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Abstract: This paper is concerned with the traveling fronts of a Belousov-Zhabotinskii system with a time delay. The
stability of the traveling fronts with large speeds is proved byMeng et al. [1]. However, the stability of all waves, including
the slower waves (i.e., the wave speed near the critical wave speed), for such a system is unsolved. In this paper, we show
that all traveling fronts with non-critical wave speeds are exponentially asymptotically stable. The exponential convergent
rate is also obtained.
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1. Introduction
It is well known that there is a phenomenon of delayed effects in the generation process of bromic acid. To model

the chemical phenomenon, Wu and Zou [2] proposed and studied the Belousov-Zhabotinskii system as follows:


ut = uyy +u(y, t)[1−u(y, t)− rw(y, t − ι)],

wt = wyy −bu(y, t)w(y, t),

(1)

where (y, t) ∈R×R+, u(y, t) denotes the concentration of bromic acid and w(y, t) denotes the concentration of bromide
ion. The constants b and r are positive, and ι > 0 corresponds to the time delay. In this paper, we are interested in the
study of the traveling fronts of (1). From a chemical reaction point of view, the traveling wave solutions can describe the
movement of the bromic acid concentration from a higher region to a lower region (see [2]). In recent years, the existence
of the traveling wavefronts for system (1) with or without time delay has been extensively studied; see, e.g., [3] for the
case without time delay and [1, 4–7] for the case with delay.

It is well known that the stability of traveling wave solutions is an important topic in the theory of traveling wave
solutions; see [8–14]. Recently, by using the weighted energy method, the authors in [1] derived the stability of traveling
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fronts with largespeeds for model (1). However, the stability of all waves, including the slower waves (i.e., the wave speed
near the critical wave speed), for system (1) is unsolved. As pointed out byMei et al. [12], the stability of slowerwavefronts
is much more interesting and difficult. The main purpose of this paper is to derive the stability of all traveling fronts with
speeds c > c∗ (non-critical traveling fronts for short) for model (1), where c∗ is the critical speed (see Proposition 2.1
below).

Wewould like tomention that the approach with a piecewise weight function used in [1] cannot be applied to show the
stability of the traveling waves with speeds near the critical wave speed. This is because a large upper bound appears due
to the use of the piecewise weight function. To eliminate this large upper bound, one needs to assume that the wave speed
is sufficiently large. To overcome this shortcoming, in this paper, we shall select an appropriate non-piecewise weight
function. The approach is inspired by the work of [12]. With this choice of the weight function and some technical
analysis, we shall show that all non-critical traveling fronts of system (1) are exponentially asymptotically stable. The
exponential convergent rate is also obtained.

2. Preliminaries and main result
In this section, we give some preliminaries and state our main result. We first introduce the following definitions:
(a) Assume that Hk(E)(k ≥ 0) corresponds to the Sobolev space of the L2-functions γ(y) defined on E, the ith-

derivative γ i(y) ∈ L2(E) for i = 1, . . . , k. Let Hk
ϖ (E) denote the weighted Sobolev space, which endows with the norm

∥γ(y)∥Hk
ϖ (E) =

(
k

∑
i=0

∫
E

ϖ(y)
∣∣∣∣diγ(y)

dyi

∣∣∣∣2 dy

) 1
2

,

where ϖ(y) denotes the weight function.
(b) Assume that the constant α > 0, and B is a Banach space. C([0, α]; B) corresponds to the space of the B-valued

continuous functions defined on [0, α].
In order to apply the comparison theorem to system (1), model (1) needs to be transformed into the following system

(2) by taking v1 = u, v2 = 1−w.


(v1)t = (v1)yy + v1(y, t) [1− r− v1(y, t)+ rv2(y, t − ι)] ,

(v2)t = (v2)yy +bv1(y, t) [1− v2(y, t)] ,

(2)

which is a cooperative system. It is obvious that the equilibria (0, 1) and (1, 0) of system (1) become (0, 0) and (1, 1),
respectively.

