)
> 0, z ∈U.

Let

p(z) =
1+2z
1− z

, p ∈ H[1, 1]∩Q, p(0) = 1,

be a convex function in U and let φ : C2 ×U → C, given by

φ(p(z), zp′(z); z) = φ

(
1+2z
1− z

,
3z

(1− z)2 ; z

)

be univalent in U .
If

h(z) = q+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

+ z
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)′
·
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)

≺ φ

(
1+2z
1− z

,
3z

(1− z)2 ; z

)

then

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

≺ 1+2z
1− z

, z ∈U,

which is equivalent to:
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Re
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)
>−1

2
,

hence F(a, b, c; z) is a convex function of order −1
2
, written F(a, b, c; z) ∈ K

(
−1

2

)
.

Proof. We first demonstrate that p(z) =
1+2z
1− z

is a convex function inU . Let f (z) =
1+ z
1− z

. Since we know that this
function is a conformal mapping of U into the half-plane {w ∈ C : Re w > 0} we obtain that

Re
1+ z
1− z

> 0, z ∈U. (23)

We calculate:

p′ (z) =
3

(1− z)2 , p′′ (z) =
6

(1− z)3 ,
zp′′ (z)
p′ (z)

+1 =
1+ z
1− z

.

Using (23) we obtain:

Re
(

zp′′ (z)
p′ (z)

+1
)
= Re

1+ z
1− z

> 0, z ∈U,

which gives that function p(z) =
1+2z
1− z

is convex in U .

Since p ∈ K, we determine that it is a conformal mapping of U into the half-plane
{

w ∈ C : Rew >−1
2

}
, hence,

Rep(z)>−1
2
, z ∈U.

According to Theorem 1’s proof, relation (22) is used for

q(z) = 1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

, p(z) =
1+2z
1− z

,

and we obtain:

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

≺ 1+2z
1− z

, z ∈U. (24)

Since we know that

1+
zF ′′ (z, b, c; 0)
F ′ (a, b, c; 0)

= q(0) = 1 = p(0) ,
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and that p ∈ K, the superordination given by (24) is interpreted as:

Re
(

1+
zF ′′ (z, b, c; ‘z)
F ′ (a, b, c; z)

)
> Re

(
1+2z
1− z

)
>−1

2
, z ∈U,

and we establish that F(a, b, c; z) ∈ K
(
−1

2

)
when ab ̸= 0.

Remark 2 Since we have that Re
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)
>−1

2
, z ∈U, we next prove using Lemma 2 that function

F(a, b, c; z) is close-to-convex U which establishes that F(a, b, c; z) is also univalent in U .
Theorem 2 Let F(a, b, c; z) be given by (4) with

Re
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)
>−1

2
, z ∈U.

Then function F(a, b, c; z) is close-to-convex in U .
Proof. For applying Lemma 2, we evaluate:

∫ θ2

θ1

Re
(

1+
zF ′′ (z, b, c; z)
F ′ (a, b, c; z)

)
dθ >

∫ θ2

θ1

(
−1

2

)
dθ =−1

2
(θ2 −θ1)>−π,

from which, using Lemma 2, we establish that function F(a, b, c; z) is close-to-convex in U .
Example 1 Let a =−1, b = 6+6i, c = 2−2i. Then we obtain that function F(−1, 6+6i, 2−2i; z) = 1−3iz. We

can prove that this is a close-to-convex function.

Let g(z) = 1−2iz. This function is known to be convex in U since we have that Re
(

1+
zg′′ (z)
g′ (z)

)
= 1 > 0. Next,

we use Definition 7. For that, we calculate:

Re
F ′(−1, 6+6i, 2−2i; z)

g′ (z)
= Re

−3i
−2i

= Re
3
2
> 0.

Now, fromDefinition 7, we conclude that functionF(−1, 6+6i, 2−2i; z) is close-to-convexwith respect to function
g(z) = 1−2iz, z ∈U .

3. Conclusion
The new convexity findings regarding Gaussian hypergeometric function are presented in Section 2 of this paper

by applying differential superordinations results. A differential superordination is examined and its best subordinant is
given in the Theorem 1. Corollary 1 uses the findings of Theorem 1 to obtain the convexity of order−1

2
for the Gaussian

hypergeometric function while taking specific convex functions into account in the differential superordination examined
in the first theorem. In Theorem 2, it is demonstrated that the Gaussian hypergeometric function has the attribute of
being close-to-convex by using the property of negative order convexity proved before. An illustration of how the study’s
findings might be applied is provided as a conclusion for the study.
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The results presented in this paper can be used in future studies connected to fractional calculus as it is seen in very
recently published papers regarding Gaussian hypergeometric function [17], confluent hypergeometric function [18] and
other hypergeometric functions [19]. Quantum calculus aspects can also be associated with Gaussian hypergeometric
function inspired by results like those presented in [20, 21].
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