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Abstract: We study the mathematical model of tsunami wave propagation (TWP) along the coastline of an ocean. The 
described model is represented by a system of non-linear partial differential equations. In this study, we employ two 
different techniques: one is the Adomian decomposition method (ADM, which is an analytical approach), and another is 
the finite difference method (FDM, which is a numerical approach) to obtain the solution for the proposed TWP model 
successfully. The solutions gained are numerically represented in graphs and tables. The validity of the solutions is 
investigated by comparing this proposed method with the fractional reduced differential transform method (FRDTM). 
The novelty of this paper is that we have demonstrated that the numerical method (FDM) better approximates the 
solution of our partial differential equation than the analytical method (ADM), and this has not been explored before in 
any other works. We examine the velocity and height of the coastline of an ocean from the tsunami wave equation using 
numerical and analytical techniques. MATLAB and MAPLE are used to obtain numerical and graphical representations.
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1. Introduction
A tsunami is a sequence of large-wavelength ocean waves caused by a saltwater disturbance close to the coast. 

Most tsunamis are brought on by changes in the seabed’s earthen crust, such as seabed earthquakes, landslides, or 
volcanic eruptions that result in elevated water levels over vast areas [1]. Although the sources that cause tsunamis are 
considered point sources, the tsunami waves produced can be highly devastating locally. The energy of the waves can 
ravage coasts, inflicting property damage and fatalities. The speed of the tsunami is governed by the water depth [2]. 
A tsunami occurrence can be divided into three phases: generation, propagation, inundation, and landfall [3]. Since 
each tsunami is unique and no single process can explain all tsunamis, the generation stage is the most complex and 
challenging to examine. Again, no single scenario can adequately illustrate all affected places because the inundation 
stage varies for all affected areas. Although thorough numerical models are available in the literature, the propagation 
stage is the only one that can be handled by straightforward theory and analysis and spans the largest region [4]. Many 
researchers have discussed this type of problem in a different way (see, for example [5-18]). Many scholars have studied 
the phenomenon of tsunami waves from various angles and perspectives [19, 20]. But every time, it is not possible to 
find an exact solution to a problem. Defining the analytical solution to the tsunami wave propagation (TWP) equation is 
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not an easy task because of some limitations. Even though some authors [21-28] have defined the solution of the non-
linear TWP equation by different methods, Younesian et al. [29] have obtained an analytical solution for non-linear wave 
propagation in shallow media using the variational iteration method. Karunakar and Chakraverty [30] have studied the 
homotopy perturbation method for predicting TWP with crisp and uncertain parameters. Recently, researchers [31, 32] 
have applied the Sine Gordon expansion method, which transforms the shallow water partial differential equations (PDEs) 
to ordinary differential equations (ODEs), and the solutions are obtained in a complex manner. In contrast, in this work, 
the authors have employed the Adomian decomposition method (ADM), which does not involve linearization and gives 
real solutions.

The originality of this research lies in the fact that we show that the numerical approach (finite difference method; 
FDM) approximates the solution of the non-linear TWP equation more accurately than the analytical method (ADM), 
which has never been investigated in prior works. We use numerical and analytical methods to assess the velocity and 
height of an ocean’s coastline as derived from the tsunami wave equation.

TWP model with a system of non-linear PDE [19] is defined as

0,t x xgφ φ φ ψ∂ + ∂ + ∂ =

( ) 0,t x dψ φ ψ′∂ + ∂ + =  

with some initial condition

2 2
3 3

3 3( , 0) sech ,  ( , 0) sech .
4 4

g H Hx  H x x  H x
d d d

φ ψ
   

= =      
   

Here, the tsunami velocity is denoted by φ (x, t), the wave amplification is denoted by ψ (x, t) the ocean depth near 
the coast is denoted by d' the gravitational acceleration is denoted by g, and H denotes the original wave amplification.