As usual, a traveling wave solution of (2) refers to a solution v(y, t) = (v1(y, t), v2(y, t)) with the form: v(y, t) =
Φ(η) := (ϕ1(η), ϕ2(η)) , η = y + ct where c corresponds to the wave speed. It is clear that the function Φ(η) =

(ϕ1(η), ϕ2(η)) satisfies satisfies


cϕ ′

1(η) = ϕ ′′
1 (η)+ϕ1(η) [1− r−ϕ1(η)+ rϕ2(η − cl)] ,

cϕ ′
2(η) = ϕ ′′

2 (η)+bϕ1(η) [1−ϕ2(η)] .

(3)
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From the first equation corresponding to (3), we can obtain the characteristic equation about the equilibrium (0, 0)
as follows:

∆(µ, c) := µ2 − cµ +1− r. (4)

It is not difficult to verify that there exists µ∗ > 0 satisfying the equations ∆(µ∗, c∗) = 0 and ∂
∂ µ ∆(µ, c∗)

∣∣∣
µ=µ∗

= 0,

where c∗ = 2
√

1− r.
Based on the results of [2, 6, 7], we have the following result on the existence of the traveling fronts of (2).
Proposition 2.1 Suppose that the parameters r and b satisfy 0 < r < 1, b ∈ (0, 1− r) respectively. Then, for any

c ≥ c∗ and l > 0, system (2) has an increasing traveling wave Φ(η) = (ϕ1(η), ϕ2(η)) with speed c (traveling front for
short) connecting (0, 0) and (1, 1).

To obtain the stability result of the non-critical traveling fronts Φ(η) = (ϕ1(η), ϕ2(η)) of system (2) constrained by
the initial value:

v10(y) = v1(y, 0), v20(y, s) = v2(y, s), y ∈ R, s ∈ [−l, 0], (5)

let r and b satisfy the technical assumption as follows.
(A) 0 < r <

2
3
, 0 < b < 1− r.

Now, the expression of the function F(η) is given by

F(η) = (4− r+2b)ϕ1(η)−5r−2b. (6)

From the assumption (A), it follows that lim
η→∞

F(η) = 4− r+2b−5r−2b = 4−6r > 0.

Then, we can check easily that there is a large enough parameterη0 such that F (η0) = (4−r+2b)ϕ1 (η0)−5r−2b>
0.

According to the above constants µ∗ and η0, a weight function ϖ∗(η) is expressed as follows:

ϖ∗(η) = e−µ∗(η−η0). (7)

Now, the main conclusion of our study can be stated by the following Theorem 2.1.
Theorem 2.1 Suppose that the condition (A) is satisfied and Φ(y+ct) = (ϕ1(y+ ct), ϕ2(y+ ct)) is a given trav with

speed c > c∗, if the condition (5) satisfies (0, 0)≤ (v10(y), v20(y, s))≤ (1, 1), y ∈ R,s ∈ [−l, 0] and

v10(y)−ϕ1(y) ∈ H1
ϖ∗(R)⊂C(R) and v20(y, s)−ϕ2(y+ cs) ∈C

(
[−l,0]; H1

ϖ∗(R)
)
.

Then, the problem (2) subjected to (5) has a unique solution v(y, t) = (v1(y, t), v2(y, t)) satisfying (0, 0) ≤
(v1(y, t) , v2(y, t))≤ (1, 1), t > 0, y ∈ R and

vi(y, t)−ϕi(y+ ct) ∈C
(
[0, +∞); H1

ϖ∗(R)
)
∩L2 ([0, +∞); H1

ϖ∗(R)
)
, i = 1, 2.
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In addition, there exist two parameters C > 0 and λ > 0, such that the following inequality holds.

sup
y∈R

∥v(y, t)−Φ(y+ ct)∥ ≤Ce−λ t , ∀t > 0.

3. Proof of Theorem 2.1
The global existence and uniqueness of the solution and comparison principle for the problem (2), subjected to initial

value (5), can be proved by using the theory associated with abstract functional differential equations (c.f. [5]); see, e.g.,
Meng et al. ([1], Proposition 2.1). Throughout this section, we always assume that (A) holds.

From the result of [1], one has

(0, 0)≤ (v10(y), v20(y, s))≤ (1, 1), y ∈ R, s ∈ [−τ, 0], v10(y)−ϕ1(y) ∈ H1
ϖ∗(R)⊂C(R),

v20(y, s)−ϕ2(y+ cs) ∈C
(
[−l, 0]; H1

ϖ∗(R)
)
.

