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Abstract: In this research paper, the focus is on analyzing the free lateral vibration of a nanobeam that has been weakened.
The investigation revolves around studying the impact of thermal and magnetic effects on the nanobeam, utilizing both
Bernoulli’s beam theory and the nonlocal strain gradient theory (NSGT). Nanostructures hold great significance and
find various applications. To derive the governing equations, boundary conditions, and assess the thermal and magnetic
influences, Hamilton’s principle is employed. The nanobeam is divided into two parts, with rotational springs connecting
them. This model takes into account the additional strain energy caused by cracks, which in turn increases the deflection
slope’s discontinuity. The study examines various factors such as crack propagation, crack intensity, thermal and
magnetic effects, material length scale parameters, and nonlocal parameters within the non-rheological parameters. A
comparative analysis with previous research studies has been conducted, demonstrating a favorable agreement between
the findings. The results highlight the significant role played by the aforementioned parameters in the dynamic behavior
of the nanobeam. Also, the location and severity of the crack on the nanobeam and its effect on the free vibrations were
investigated. The most important application of the conducted research can be used in the construction of drug release
systems and stimulate the drugs in a controlled and direct manner at the target site.
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1. Introduction
Today, the application of nanotechnology in drug delivery and the treatment of some diseases has become an attractive

and promising path. In this regard, and with the proliferation of nano-sensors, the field of pathogen detection to prevent
the spread of epidemics is also being realized. In fact, pathogens such as viruses and bacteria have unique effects on
nano-sensors based on their different mass and structure. One of these effects is a change in the vibrational frequency of
the nano-sensors. Therefore, due to the widespread use of this type of structure in modern technology, the importance of
studying the vibrations of this type of structure is of great importance [1–7].

Wang et al. analyzed the vibrations of porous Timoshenko beams in a hygrothermal environment. The equations were
extracted by Hamilton’s principle and the nonlinear strain gradient theory and solved by the GDQ numerical method. The
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effect of different parameters on the mechanical behavior of nanobeam is investigated [8]. Thai et al. analyzed composite
layered nanoplates with free and static vibrations with a classical higher-order shear deformation theory dependent on size
effects. The equations are derived using nonlocal theory and strain gradient. The results are compared with numerical
studies and examined for different parameters [9]. Malikan et al. studied torsional stability of a single-walled composite
nano-shell (SWCNS) under a three-dimensional magnetic field. The analysis utilized a nonlocal model and the first-order
shear deformation shell theory (FSDST) [10].

Merzouki et al. studied the buckling of an FG porous nanobeam reinforced with graphene platelets. Relationships
are extracted using nonlocal strain gradient theory and bivariate shear deformation theory. The governing equations are
solved by introducing a three-node beam element. Moreover, the effect of various factors on the mechanical behavior
of the structure, including graphene reinforcement, has been studied [11]. Tho et al. introduced a novel approach by
combining the finite element method (FEM) with a third-order shear deformation beam theory (TSDT) to simulate the
static bending and free vibration responses of piezoelectric nanobeams with geometric imperfections [12]. Duc et al.
presented novel numerical findings on the analysis of vibration response in a cracked functionally graded material (FGM)
plate, utilizing the phase-field theory and finite element method [13]. Dung et al. investigated an analysis of the static
bending behavior of microplates placed on imperfect elastic foundations using a nonlinear approach. The finite element
method, incorporating the modified couple stress theory, were employed to establish the nonlinear finite element equations
[14]. Tho et al. employd the third-order shear deformation theory along with the phase-field theory to simulate the
free vibration response and static bending of laminated composite plates that exhibit a fracture in the core layer only
[15]. Khan et al. investigated Hall current effect, entropy generation, Arrhenius activation energy, and binary chemical
reactions in heat and mass transfer bioconvection flow of Maxwell nanofluid [16]. Ramazan et al. investigated the
mechanical properties of heat and mass transfer in a nanofluid of second grade, combined with the motion of gyrotatic
microorganisms around a thin needle that exhibits a dipole effect [17]. Khan et al. presented an analytical analysis of the
flow characteristics of a two-dimensional hybrid nanofluid [18].