2. Review of the ADM
This section discusses a brief analysis of the ADM. ADM [33] is an analytical method to solve linear and non-

linear PDEs. Take into account the set of partial differential equations as

1 1 1( , ) ( , ) , t R  N  φ φ ψ φ ψ∂ + + = 

2 2 2( , ) ( , ) ,t R  N  φ φ ψ φ ψ∂ + + = 

with initial conditions

1 2( , 0) ( ),  ( , 0) ( ).x  x x  xφ ψ= = 

where ∂t is defined as the differential operator, R1 and R2 are defined as linear operator, N1 and N2 are defined as non-
linear operators, 1 and 2 are defined as non-homogeneous terms.

Taking the inverse of both sides of equation (4) and using initial conditions (5), we get

1 1 1 2 2 2( , ) ( , ) , ( , ) ( , )t tdt R  dt N  dt dt   dt R  dt N  dt dtφ φ ψ φ ψ ψ φ ψ φ ψ∂ + + = ∂ + + =∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ 

After simplification, it gives

(1)

(2)

(3)

(4)

(5)

(6)
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1 1 1 1 2 2 2 2( ) ( , ) ( , ) ,  ( ) ( , ) ( , ) .x g dt R  dt N  dt x g dt R  dt N  dtφ φ ψ φ ψ ψ φ ψ φ ψ= + − − = + − −∫ ∫ ∫ ∫ ∫ ∫ 

The ADM decomposes both functions φ (x, t) and ψ (x, t) as an infinite series

0 0
( , ) ( , ),  ( , ) ( , ).n n

n n
x  t x  t x  t x  tφ φ ψ ψ

∞ ∞

= =

= =∑ ∑

And non-linear terms N1(φ , ψ) and N2(φ , ψ) can be represented by an Adomian polynomials as

1 2
0 0

( , ) ,  ( , ) .n n
n n

N  N  φ ψ φ ψ
∞ ∞

= =

= =∑ ∑ 

For all types of non-linearity, the Adomian polynomials can be produced. The following relations determine them:

( )1
0 0

1 ,
!

n
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d N
n d λ

λ φ
λ

∞

= =

  =   
  
∑

( )2
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!

n
i

n in
i

d N
n d λ
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λ

∞

= =

  =   
  
∑

Substituting equations (8) and (9) into equation (7), it gives

1 1 1
0 0 0 0

( , ) ( ) ,  ,n n n n
n n n n

x  t x dt R  dt  dtφ φ ψ
∞ ∞ ∞ ∞

= = = =

       = + − −               
∑ ∑ ∑ ∑∫ ∫ ∫  

2 2 2
0 0 0 0

( , ) ( ) ,  .n n n n
n n n n

x  t x dt R  dt  dtψ φ ψ
∞ ∞ ∞ ∞

= = = =

       = + − −               
∑ ∑ ∑ ∑∫ ∫ ∫  

The following iterative formula is produced by applying the linearity of the integral transform in equation (10)

[ ] ( )( )1 1 1
0 0 0

( , ) ( ) , ,n n n n
n n n

x  t x dt R   dt dtφ φ ψ
∞ ∞ ∞

= = =

= + − −∑ ∑ ∑∫ ∫ ∫ 

[ ] ( )( )2 2 2
0 0 0

( , ) ( ) , ,n n n n
n n n

x  t x dt R   dt dtψ φ ψ
∞ ∞ ∞

= = =

= + − −∑ ∑ ∑∫ ∫ ∫ 

Comparing both sides of equation (11) yields the following iterative relation

0 1 1( )x dtφ = + ∫ 

0 2 2( )x dtψ = + ∫ 

For k ≥ 1, the recursive relation for (n + 1)th approximation are given as

(7)

(8)

(9)

(10)

(11)

(12)
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( )1 1 , ,k k k kR   dt dtφ φ ψ+ = − −∫ ∫