Now, we define



v−10(y) = min{v10(y), ϕ1(y)} , v+10(y) = max{v10(y), ϕ1(y)} , y ∈ R,

v−20(y, s) = min{v20(y, s), ϕ2(y+ cs)} , y ∈ R, s ∈ [−ι , 0],

v+20(y, s) = max{v20(y, s), ϕ2(y+ cs)} , y ∈ R, s ∈ [−ι , 0],

which can lead to


0 ≤ v−10(y)≤ v10(y), ϕ1(y)≤ v+10(y)≤ 1, y ∈ R,

0 ≤ v−20(y, s)≤ v20(y, s), ϕ2(y+ cs)≤ v+20(y, s)≤ 1, y ∈ R, s ∈ [−ι , 0].

Assume that
(
v−1 (y, t), v−2 (y, t)

)
and

(
v+1 (y, t), v+2 (y, t)

)
are the positive solutions of system (2) constrained by

the conditions
(
v−10(y), v−20(y, s)

)
and

(
v+10(y), v+20(y, s)

)
, respectively. Then, by employing the comparison theorem

established in [1], one has

0 ≤ v−i (y, t)≤ vi(y, t), ϕi(y+ ct)≤ v+i (y, t)≤ 1, (y, t) ∈ R×R+, i = 1, 2. (8)

Take
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U±
i (η , t) =±

(
v±i (y, t)−ϕi(y+ ct)

)
, i = 1, 2,

U±
10(η , 0) =±

(
v±10(y)−ϕ1(y)

)
, U±

20(η , s) =±
(
v+2 (y, s)−ϕ2(y+ cs)

)
,

Ui(η , t) = vi(y, t)−ϕi(y+ ct), i = 1, 2, U10(η , 0) = v10(y)−ϕ1(y),

U20(η , 0) = v20(y, s)−ϕ2(y+ cs),

where η = y+ ct and s ∈ [−ι , 0]. Then, in term of comparison theorem and (8), we have

(0, 0)≤
(
U−

10(η , 0), U−
20(η , s)

)
≤ (U10(η , 0), U20(η , s))≤

(
U+

10(η , 0), U+
20(η , s)

)
≤ (1, 1),

(0, 0)≤
(
U−

10(η , t), U−
20(η , t)

)
≤ (U10(η , t), U20(η , t))≤

(
U+

10(η , t), U+
20(η , t)

)
≤ (1, 1).

Now, we show the assertions of Theorem 2.1 in three steps.
Step 1We first claim that the inequality sup

η∈R

∥∥U+
i (η , t)

∥∥≤Ce−λ t holds for i = 1, 2.

For simplicity, let us denote U+
i (η , t) by Ui(η , t), i = 1, 2. It is easily verified that (U1(η , t), U2(η , t))satisfies



U1t(η , t)+ cU1η(η , t)−U1ηη(η , t)

+U1(η , t) [2ϕ1(η)− (1− r)− rU2(η − cι , t − ι)− rϕ2(η − cι)]

=−U2
1 (η , t)+ rϕ1(η)U2(η − cι , t − ι)

U2t(η , t)+ cU2η(η , t)−U2ηη(η , t)+bU2(η , t) [ϕ1(η)+U1(η , t)]

=−bU1(η , t)ϕ2(η)+bU1(η , t),

(9)

which is subject to the following initial condition

U1(η) =U10(η), U2(η , s) =U20(η , s), η ∈ R, s ∈ [−ι , 0]. (10)

Notice thatU1(η , t), U2(η , t) ∈C
(
[0, +∞), H1

ϖ∗(R)
)
, sinceU10(η , 0), U20(η , s) ∈ H1

ϖ∗(R). To obtain the energy
estimates, the solutions to (9) and (10) need to have sufficient regularity. Thus, the initial conditions can be mollified as
follows:
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
U10ε(η , 0) = (Lε ∗U10)(η , 0) =

∫
R

Lε(η −ω)U10(ω, 0)dω ∈ H2
ϖ∗(R),

U20ε(η , s) = (Lε ∗U20)(η , s) =
∫
R

Lε(η −ω)U20(ω, s)dω ∈ H2
ϖ∗(R),

where Lε(η) is the mollifier. Suppose that (U1ε(η , t), U2ε(η , t)) satisfies (9) with this mollified initial conditions. Then,
it can be concluded that Uiε(η , t) ∈C

(
[0, +∞), H2

ϖ∗(R)
)
, i = 1, 2.