Li et al. investigated the buckling behavior of functionally graded nanotubes whose material properties are different
in two directions. The equations were extracted using the von-Kármán nonlinear theory and energy method, using
the nonlocal strain gradient theory, and solved using the GDQ method [19]. Malikan et al. developed the first-order
shear deformation theory (OVFSDT), to analyze the stability of a piezo-magnetoelectric composite nanoplate (PMEN).
Equilibrium equations were formulated using a nonlocal strain gradient theory, and numerical results were obtained using
analytical approaches. This study, offered advantages over conventional theories, such as no need for shear correction
factors and fewer unknowns [20].

Forooghi et al. investigated the vibrational behavior of nanobeam reinforced with carbon nanotubes. The relation-
ships were extracted using higher-order shear deformation theory and nonlocal strain gradient theory and solved by GDQ
numerical method. Nano-beam is located in the hygrothermal and magnetic environment, and these factors’ effect on
nanobeam vibrations has been investigated [21]. Khan et al. studied the magnetic dipole effect on a thixotropic nanofluid
flowing through a porous medium over a curved stretching surface, taking into account heat and mass transfer, as well as
microorganism concentration [22].

Eftekhari et al. investigated the dynamic behavior of composite nanobeam with piezoelectric layers. The equations
were extracted using the NSGT and solved by the GDQ method. Finally, the effect of various parameters, including
surface effects, was investigated [23].

Malikan et al. analysed the forced vibration of single-walled carbon nanotubes using a new shear deformation beam
theory. The theory considered nonlocal strain gradient effects and eliminated the need for shear correction factors. The
study explored the effects of various parameters on the nanotubes’ dynamic vibration [24]. Khan et al. studied the
examination of entropy generation in an unsteady flow of Casson nanofluid, which includes gyrotactic microorganisms
and is subject to the Cattaneo-Christov theory of heat and mass flux [25].

Rajaei et al. investigated the adaptive self-organizing fuzzy sliding mode controller for a nonlocal strain gradient
nanobeam [26]. Rajaei et al. investigated the size-dependent differential quadrature element model for vibration analysis
of FG CNT reinforced composite micro rods based on the higher-order Love-Bishop rod model and the nonlocal strain
gradient theory [27]. Cuong-Le et al. investigated the nonlocal strain gradient numerical solution for static bending, free
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vibration, and buckling of sigmoid FG sandwich nanoplate [28]. Malikan et al. studied the dynamic response of curved
viscoelastic carbon nanotubes. They addressed the challenge of understanding the mechanical behavior of these curved
nanotubes with the influence of material viscosity. The Kelvin-Voigt viscoelastic model and a modified shear deformation
beam theory were used to formulate the governing equations [29]. Khan et al. examined the effects of magnetic fields and
thermal radiation on homogeneous-heterogeneous chemical reactions involving second-grade nanofluid and gyrotactic
microorganisms in a rotating system [30].

Yang et al. presented a nanobeam model that incorporates various high-order shear deformation beam theories. The
model investigates the vibration response of nanobeams by considering two-phase local/nonlocal strain and stress gradient
theory, alongwith surface elasticity theory [31]. Qing et al. presented a newmathematical formulation to address the stress-
driven two-phase local/nonlocal integral model (SD-TPNIM) that incorporates discontinuity and symmetrical conditions
[32]. Barretta et al. studiedNonlocal continuum theories within the context of nanobeamsmechanics, specifically focusing
on non-smooth fields which represent the most general condition [33]. Scorza et al. expanded the existing two-phase
local/nonlocal stress-driven integral model (SDM) to include nanobeams with internal discontinuities [34]. Khan et al.
investigated the Buongiorno nanofluid model, which considers the Cattaneo-Christov theory of heat and mass flux [35].

Su et al. investigated the vibration analysis of FG porous piezoelectric deeply curved beams resting on discrete elastic
supports [36]. Arefi et al. studied the influence of flexoelectric surface and residual stress on the nonlinear vibration of
sigmoid, exponential FG Timoshenko nano-beams [37]. Malikan et al. analysed the forced vibrations of a piezoelectric-
piezomagnetic ceramic nanoplate using a refined shear deformation plate theory combined with a higher-order nonlocal
strain gradient theory. The governing equations for the nanoplate were derived, considering stress nonlocality and strain
gradient size-dependent effects [38]. Darban et al. developed a nonlocal approach to investigate the vibrations of
nanobeams with varying sizes, considering the presence of cracks [39]. Khan et al. explored the impact of magnetic
dipole, porosity, and heat transfer on the flow of a ferromagnetic Walter-B fluid over a curved stretching surface [40].