( )1 2 , .k k k kR   dt dtψ φ ψ+ = − −∫ ∫

2.1 Solution of TWP equation using ADM

By applying the above-proposed method, we have

2
0 3

3sech ,
4

g HH x
d d

φ
 

=   
 

2
0 3

3sech ,
4

HH x
d

ψ
 

=   
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= − −                  

2
3 3 3 3 3

3 3 3 3 3tanh 2 sech tanh .
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−                  

So, the approximate solution of the tsunami model is given by
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2 3 2
3 3 3 3 3 3

3 3 3 3 3 32 sech tanh 2 sech tanh .
4 4 4 4 4 4

H g H H H g H HH x x d H x x
d dd d d d d d

       
− −              

       

3. FDM
3.1 Discretizing the domain

We divide the finite temporal domain [0, T ] in equidistant mesh points in the following way

0 1 20 nt t t t T= < < <…< =

and the finite spatial domain [0, L] in the following way

0 1 20 .mx x x x L= < < <…< =

After this discretization, one can assume that the two-dimensional x − t plane is composed of points (ti, xj) where 
i = 0, 1, 2, ..., n and j = 0, 1, 2, ..., m. We further assume that 1 1(say) and .i i j jx x x h t t t+ +− = ∆ = − = ∆  Under this 
assumption, the exact values of φ (x, t) and ψ (x, t) on the grid are approximated by

( , ),  ( , ).j j
i iih  j t ih  j tφ φ ψ ψ≈ ∆ ≈ ∆

3.2 Replacing derivatives by finite difference

Here, we use the forward time-centered space scheme to approximate the derivative. Using this scheme, one can 

replace the derivatives 
1

1 1 by  and  by 
2

j j j j
i i i i

t t x h
φ φ φ φφ φ+

+ −− −∂ ∂
∂ ∆ ∂

 and similarly for the other derivatives  and .
t x
ψ ψ∂ ∂
∂ ∂

. This 

explicit numerical scheme requires a stability condition called the Courant condition that gives us an upper bound of the 
maximum allowable steps for the approximation. The discretized equation takes the form

1
1 1 1 1 0,
2 2

j j j j j j
ji i i i i i

i g
t h h

φ φ φ φ ψ ψ
φ

+
+ − + −− − −

+ + =
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2 2 2
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j ji i i i i i i i
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ψ ψ φ φ ψ ψ φ φ
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+
+ − + − + −− − − −′+ + + =
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with initial conditions

0 2 0 2
3 3

3 3( , 0) sech ,  ( , 0) sech .
4 4i i
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= ∆ = ∆ = ∆ = ∆      
   

4. Solution of TWP equation using FDM
We assume that the solution of the above equation is of the form

 and j j I ih j j I ih
i iG e H eβ γφ ψ= =

(16)

(15)
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where 1 2 and I t I tG e H eα α∆ ∆= =  are the growth factors with 1 2 and π α π π α π− < < − < <  are the grid wave number and 
cos sin .Ixe x I x= +  Substituting the values of j

iφ  in the first equation of (16), we obtain

1 ( 1) ( 1) ( 1) ( 1)

0.
2 2

j I ih j I ih j I i h j I i h j I i h j I i h
j I ihG e G e G e G e H e H eG e g

t h h

β β β β γ γ
β

+ + − + −− − −
+ + =

∆

Simplifying, we get

( 1) ( 1) ( 1) ( 1)1 0,
2 2

I i h I i h j I i h I i h
j

j I ih

G e e gH e eG
t h hG e

β β γ γ

β

+ − + −− − −
+ + =

∆

1 0,
2 2

I h I h j I zih I h I h
j I ih

j I ih

G e e gH e e eG e
t h hG e

β β γ τ γ
β

β

− −− − −
+ + =

∆

1 sin sin 0.
j I ih

j I ih
j I ih

G I h gH e I hG e
t h hG e

γ
β

β

β γ−
+ + =

∆

From equation (18), we get

2

( 1) .
sin( ) sin( )