Let ε → 0. Then, the energy estimate of the original solution Ui(t, η) can be established by Lemma 1, which will
be given in the following.

Lemma 1 If any c > c∗, then
(a) there exists some constant C0 > 0, such that the following assertion is true.

e2λ t
2

∑
i=1

∥Ui(η , t)∥2
L2

ϖ∗
+
∫ t

0
e2λ s

2

∑
i=1

∥Uiη(η , s)∥2
L2

ϖ∗
ds+

∫ t

0

∫
R

e2λ sϖ∗
2

∑
i=1

Qλ
i (η , s)U2

i (η , s)dηds

≤
2

∑
i=1

∥Ui0(0)∥2
L2

ϖ∗
+C0

∫ 0

−ι
∥U20(s)∥2

L2
ϖ∗

ds.

(b) there exists some constant Ĉ0 > 0, such that the following assertion holds.

e2λ t
2

∑
i=1

∥Uiη(η , t)∥2
Lϖ∗

+
∫ t

0
e2λ s

2

∑
i=1

∥Uiηη(η , s)∥2
L2

ϖ∗
ds+

∫ t

0

∫
R

e2λ sϖ∗
2

∑
i=1

Qλ
i (η , s)U2

iη(η , s)dηds

≤Ĉ0

(
2

∑
i=1

∥∥Uiη0(0)
∥∥2

L2
ϖ∗

+
∫ 0

−ι

∥∥U2η0(s)
∥∥2

L2
ϖ∗

ds+
2

∑
i=1

∥Ui0(0)∥2
L2

ϖ∗
+
∫ 0

−ι
∥U20(s)∥2

L2
ϖ∗

ds

)
,

where

Qλ
1 (η , t) := R1(η , t)−2λ , Qλ

2 (η , t) := R2(η , t)−2λ − rϕ1(η + cι)
ϖ∗(η + cι)

ϖ∗(η)

(
e2λ t −1

)
,

R1(η , t) :=−c
ϖ ′
∗

ϖ∗
−
(

ϖ ′
∗

ϖ∗

)2

+2 [2ϕ1(η)−1− rϕ2(η − cι)]− rϕ1(η)−b,

R2(η , t) :=−c
ϖ ′
∗

ϖ∗
−
(

ϖ ′
∗

ϖ∗

)2

+2b
[

ϕ1(η)− 1
2

]
− rϕ1(η + cι)

ϖ∗(η + cι)
ϖ∗(η)

.

Proof. (a) Multiplying both sides of differential equations for (9) by e2λ tϖ∗(η)U1(η , t) and e2λ tϖ∗(η)U2(η , t),
respectively, where λ > 0 will be given later and ϖ∗(η) is expressed by (7), one can derive
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e2λ tϖ∗(η)U1U1t + ce2λ tϖ∗(η)U1U1η − e2λ tϖ∗(η)U1U1ηη

+ e2λ tϖ∗(η)U2
1 [2ϕ1 − (1− r)− rU2(η − cτ, t − ι)− rϕ2(η − cι)]

=− e2λ tϖ∗(η)U3
1 + re2λ tϖ∗(η)U1U2(η − cι , t − ι)ϕ1,

e2λ tϖ∗(η)U2U2t + ce2λ tϖ∗(η)U2U2η − e2λ tϖ∗(η)U2U2ηη (11)

+be2λ tϖ∗(η)U2
2 [ϕ1 +U1] =−be2λ tϖ∗(η)U1U2ϕ2 +be2λ tϖ∗(η)U1U2. (12)

A direct computation shows that e2λ tϖ∗(η)U1U1t =

(
1
2

e2λ tϖ∗(η)U2
1

)
t
−λe2λ tϖ∗(η)U2

1 and

ce2λ tϖ∗(η)U1U1η − e2λ tϖ∗(η)U1U1ηη =
( c

2
e2λ tϖ∗(η)U2

1 − e2λ tϖ∗(η)U1U1η

)
η
− c

2
e2λ tϖ ′

∗(η)U2
1

+ e2λ tϖ ′
∗(η)U1U1η + e2λ tϖ∗(η)U2

1η .