Bouafia et al. investigated the nonlocal quasi-3D theory for vibration behaviors of FG nanobeams [41]. Yahia et al.
investigated the wave propagation in functionally graded plates with porosities using various higher-order plate theories
[42]. Malikan et al. investigated the stability of a porous nanobeam under axial loading, considering flexomagnetic
material properties [43]. Karami et al. investigated the resonance behavior of Kirchhoff nanoplates using the bi-Helmholtz
nonlocal strain gradient theory [44].

Chaht et al. investigated size-dependent nanoscale beams’ buckling analyses, including the thickness stretching effect
[45]. Belkorissat et al. investigated the vibration properties of FG nanoplate using a new nonlocal refined four-variable
model [46].

In this paper, the aim of investigating the free vibration of cracked nanoparticles using strain gradient theory considers
thermal and magnetic effects. The crack beam is attached to the two sections connected with a circular spring in the crack
position. Natural frequencies for cracked nanoparticles have been studied by applying boundary conditions and numerical
results for different crack propagation, crack intensity, thermal and magnetic effects, the scale of material length, and
different nonlocal parameters were investigated.

2. Formulation
Higher-order NSGT [47, 48] stress includes the nonlocal elastic and the strain gradient stress field.

txx = σxx −∇σ (1)
xx (1)

In Equation (1), σxx and σ (1)
xx the classical stresses and higher-order stresses, respectively, are shown in Equation (2)

[48, 49]:
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σxx =
∫ L

0
E(x)α0(x, x′, e0a)ε ′xx(x

′)dx′

σ (1)
xx = l2

∫ L

0
E(x)α1(x, x′, e1a)ε ′xx, x(x

′)dx′

(2)

To investigate the importance of the nonlocal elasticity stress field, parameters e0a and e1a (which represent nonlocal
parameters in Equation (2) e0a and e1a, are assumed in this study to be e = e0 = e1) and the characteristic parameter of
materials l (which is also a parameter of the material length scale). It is presented to provide the strain gradient stress field
[48]. In Equation (2) α(x, x′, ea), the kernel function is nonlocal [47]. So the result is:

(1− (ea)2∇2)σxx = E(x)εxx (3)

(1− (ea)2∇2)σ (1)
xx = l2E(x)εxx, x (4)

where in Equations (1), (3) and (4) ∇ =
∂
∂x

. Using Equations (1), (3) and (4), (5) is achieved:

[
1− (ea)2∇2] txx = E(x)εxx − l2∇.(E(x)∇εxx) (5)

A nanobeam has width B, height h, and length L, as shown in Figure 1. Nanobeam has a torque modeled with a
rotating spring in the crack position. This nanobeam is subject to the effects of thermal and magnetic effects.

Figure 1. Schematic of a cracked beam

Free transverse vibration is considered a nanobeam. According to Euler Bernoulli’s beam theory, the displacement
field at any point in the arrow along its axis can be expressed as follows [49]:
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u1(x, z, t) = u(x, t)− zw, x

u2(x, z, t) = 0

u3(x, z, t) = w(x, t)

(6)

In the Euler Bernoulli beam, the longitudinal displacement of the center plate u(x, t) is neglected due to its small
size, so only the non-zero strain is expressed as follows:

εxx = u, x − zw, xx =−zw, xx (7)

Using Hamilton’s principle, we have [48, 49]:

∫ t2

t1
(δK −δU +δFEX .)dt = 0 (8)

δU =
∫

V
(σxxδεxx +σ (1)

xx ∇δεxx)dV

=
∫

V
(σxx −∇σ (1)

xx )δεxxdV +

[∫
A

σ (1)
xx δεxxdA

]L

0

=
∫

V
txxδεxxdV +

[∫
A

σ (1)
xx δεxxdA

]L

0
(9)

The stress results are as follows:

M =
∫

A
ztxxdA

M(1) =
∫

A
zσ (1)

xx dA

Nxx =
∫

A
txxdA

N(1)
xx =

∫
A

σ (1)
xx dA

(10)

where in Equation (10), M the classical moment M(1) is the non-classical moment, Nxx and N(1)
xx the classical and non-

classical force results. Due to the above relations:
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δU =
∫ L