j

j I ih j I ih

t G G
h G e I h gH e I hβ γβ γ
∆ −

= −
+

Similarly, by substituting j
iψ  in the second equation of (16), one can have

( 1) .
sin( ) ( ) (sin( ) sin( ))

j

j j I ih

t H H
h d G I h GH e I h hγβ β γ
∆ −

= −
′ + +

Therefore, one can conclude that

{ }1 2| | max , M  Mλ <

where

1 22

( 1) ( 1),  
sin( ) sin( ) sin( ) ( ) (sin( ) sin( ))

j j

j I ih j I ih j j I ih

G G H HM M
G e h gH e h d G h GH e h hβ γ γβ γ β β γ

− −
= =

′+ + +

and .t t
x h

λ ∆ ∆
= =
∆

 Hence, the maximum allowable time step so that the above numerical scheme is stable is given by

{ }1 22 max ,  .t x M M∆ ≤ ∆

Since an exact solution is not possible in our model, we evaluate the numerical performance of our scheme, and the 
rate of convergence can be calculated using the formula [34, 35]

(17)

(18)

(19)

(20)
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2 2

ln ln

,  ,
ln(2) ln(2)

k k

k k
T T

F L
F L

S W= =

where 
2 2

2 2 2 2

,  , and ,  . k k k k k k k k k k k kF F L Lφ φ φ φ ψ ψ ψ ψ= − = − = − = −

5. Results and discussion

Table 1. Comparison of numerical values φ (x, t) obtained using FDM and ADM method with FRDTM

x
t = 0 t = 1

FDM ADM FRDTM FDM ADM FRDTM

00 1.4 1.4 1.4 1.42177 1.4 1.332601

10 1.36287 1.374086129 1.374075 1.45623 1.295392634 1.391195

20 1.28026 1.300077852 1.300035 1.43652 1.154577748 1.399288

30 1.18799 1.188077747 1.187993 1.37977 0.9958547344 1.353778

40 1.05166 1.051790683 1.051662 1.26732 0.8356148664 1.260386

50 0.90514 0.9053023794 0.905137 1.12423 0.6856814176 1.131967

60 0.76036 0.7605531636 0.760364 0.96758 0.5528209456 0.984506

70 0.62585 0.6260541701 0.625855 0.81179 0.4396464913 0.832996

80 0.50656 0.5067570668 0.506559 0.66692 0.3459798996 0.688861

90 0.40446 0.4046490707 0.404461 0.53867 0.2700820093 0.559193

100 0.32721 0.3196211722 0.319449 0.43933 0.2095370897 0.447274

t = 2 t = 3

00 1.31272 1.4 1.130402 1.06287 1.4 0.793404

10 1.43075 1.216699140 1.285101 1.24687 1.138005644 1.055793

20 1.50734 1.009077642 1.405928 1.43028 0.8635775376 1.319957

30 1.51812 0.8036317207 1.466554 1.5372 0.6114087081 1.526321

40 1.46773 0.6194390487 1.454084 1.59747 0.4032632311 1.632759

50 1.35766 0.4660604556 1.373129 1.56838 0.2464394937 1.628621

60 1.20775 0.3450887278 1.241419 1.46276 0.1373565099 1.531106

70 1.03941 0.2532388126 1.081598 1.30361 0.668311337e-1 1.371659

80 0.87055 0.1852027324 0.914236 1.12084 0.0244255652 1.182683

90 0.71339 0.1355149478 0.754299 0.93625 0.0009478864 0.989778

100 0.58758 0.0994530072 0.610634 0.78099 -0.106310754e-1 0.809530

(21)
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This section examines the acquired methodologies, such as ADM and FDM, utilizing data and graphics. And 
to validate the outcome, contrast these proposed methods with the fractional reduced differential transform method 
(FRDTM). The numerical solutions of the TWP model for the tsunami wave’s velocity φ (x, t) and hight ψ (x, t) at 
various x and t are shown in Tables 1 and 2. Figures 1 and 2 also provide a graphical examination of the TWP model for 
amplification value H = 20 and sea depth D = 2. This demonstrates how the tsunami’s speed and height remain constant, 
yet it continues to grow and move quickly. This frequently occurs because no slope allows the wave to break.