Thanks to (11), one has

(
1
2

e2λ tϖ∗(η)U2
1

)
t
+
( c

2
e2λ tϖ∗(η)U2

1 − e2λ tϖ∗(η)U1U1η

)
η
+ e2λ tϖ ′

∗(η)U1U1η + e2λ tϖ∗(η)U2
1η

+

{
− c

2
ϖ ′
∗

ϖ∗
−λ +[2ϕ1 − (1− r)− rU2(η − cι , t − ι)− rϕ2(η − cι)]

}
e2λ tϖ∗(η)U2

1

=− e2λ tϖ∗(η)U3
1 + re2λ tϖ∗(η)U1U2(η − cι , t − ι)ϕ1.

(13)

Applying classical inequality

2ab ≤ a2 +b2, (14)

which is called Cauchy-Schwarz inequality, one has the following conclusion

∣∣∣e2λ tϖ ′
∗(η)U1U1η

∣∣∣≤ 1
2

e2λ tϖ∗(η)U2
1η +

1
2

e2λ t
(

ϖ ′
∗(η)

ϖ∗(η)

)2

ϖ∗(η)U2
1 . (15)

Deleting the negative term −e2λ tϖ∗(η)U3
1 (η , t) of (13)and combing the inequality (15) we can verify
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(
1
2

e2λ tϖ∗(η)U2
1

)
t
+
( c

2
e2λ tϖ∗(η)U2

1 − e2λ tϖ∗(η)U1U1η

)
η
+

1
2

e2λ tϖ∗(η)U2
1η +

{
− c

2
ϖ ′
∗

ϖ∗
−

1
2

(
ϖ ′
∗

ϖ∗

)2

−λ +[2ϕ1 − (1− r)− rU2(η − cι , t − ι)− rϕ2(η − cι)]

}
e2λ tϖ∗(η)U2

1

≤re2λ tϖ∗(η)U1U2(η − cι , t − ι)ϕ1.

(16)

Similarly, by using the inequality (14), it is can be derived that

∣∣∣e2λ tϖ ′
∗(η)U2U2η

∣∣∣≤ 1
2

e2λ tϖ∗(η)U2
2η +

1
2

e2λ t
(

ϖ ′
∗(η)

ϖ∗(η)

)2

ϖ∗(η)U2
2 , (17)

∣∣∣be2λ tϖ∗(η)U1U2

∣∣∣≤ b
2

e2λ tϖ∗(η)U2
1 +

b
2

e2λ tϖ∗(η)U2
2 . (18)

Deleting the term −be2λ tϖ∗(η)U1(η , t)U2(η , t)ϕ2, originating from (12), and combing the inequalities (17) and
(18), it can be transformed to

(
1
2

e2λ tϖ∗(η)U2
2

)
t
+
( c

2
e2λ tϖ∗(η)U2

2 − e2λ tϖ∗(η)U2U2η

)
η

+
1
2

e2λ tϖ∗(η)U2
2η +

{
− c

2
ϖ ′
∗

ϖ∗
− 1

2

(
ϖ ′
∗

ϖ∗

)2

−λ +b
(

ϕ1 −
1
2
+U1

)}
e2λ tϖ∗(η)U2

2

≤b
2

re2λ tϖ∗(η)U2
1 .

(19)

The fact can be noticed that the vanishing terms

( c
2

e2λ tϖ∗(η)U2
1 − e2λ tϖ∗(η)U1U1η

)
η
and

( c
2

e2λ tϖ∗(η)U2
2 − e2λ tϖ∗(η)U2U2η

)
η

will appear when integrating (16) and (19) over R× [0, t] with respect to η and t, since U1, U2 ∈ H2
ϖ∗(R). In addition,

one has

∫
R

∫ t

0

(
e2λ sϖ∗(η)U2

1 (η , s)
)

t
dsdη = e2λ t ∥U1(t)∥2

L2
ϖ∗

−∥U10(0)∥2
L2

ϖ∗
, (20)

∫
R

∫ t

0
e2λ sϖ∗(η)U2

1η(η , s)dsdη =
∫ t

0
e2λ s∥∥U1η(s)