0

(
Nxxδ

∂u
∂x

−Mδ
∂ 2w
∂x2

)
dx+

[
N(1)

xx δ
∂u
∂x

−M(1)δ
∂ 2w
∂x2

]L

0

δK =
∫

V
ρ(x)

∂u1

∂ t
δ
(

∂u1

∂ t

)
dV +

∫
V

ρ(x)
∂u3

∂ t
δ
(

∂u3

∂ t

)
dV

=
∫ L

0
ρ(x)A

∂u
∂ t

δ
(

∂u
∂ t

)
dx+

∫ L

0
ρ(x)I

∂ 2w
∂x∂ t

δ
(

∂ 2w
∂x∂ t

)
dx

+
∫ L

0
ρ(x)A

∂w
∂ t

δ
(

∂w
∂ t

)
dx

δFEX . =
∫ L

0
(NT +NM)

(
∂w
∂x

)
δ
(

∂w
∂x

)
dx

(11)

In Equation (11), NM and NT denote a uniaxial magnetic field, thermal load caused by temperature change. The
moment of inertia is as follows:

{
A
I

}
= b

∫ h
2

− h
2

{
1
z2

}
dz (12)

Using Equations (11) and (8), solving the relationship and factorization:

δU =
∂Nxx

∂x
= 0

δw:
∂ 2M
∂x2 +

∂
∂x

(
ρ(x)I

∂ 3w
∂x∂ t2

)
−ρ(x)A

∂ 2w
∂ t2 − (NT +NM)

∂ 2w
∂x2 = 0

B.C ⇒



Nxx = 0

∂M
∂x

or δw

(NT +NM)

(
∂w
∂x

)


x = 0, L

,



M = 0

N(1)
xx

M(1) or
∂ 2w
∂x2

(13)

Using Equations (5), (7), and (10):

M = (ea)2M, xx −E(x)Iw, xx + l2I
∂
∂x

(E(x)w, xxx) (14)
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which in Equation (14), E is the modulus of elasticity and I is the moment of inertia. Using Equations (13) and (14):

M = (ea)2
[

ρ(x)AẄ − ∂
∂x

(ρ(x)IW, xtt)+(NT +NM)w, xx

]
−E(x)IW, xx + l2 ∂

∂x
(E(x)IW, xxx) (15)

The final equation of Euler’s beam method is used to study transverse vibration using NSGT as follows:

EI
∂ 4w
∂x4 − l2EI

∂ 6w
∂x6 +ρA

∂ 2w
∂ t2 −ρI

∂ 4w
∂x2∂ t2 − (ea)2ρA

∂ 4w
∂x2∂ t2 − (NT +NM)

∂ 2w
∂x2

+(ea)2(NT +NM)
∂ 4w
∂x4 +(ea)2ρI

∂ 6w
∂x4∂ t2 = 0

(16)

where:

NT =−λ1h∆T & NM = mH2
x

∂ 2w
∂x2 (17)

where, Hx & m are in-plane uniaxial magnetic field and the magnetic field permeability. λ1, h and ∆T demonstrate
the coefficient of thermal expansion, the cross-sectional area, and the difference between the temperature and its initial
reference temperature.

Assuming [4, 50, 51]:

w(x, t) =V (x)eiωt (18)

Substituting Equation (18) in Equation (17):

−l2EIV 6(x)+(EI − (ea)2ρIω2 +(ea)2(NT +NM))V 4(x)+(ρIω2 +(ea)2ρAω2

+(NT +NM))V ′′(x)−ρAω2V (x) = 0

(19)

By multiplying the Equation (19) in
L4

EI
and by assuming:

V̄ =
V
L
, ξ =

x
L
, α1 =

ea
L
, α2 =

l
L
, λ 4 =

ρAL4ω2

EI
, h2 =

L2ρIω2

EI
, N̄T =

NT L2

EI
, N̄M =

NML2

EI
(20)

With combining Equations (20) and (19) results:
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−α2
2V̄ 6(ξ )+(1−α2

1 h2 +α2
1 (N̄T + N̄M))V̄ 4(ζ )+(h2 +α2

1 λ 4 +(N̄T + N̄M))V̄ ′′(ξ )