Table 2. Comparison of numerical values ψ(x, t) obtained using FDM and ADM method with FRDTM

x
t = 0 t = 1

FDM ADM FRDTM FDM ADM FRDTM

00 2 2 2 2.03423 2 1.902245

10 1.96296 1.962980185 1.962964 2.08515 1.957956349 1.996264

20 1.85719 1.857254075 1.857193 2.08219 1.848423053 2.016062

30 1.69713 1.697253924 1.697133 1.99252 1.686513550 1.955509

40 1.50237 1.502558119 1.502374 1.83199 1.491768149 1.822597

50 1.29305 1.293289113 1.293054 1.62505 1.283761182 1.636738

60 1.08623 1.086504519 1.086235 1.39751 1.078859074 1.422243

70 0.89408 0.8943631002 0.894078 1.17107 0.8886638136 1.201767

80 0.72366 0.7239386668 0.723655 0.96075 0.7199269912 0.992348

90 0.5778 0.5780701010 0.577801 0.77492 0.5753699590 0.804385

100 0.45636 0.4566016746 0.456356 0.61669 0.4548465801 0.642547

t = 2 t = 3

00 1.87837 2 1.608980 1.51844 2 1.120205

10 2.02806 1.952932513 1.851124 1.73938 1.947908677 1.527544

20 2.17185 1.839592030 2.041451 2.03239 1.830761008 1.933360

30 2.21063 1.675773176 2.138267 2.24798 1.665032803 2.245405

40 2.14034 1.480978180 2.122279 2.34134 1.470188210 1.632759

50 1.97894 1.274233250 2.002068 2.29856 1.264705319 2.389042

60 1.75751 1.071213629 1.806105 2.13908 1.063568184 2.237820

70 1.50909 0.8829645270 1.569438 1.90235 0.8772652404 1.997092

80 1.26079 0.7159153155 1.323056 1.63071 0.7119036399 1.715780

90 1.03071 0.5726698171 1.088928 1.35803 0.5699696751 1.431429

100 0.82844 0.4530914856 0.879657 1.10608 0.4513363911 1.167686
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Figure 1. Graph of velocity (φ ) and height (ψ) for TWP at various time scales

Figure 2. 3D representation of TWP velocity (φ ) and height (ψ) for various t and x values

Further, we have shown the accuracy of the ADM and FDM in Figure 3 by comparing the obtained numerical 
values with the FRDTM [19] solutions. It can be said that the error of the ADM technique with respect to the FRDTM is 
greater than the error of the FDM method with respect to the FRDTM. In contrast to the ADM approach, FDM provides 
a more precise solution for the TWP model.
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Figure 3. Error analysis of FDM and ADM with respect to FRDTM
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6. Conclusions
Here, we have successfully applied ADM and FDM to find the solution of TWP along with its error analysis in 

the mid-sea and the shore. ADM and FDM give continuous and computationally efficient solutions, providing a more 
realistic representation of the model. Figure 1 illustrates how the tsunami height and wave velocity preserve their form 
as they dissipate at a uniform height and velocity. We can conclude that the speed and height of tsunami waves are 
inversely proportional to the depth of the ocean. When the findings acquired using ADM and FDM approaches are 
compared with those produced using FRDTM, they are discovered to be in good agreement. The FDM produces the 
best results when compared to the ADM, according to the error analysis of both approaches with respect to the FRDTM. 
FDM is, therefore, more appropriate and effective than ADM.
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