∥∥2
L2

ϖ∗
ds, (21)
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∫
R

∫ t

0

(
e2λ sϖ∗(η)U2

2 (η , s)
)

t
dsdη = e2λ t ∥U2(t)∥2

L2
ϖ∗

−∥U20(0)∥2
L2

ϖ∗
, (22)

∫
R

∫ t

0
e2λ sϖ∗(η)U2

2η(η , s)dsdη =
∫ t

0
e2λ s∥∥U2η(s)

∥∥2
L2

ϖ∗
ds. (23)

In view of the inequality (14) again, we can derive the following estimates:

2r
∫ t

0

∫
R

e2λ sϖ∗(η)U1(η , s)U2(η − cι , s− ι)ϕ1dηds

≤r
∫ t

0

∫
R

e2λ sϖ∗(η)U2
1 (η , s)ϕ1dηds+ r

∫ t

0

∫
R

e2λ sϖ∗(η)U2
2 (η − cι , s− ı)ϕ1dηds

=r
∫ t

0

∫
R

e2λ sϖ∗(η)U2
1 (η , s)ϕ1dηds+ re2λ t

∫ t−ι

−ι

∫
R

e2λ sϖ∗(η + cι)U2
2 (η , s)ϕ1(η + cτ)dηds

≤r
∫ t

0

∫
R

e2λ sϖ∗(η)U2
1 (η , s)ϕ1dηds+ re2λ t

∫ t

0

∫
R

e2λ sϖ∗(η + cι)U2
2 (η , s)ϕ1(η + cι)dηds

+ re2λ t
∫ 0

−ι

∫
R

e2λ sϖ∗(η + cι)U2
20(η , s)ϕ1(η + cι)dηds.

(24)

By integration of (16) and (19) over R× [0, t] with respect to η and t, and the combination of (16), (20), (21), and
(24) can yield

e2λ t ∥U1(t)∥2
L2

ϖ∗
+
∫ t

0
e2λ s∥∥U1η(s)

∥∥2
L2

ϖ∗
ds+

∫ t

0

∫
R

{
−c

ϖ ′
∗

ϖ∗
−
(

ϖ ′
∗

ϖ∗

)2

−2λ

+2 [2ϕ1 − (1− r)− rU2(η − cι , t − ι)− rϕ2(η − cι)]}e2λ sϖ∗(η)U2
1 (η , s)dηds

≤∥U10(0)∥2
L2

ϖ∗
+ r

∫ t

0

∫
R

e2λ sϖ∗(η)U2
1 (η , s)ϕ1dηds

+ re2λ t
∫ t

0

∫
R

e2λ sϖ∗(η + cι)U2
2 (η , s)ϕ1(η + cι)dηds

+ re2λ t
∫ 0

−ι

∫ 2λ s

R
ϖ∗(η + cι)U2

20(η , s)ϕ1(η + cι)dηds

(25)

and substitution of (22) and (23) into (19) results in
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e2λ t ∥U2(t)∥2
L2

ϖ∗
+
∫ t

0
e2λ s∥∥U2η(s)

∥∥2
L2

ϖ∗
ds+

∫ t

0

∫
R

{
−c

ϖ ′
∗

ϖ∗
−
(

ϖ ′
∗

ϖ∗

)2

−2λ +2b
(

ϕ1 −
1
2
+U1

)}
e2λ sϖ∗(η)U2

2 (η , s)dηds

≤∥U20(0)∥2
L2

ϖ∗
+b

∫ t

0

∫
R

e2λ sϖ∗(η)U2
1 (η , s)dηds.

(26)

Based on (25) and (26), one has

e2λ t
(
∥U1(t)∥2

L2
ϖ∗

+∥U2(t)∥2
L2

ϖ∗

)
+
∫ t

0
e2λ s

(∥∥U1η(s)
∥∥2

Lϖ∗
+
∥∥U2η(s)

∥∥2
L2

ϖ∗

)
ds

+
∫ t

0

∫
R

e2λ sϖ∗(η)
(

Qλ
1 (η , s)U2

1 (η , s)+Qλ
2 (η , s)U2

2 (η , s)
)

dηds

≤∥U10(0)∥2
L2

ϖ∗
+∥U20(0)∥2

L2
ϖ∗

+C0

∫ 0

−ι
∥U20(s)∥2

Lϖ∗
ds,

where C0 > 0 is a constant.
(b) Similar to the statement (1), we can prove that the statement (2) is true. The proof of Lemma 1 is completed.
Lemma 2 There exists a positive constant C2, such that

2

∑
l=1

Rl(η , t)≥C2 > 0, ∀η ∈ R, l = 1, 2.