−λ 4V̄ (ξ ) = 0

(21)

To solve Equation (21) with the assumption Equation (22), Equation (23) is obtained [50]:

V̄ (ξ ) =
6

∑
k=1

V̄k exp(ηkξ ) (22)

−α2
2 η6 +(1−α2

1 h2 +α2
1 (N̄T + N̄M))η4 +(h2 +α2

1 λ 4 +(N̄T + N̄M))η2 −λ 4 = 0 (23)

where results in Equation (23), η as follows:

η2
1 =− 1

3(−α2
2 )

(
(1−α2

1 h2 +α2
1 (N̄T + N̄M))+R+

(1−α2
1 h2 +α2

1 (N̄T + N̄M))2

R

)

η2
2 =− 1

3(−α2
2 )

(1−α2
1 h2 +α2

1 (N̄T + N̄M))+
−1− i

√
3

2
R+

(1−α2
1 h2 +α2

1 (N̄T + N̄M))2(
−1− i

√
3

2

)
R



η2
3 =− 1

3(−α2
2 )

(1−α2
1 h2 +α2

1 (N̄T + N̄M))+
−1+ i

√
3

2
R+

(1−α2
1 h2 +α2

1 (N̄T + N̄M))2(
−1+ i

√
3

2

)
R



(24)

where in Equation (24):

R =
3

√√√√2(1−α2
1 h2 +α2

1 (N̄T + N̄M))3 +
√

−27(−α2
2 )

2∆

2

∆ = −4(1−α2
1 h2 +α2

1 (N̄T + N̄M))3(h2 +α2
1 λ 4 −λ 4 +(N̄T + N̄M))

−27(−α2
2 )

2(h2 +α2
1 λ 4 −λ 4 +(N̄T + N̄M))2

(25)

The third root is always negative for physics, and gives imaginary values, so:

V̄ (ξ ) = A1 +A2ξ +A3 sinh(η1ξ )+A4 cosh(η1ξ )+A5 sin(η2ξ )+A6 cos(η2ξ ) (26)

Contemporary Mathematics 950 | Seyed Amirhosein Hosseini, et al.



3. Nanobeam crack model
As seen in Figure 1, the nanobeam crack was replaced by an elastic longitudinal spring and a torsional spring [52].

Therefore, strain energy Θ nanobeam is obtained as follows:

Θ =
1
2

∫ L

0
dx

∫
A

σxx

(
∂u
∂x

− z
∂ 2V
∂x2

)
dA+∆Θc (27)

where ∆Θc does the crack cause the additional strain energy. This equation can be expressed as follows, which includes
axial force and bending moment [52]:

Θ =
1
2

∫ L

0

(
N

∂u
∂x

+M
∂ 2V
∂x2

)
dx+∆Θc (28)

The increment due to the presence of an edge crack [52]:

∆Θc =
1
2

kMMM(Lk, t)
∂ 2V
∂x2 +

1
2

kNNN(Lk, t)
∂u
∂x

+
1
2

kMNM(Lk, t)
∂u
∂x

+
1
2

kNMN(Lk, t)
∂ 2V
∂x2 (29)

where kMM , kNN , kMN and kNM are the flexibility constants [52]. The increment of strain energy could be written as:

∆Θc =
1
2

M∆θ +
1
2

N∆u (30)

where ∆θ and ∆u are, the angle rotated by the rotational spring and the relative horizontal displacement at the edge crack
section. In this paper, cross-sectional vibration is considered, and longitudinal movement is not considered (∆u = 0). ∆θ
it can be expressed in this way [52]:

∆θ = kMM
∂ 2V
∂x2 (31)

The dimensionless form of Equation (31) is [52]:

∆θ =
kMM

L
∂ 2V̄
∂x2

∣∣∣∣
ξ=Lc

= k
∂ 2V̄
∂x2

∣∣∣∣
ξ=Lc

(32)

The free cross-sectional vibration analysis of the beam can be continued by applying the motion equation in the
vertical direction to each of the following two sections:
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−α2
2V̄ 6(ξ )+(1−α2

