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1. Introduction
Andrews et al. [1] discovered and worked on a different group of partitions, partitions with designated summands.

Take regular partitions and tag precisely one of each component size to create the partitions with designated summands. 
As an illustration, there are five partitions of 3 with designated summands, specifically,

3′, 2′ + 1′, 1′ + 1 + 1, 1 + 1′ + 1, 1 + 1 + 1′ .

PD(n) displays the number of partitions having designated summands. Hence, PD(3) = 5. Andrews et al. [1] further 
researched PDO(n) the number of partitions of n with designated summands, in which all components are odd. From 
the aforementioned illustration, PDO(3) = 4. Further research on PD(n) and PDO(n) were performed by Chen et al. [2], 
Baruah and Ojah [3], and Xia [4]. Two new partition functions, PDt(n) and PDOt(n) have been developed by Lin [5]. 
They count the number of tagged parts across all partitions of n with designated summands and, in turn, the number of 
tagged parts across all partitions of n with designated summands, in which all parts are odd. As demonstrated by the 
above partition of 3, PDt(3) = 6 and PDOt(3) = 4.

Moreover, Lin [5] has provided proofs for the following generating functions:
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Here and in the succeeding sections, we use 
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kf qq ∞=  where a and q are two complex numbers and k is a positive integer.
Baruah and Kaur [6] and Vandna and Kaur [7] proved some new results on PDt(n) and PDOt(n). Baruah and Kaur [6] 

discovered the exact generating functions of PDOt(8n + 6) and PDOt(8n + 7) Moreover, they discovered several infinite 
families of congruences modulo 2 and 4 for PDt(n). In this paper, we use the various congruences found by Baruah and 
Kaur [6] to find infinite families of congruences and various novel congruences modulo 2 and 4.

2. Preliminaries
We now list several significant 2- and 3-dissections.

2.1 Lemma 1

2-dissections of q-products:
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2.2 Lemma 2

3-dissections of q-products:
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Here, we also use some of the following useful results:
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In the sections that follow, we will regularly make use of the identities and congruences listed below, sometimes 
without explicitly mentioning them.
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3. Results
Theorem 1. For n > 0, we have

                                                                  
3

10
(432 54) (mod 2),n

tn
PD n q f∞

=
+ ≡∑                                                            (17)

                                                                         (432 198) 0(mod 2),tPD n + ≡                                                                   (18)

                                                                         (432 342) 0(mod 2),tPD n + ≡                                                                  (19)

                                                                 
( ) 3

30
(mo1 d 2 ,216 8 )n

tn
PD n q f∞

=
+ ≡∑                                                            

(20)

                                                                   ( ) 10
,216 9 o (m d 2)n

tn
PD n q f∞

=
+ ≡∑                                                              (21)

                                                                   
( ) 2

0

4

2
1

(mod 4),36 9 n
tn

f
f

PD qn
∞

=
≡+∑

                                                            
(22)

                                                                  

2
2

20
1 4

(72 9) (mod 4),n
tn

fPD n q
f f

∞

=
+ ≡∑

                                                           
(23)

                                                                1

5
4

2
8

0
(72 45) 2 (mod 4)n

tn

fP q
f

n
f

D∞

=
+ ≡∑

                                                          
(24)

                                                           
2 2

10
(2592 216) ( )(mod 4),n

tn
PD n q f a q∞

=
+ ≡∑                                                      (25)

                                                               ( ) 3
60

2592 194 ,o4  (m d 4)n
tn

PD n q f∞

=
+ ≡∑                                                          (26)

                                                                       (7776 4536) 0(mod 4),tPD n + ≡                                                                 (27)

                                                                       (7776 7128) 0(mod 4).tPD n + ≡                                                                 (28)

4. Proof of the theorem
Using an equality in the proof of the Theorem 1 [6], we have
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From which we extract
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From which when we extract the terms having q3n, q3n+1, q3n+2, we obtain (17), (18), and (19), respectively.
Now, from [6, equation (5.4)],  we have
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Extracting the terms involving q3n+1 from both sides, we get
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which is (20).
From (29), extracting the terms involving q3n from both sides, we get
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which is (21).
Now, from an equality in the proof of the Theorem 1 [6], we have
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which is (22).
Also, from (6), we further get
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from which we extract
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which is (23).
Again, extracting the terms involving q2n+1 from (31), we have
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Now, from an equality in the proof of the Theorem 1 [6], we have
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from which we extract the terms involving q3n to get
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Again, on further extraction, we get
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which is (26).
Also, extracting the terms q3n+1 and q3n+2 from (26), we arrive at (27) and (28), respectively.
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