Proof. By (7), 0 < ϕi(η)< 1 and 0 <Ui(η , t)< 1, i = 1, 2, one has

R1(η , t) = cµ∗−µ2
∗ − (1− r)+(1− r)+2 [2ϕ1(η)−1− rϕ2(η − cι)]− rϕ1(η)−b ≥ (4− r)ϕ1(η)−3r−1−b

R2(η , t) = cµ∗−µ2
∗ − (1− r)+(1− r)+2b

[
ϕ1(η)− 1

2

]
− rϕ1(η + cτ)

ϖ∗(η + cι)
ϖ∗(η)

≥ 2bϕ1(η)−b−2r+1.

Based on the above analysis and the function F(η) defined by (6), one has

2

∑
l=1

Rl(η , t)≥ F(η)≥ F (η0) = (4− r+2b)ϕ1 (η0)−5r−2b =: C2

and the assertion follows.
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Lemma 3 If the equation
C2

2
−4λ −r

(
e2λ t −1

)
= 0 has only a positive root λ1, then for any 0 < λ < λ1, there exists

some constant C1 > 0, such that

2

∑
l=1

Qλ
l (η , t)≥C1, ∀η ∈ R.

Proof. We know that 0 < ϕ1(η)< 1 and
ϖ∗(η + cτ)

ϖ∗(η)
≤ 1 for η ∈ R. Hence, one has

2

∑
l=1

Qλ
l (η , t) =

2

∑
l=1

(Rl(η , t)−2λ )− rϕ1(η + cι)
ϖ∗(η + cι)

ϖ∗(η)

(
e2λι −1

)

≥C2 −4λ − r
(

e2λι −1
)
≥ C2

2
−4λ − r

(
e2λι −1

)
:=C1 > 0

for any 0 < λ < λ1. This finishes the proof.
By applying Lemma 1 (b), one easily obtains the estimates as follows:
Lemma 4 There exists C3 > 0, such that

e2λ t ∥∥Ulη(η , t)
∥∥2

l2
ϖ∗

≤C3

(
2

∑
l=1

∥Ul0(0)∥2
H1

ϖ∗
+
∫ 0

−ι
∥U20(s)∥2

H ′
ϖ∗

ds

)
, l = 1, 2.

Thus, Lemma 1 (a) and Lemma 4 imply the following conclusion:
Lemma 5Assume that ϖ∗(η) is the weight function expressed by (7). Then, there exists some constantC4 > 0, such

that

∥Ul(η , t)∥2
H1

ϖt
≤C4e−2λ t

(
2

∑
l=1

∥Ul0(0)∥2
H1

ϖt
+
∫ 0

−t
∥U20(s)∥2

H1
ϖ∗

ds

)
, ∀t > 0, l = 1, 2.

Notice when ϖ∗(η) → 0 as η → ∞, H1
ϖ∗(R) → C(R)cannot be assured. However, ision H1

ϖ∗(I) → C(I)for any
interval I = (−∞, η1], where η1 ≫ η0 + 1is some large constant. Hence, according to Lemma 5, one has the following
inequality:

Lemma 6 If t > 0, then there exists some constant C5 > 0, such that

sup
η∈I

|Ul(η , t)| ≤C5e−λ t

(
2

∑
l=1

∥Ul0(0)∥2
H1

ϖ∗
+
∫ 0

−l
∥U20(s)∥2

H1
ϖ∗

ds

) 1
2

, l = 1, 2,

for any I = (−∞, η1] with some large constant η1 ≫ η0 +1.
Lemma 7 If λ2 = b, then there is some constant C > 0, such that
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lim
η→∞

|Ul(η , t)| ≤Ce−λ2t , l = 1, 2.