1 h2 +α2
1 (N̄T + N̄M))V̄ 4(ζ )+(h2 +α2

1 λ 4 +(N̄T + N̄M))V̄ ′′(ξ )−λ 4V̄ (ξ ) = 0

0 ≤ ξ ≤ b

−α2
2V̄ 6(ξ )+(1−α2

1 h2 +α2
1 (N̄T + N̄M))V̄ 4(ζ )+(h2 +α2

1 λ 4 +(N̄T + N̄M))V̄ ′′(ξ )−λ 4V̄ (ξ ) = 0

b ≤ ξ ≤ 1

(33)

where λ 4 is the natural frequency. The solution for each division can be expressed as follows:

V̄1(ξ ) = A1 +A2ξ +A3 sinh(η1ξ )+A4 cosh(η1ξ )+A5 sin(η2ξ )+A6 cos(η2ξ ) 0 ≤ ξ ≤ b

V̄1(ξ ) = B1 +B2ξ +B3 sinh(η1ξ )+B4 cosh(η1ξ )+B5 sin(η2ξ )+B6 cos(η2ξ ) b ≤ ξ ≤ 1

(34)

In the following, using the boundary conditions of the beginning, the crack area, and the end of the nanobeam, we
have:

V̄1(0) = V̄ ′′
1 (0) = V̄ 4

1 (0) = 0

V̄2(1) = V̄ ′′
2 (1) = V̄ 4

2 (1) = 0

−α2
2V̄ 4

2 (b)+
(
1−α2

1 h2 +α2
1 (N̄T + N̄M)

)
V̄ ′′

2 (b)+
(
h2 +α2

1 λ 4)V̄2(b)

= −α2
2V̄ 4

1 (b)+
(
1−α2

1 h2 +α2
1 (N̄T + N̄M)

)
V̄ ′′

1 (b)+
(
h2 +α2

1 λ 4)V̄1(b)

V̄ ′
2(b)−V̄ ′

1(b) = kV̄ ′′
1 (b)

−α2
2V̄ ′′

2 (b)+
(
1−α2

1 h2 +α2
1 (N̄T + N̄M)

)
V̄2(b)

= −α2
2V̄ ′′

1 (b)+
(
1−α2

1 h2 +α2
1 (N̄T + N̄M)

)
V̄1(b)

−α2
2V̄ 5

2 (b)+
(
1−α2

1 h2 +α2
1 (N̄T + N̄M)

)
V̄ 3

2 (b)+
(
h2 +α2

1 λ 4)V̄ ′
2(b)

= −α2
2V̄ 5

1 (b)+
(
1−α2

1 h2 +α2
1 (N̄T + N̄M)

)
V̄ 3

1 (b)+
(
h2 +α2

1 λ 4)V̄ ′
1(b)

(35)

The natural frequencies are obtained by applying the boundary conditions in Equation (34) and forming the matrix
of coefficients.
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4. Results and discussion
The previous sections show that the nanobeam Euler-Bernoulli equations were derived using the strain gradient

theory and Hamilton’s principle. This section obtains the results for various parameters, including crack area, temperature,
magnetism, and spring stiffness changes that greatly impact dimensionless natural frequencies. The results are compared
with Loya et al. [52]. It is presented in Table 1.

Where:

L
h
= 100, B = 10h

Table 1. Comparison of the first four frequencies with α1 = α2 = 0, b = 0.25

k = 2 k = 0.35 k = 0.065 k = 0 Ω

Present [52] Present [52] Present [52] Present [52]

2.3493 2.3493 2.9071 2.9071 3.0921 3.0921 3.1416 3.1416 1

5.1047 5.1047 5.6491 5.6491 6.1028 6.1028 6.2832 6.2832 2

8.9008 8.9008 9.0767 9.0767 9.3021 9.3021 9.4248 9.4248 3

12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 4

In the following (Table 2-5), the first and second dimensionless frequencies have been used for different values of
thermal and magnetic.