Proof. It is easily verified thatUlη(∞, t) =Ulηη(∞, t) = 0, l = 1, 2. In view of (9) and the boundedness ofUl(∞, t)
for all η ∈ R, taking η → ∞, one has

U1t(∞, t)+U1(∞, t)(1− r)≤ rU2(∞, t − ι), (27)

U2t(∞, t)≤−bU2(∞, t). (28)

By integrating (28) over [0, t], one obtains

U2(∞, t)≤U2(∞, 0)e−bt . (29)

Thus, substituting (29) into the equation (27) gives

U1(∞, t)≤U1(∞, 0)e(r−1)t + rU2(∞, 0)ebτ e−bt

1− r−b

≤U1(∞, 0)e−bt + rU2(∞, 0)ebτ e−bt

1− r−b
= C̃e−bt ,

where C̃ :=U1(∞, 0)+
rU2(∞, 0)ebl

1− r−b
.

Hence, we have lim
η→∞

|Ul(η , t)| ≤Ce−λ2t , l = 1, 2, whereC := max
{

C̃, U2(∞, 0)
}
, λ2 := b. This finishes the proof.

Taking 0 < λ̃ < λ1 and 0 < λ̃ < λ2, by using Lemmas 6 and 7, we finally obtain the L∞convergence for η ∈ R as
follows:

Lemma 8 If t > 0, then there exists some C6 > 0, such that

sup
y∈R

∣∣v+l (y, t)−ϕl(y+ ct)
∣∣= sup

η∈R
|Ul(η , t)| ≤C6e−λ̃ t , l = 1, 2.

Step 2 Similar to Step 1, we know that there are constants C7 > 0 and λ̄ , such that

sup
y∈R

∣∣v−l (y, t)−ϕl(y+ ct)
∣∣≤C7e−λ̄ t , t > 0, l = 1, 2.

Step 3 According to (8), one has
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|vl(y, t)−ϕl(y+ ct)| ≤ max
{∣∣v+l (y, t)−ϕl(y+ ct)

∣∣ , ∣∣v−l (y, t)−ϕl(y+ ct)
∣∣} , l = 1, 2.

Then, based on the results obtained in Step 2 and Step 3, and the above observation, this finishes the proof of Theorem
2.1.

4. Numerical examples
In this section, we give an example of the numerical application of the main results.
Example 1 Consider the following Belousov-Zhabotinskii system with a time delay:


(v1)t = (v1)yy + v1(y, t) [0.4− v1(y, t)+0.6v2(y, t −0.5)] ,

(v2)t = (v2)yy +0.2v1(y, t) [1− v2(y, t)] ,

(30)

which is subjected to the initial value

v10(y) = v1(y, 0), v20(y, s) = v2(y, s), y ∈ R, s ∈ [−0.5, 0], (31)

where r = 0.6, b = 0.2, and = 0.5. By computation, we obtain c∗ = 2
√

1− r = 2
√

10/5.
Sincer ∈ (0, 1) and 0 < b < 1− r, it follows from Proposition 2.1 that for any c ≥ c∗, system (30) has an increasing

traveling wave Φ(η) = (ϕ1(η), ϕ2(η)) with speed c connecting (0, 0) and (1, 1).
It is seen easily that the condition (A) holds and (0, 0)≤ (v10(y), v20(y, s))≤ (1, 1), y ∈R, s ∈ [−0.5, 0],v10(y)−

ϕ1(y) ∈ H1
ϖ∗(R) ⊂ C(R), v20(y, s)−ϕ2(y+ cs) ∈ C

(
[−0.5, 0]; H1

ϖ∗(R)
)
. So, Theorem 2.1 ensures that for any c ≥ c∗,

the traveling c ≥ c∗ wave solution Φ(η) = (ϕ1(η), ϕ2(η)) of system (30) is exponentially asymptotically stable.

5. Conclusions
This paper has successfully established the stability of traveling wave solutions for system (2) with condition (5) by

a technical assumption. The weighted energy method and comparison theorem have been used for obtaining the stability
of all waves, including the slower ones (i.e., the wave speed near the critical wave speed). It needs to be mentioned that
we discuss only the stability of the traveling wave solution of system (2) for c > c∗; the stability of the traveling wave
solution for the case c = c∗ is unsolved and left to the future for further consideration.
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