Table 2. Temperature change ∆T (°C) on the first frequencies with α1 = 0.4, α2 = 0.2, b = 0.25, m = 0

k ∆T = 0 ∆T = 20 ∆T = 40 ∆T = 60 ∆T = 80 ∆T = 100

0.065 3.63812 3.62412 3.61802 3.60792 3.59772 3.58752

0.35 3.47242 3.46241 3.45232 3.44221 3.43202 3.42182

2 2.96542 2.95540 2.94531 2.93522 2.92502 2.91482

Table 3. Temperature change ∆T (°C) on the first frequencies with α1 = 0.4, α2 = 0.2 , b = 0.5, m = 0

k ∆T = 0 ∆T = 20 ∆T = 40 ∆T = 60 ∆T = 80 ∆T = 100

0.065 3.50717 3.49718 3.48707 3.47697 3.46677 3.45656

0.35 3.26065 3.25065 3.24055 3.23045 3.22025 3.21005

2 2.72345 2.71344 2.70335 2.69325 2.68301 2.67286
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Table 4. Temperature change ∆T (°C) on the second frequencies with α1 = 0.4, α2 = 0.2, b = 0.25, m = 0

k ∆T = 0 ∆T = 20 ∆T = 40 ∆T = 60 ∆T = 80 ∆T = 100

0.065 4.65679 4.62719 4.59759 4.56779 4.53809 4.50819

0.35 4.49109 4.46149 4.43189 4.0209 4.37239 4.34248

2 3.98409 3.95444 3.92488 3.89501 3.86539 3.83545

Table 5. Temperature change ∆T (°C) on the second frequencies with α1 = 0.4, α2 = 0.2, b = 0.5, m = 0

k ∆T = 0 ∆T = 20 ∆T = 40 ∆T = 60 ∆T = 80 ∆T = 100

0.065 4.80232 4.77272 4.74312 4.71331 4.68361 4.65372

0.35 4.55582 4.52622 4.49662 4.46683 4.43711 4.40722

2 4.55582 4.52622 4.49662 4.46683 4.43711 4.40722

Tables 2 and 4 show the effects of temperature and spring stiffness changes on the first and second dimensionless
frequency α1 = 0.4, α2 = 0.2, b = 0.25, m = 0.

As can be seen, the dimensionless natural frequency decreases with increasing temperature. The effects of
temperature cause changes in the stiffness of the nanobeam. In this study, the intensity of the crack zone was simulated
with two torsional and longitudinal springs. The increase in crack growth severity is applied by increasing the torsional and
longitudinal spring stiffness; as can be seen, with increasing values of k, the dimensionless natural frequency decreases,
which is caused by the decrease in the strength of the nanobeam.

Tables 3 and 5 also show temperature changes for the first and second dimensionless frequencies. The important
difference between these two tables is the change in the crack area (b), which has been moved from b = 0.25 to b = 0.5.

The dimensionless natural frequency decreases by moving the crack region to the middle of the nanobeam, which is
again due to the changes in the stiffness of the nanobeam and the same strength of the nanobeam.

Tables 2-5 observed the effects of temperature on the first and second dimensionless natural frequencies. This
temperature increase until reaching the critical temperature causes a decrease in the natural frequency; until finally
reaching the critical temperature, the frequency reaches zero.

Table 6. The effect of the magnetic change (m) on the first frequencies with α1 = 0.4, α2 = 0.2, b = 0.25, ∆T = 0

k m = 0 m = 10 m = 20 m = 30 m = 50 m = 100

0.065 3.63812 3.65811 3.68812 3.72810 3.75811 3.94812

0.35 3.47242 3.49242 3.52240 3.56148 3.59339 3.78149

2 2.96542 2.98498 3.01538 3.05540 3.08541 3.27492
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Table 7. The effect of the magnetic change (m) on the first frequencies with α1 = 0.4, α2 = 0.2 , b = 0.5, ∆T = 0

k m = 0 m = 10 m = 20 m = 30 m = 50 m = 100

0.065 3.50717 3.52717 3.55713 3.59711 3.62717 3.1716

0.35 3.26065 3.28060 3.31058 3.35057 3.38071 3.57079

2 2.72345 2.74340 2.77338 2.81345 2.84350 3.03359

Table 8. The effect of the magnetic change (m) on the second frequencies with α1 = 0.4, α2 = 0.2, b = 0.25, ∆T = 0

k m = 0 m = 10 m = 20 m = 30 m = 50 m = 100

0.065 4.65679 4.68677 4.71678 4.75680 4.86681 5.04671

0.35 4.49109 4.52101 4.55110 4.59113 4.70109 4.88100

2 3.98409 4.01408 4.04407 4.08412 4.19415 4.37400

Table 9. The effect of the magnetic change (m) on the second frequencies with α1 = 0.4, α2 = 0.2, b = 0.5, ∆T = 0

k m = 0 m = 10 m = 20 m = 30 m = 50 m = 100

0.065 4.80232 4.83232 4.86228 4.90226 5.01230 5.19235

0.35 4.55582 4.58581 4.61580 4.65588 4.76590 4.94579

2 4.55582 4.58581 4.61580 4.65588 4.76590 4.94579

Tables 6-9 show the effects of applying the magnetic environment on the nanobeam’s first and second dimensionless
natural frequencies. In this case, there is no temperature environment. Most of the interpretations of Tables 2-5 apply to
these tables. As can be seen, increasing the magnetization has caused an increase in the first and second dimensionless
natural frequencies.

Changes in magnetization cause changes in nanobeam stiffness. Such temperature and magnetism show their effects
on the equations’ stress results.

By choosing the appropriate parameters, the vibration behavior can be controlled, and the stability of the structure
can be increased.

As seen in Figures 2 and 3, the effects of temperature and magnetism on the dimensionless natural frequency
are shown. As the temperature increases, the dimensionless natural frequency should decrease. As the magnetization
increases, the dimensionless natural frequency increases.

These two Figures important points are as the crack region nanobeam from the beginning of the nanobeam to the end
of the nanobeam; first, the frequency decreases, then in the middle of the nanobeam (b = 0.5), this frequency reduction
process reaches its peak and passing through the middle of the nanobeam, the dimensionless frequency increase. The
middle of the nanobeam acts like a mirror, and the amount of frequency changes before and after it is the same in certain
areas of the crack. Which well shows the strength of the nanobeam in different areas of the crack, which causes changes
in the dimensionless frequency.
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Figure 2. Thermal effects for diverse crack severity α1 = 0.2, α2 = 0.6, k = 0.065 on the first dimensionless natural frequency

Figure 3. Magnetic effects for diverse crack severity α1 = 0.2, α2 = 0.6, k = 0.065 on the first dimensionless natural frequency

In the presence of a magnetic field, certain materials may experience changes in their physical properties. This
phenomenon is known as the magnetostrictive effect. When subjected to a magnetic field, magnetostrictive materials
undergo a change in shape or size. In the case of the nanobeam crystalline structure, the magnetic field causes the material
to contract.

The contraction of the nanobeam crystalline structure leads to an increase in its stiffness. Stiffness refers to the
resistance of a material to deformation under an applied load. When a material becomes stiffer, its natural frequencies
tend to increase. Natural frequencies are the inherent frequencies at which an object or structure tends to vibrate when
excited.

Therefore, as the magnetic values increase and the nanobeam crystalline structure contracts, the stiffness of the
structure increases, resulting in higher dimensionless natural frequencies.
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5. Conclusions
In this paper, an Euler-Bernoulli nanobeam that has been weakened by considering a crack in the magnetic and

thermal environment was investigated. First, the equations of motion were obtained using Hamilton’s principle; then, the
crack region was modeled with two torsional and longitudinal springs. The strain energy of the nanobeam with crack
conditions was defined, and a general solution was presented. Twelve different boundary conditions were extracted for
the beginning, the crack area, and the end of the nanobeam to obtain the natural frequencies by forming a matrix of
coefficients.

In the following, the influencing parameters on the analysis of nanobeam vibrations, including magnetism, tempera-
ture, crack area and crack growth intensity, were investigated. It was found that with the increase in temperature, the
natural dimensionless frequency should decrease, and with the increase in magnetism, the natural dimensionless frequency
increases. The effects of temperature and magnetism are on the results of stress, which increases or decreases the stiffness
of the nanobeam. With the increase in the intensity of the crack, which is shown in this article with the k parameter, the
natural frequency decreases due to the decrease in the strength of the nanobeam, which ultimately leads to changes in the
stiffness of the nanobeam. Finally, the dimensionless natural frequency decreases by changing the crack area towards the
middle of the nanobeam. As the crack area moves from the beginning of the nanobeam to the middle of the nanobeam,
the frequency decreases and then acts proportionally; as the crack area moves towards the end of the nanobeam, the
dimensionless natural frequency increases. With the appropriate selection of these influencing factors on the vibration
behavior of the nanobeam, the strength of the desired structure can be increased.
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