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of fractional order. Results are presented through graphs using Mathematica software.
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1. Introduction 

The study of derivatives and integrals of non-integer orders is known as fractional calculus. This field has gained 
much attention recently due to its numerous applications in various scientific and engineering disciplines. Fractional 
differential equations have been found to have many useful applications. The fractional derivative is defined by an integral 
and is a non-local operator with a singular kernel, providing a useful method for exploring the memory and hereditary 
qualities of a range of physical processes. The meaning of fractional derivative is not fixed, and various forms of fractional 
integration and differentiation exist, including those based on Riemann-Liouville, Liouville-Caputo, Riesz, and Weyl [1-
3]. The two most widely used fractional calculus operations are the Riemann-Liouville fractional integral and the Caputo 
fractional derivative. 

In 1695, Leibniz mentioned the use of fractional differential operators in a letter to L’Hôpital. Unlike traditional 
derivatives and integrals, fractional derivatives and integrals are not based on the immediate characteristics of a particular 
function. This is what makes the concept of fractional calculus so appealing [4]. Fractional calculus has been extensively 
applied in various fields by numerous authors. Examples included, but are not limited to, Baleanu et al. [5] employ fixed-
point theorems to demonstrate the singularity and exclusivity of solutions to nonlinear fractional differential equations that 
have particular boundary conditions. Chen et al. [6] created a fractional variational optical flow model for motion estimation 
from video sequences, and their experiments demonstrate that this model could effectively generalize the derivative order. 
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By utilizing the features of fractional derivatives, Li and Zhang [7] were able to convert a different rational-order system 
into a fractional system that had identical order. This simplification made it much easier to conduct stability analysis and 
numerical simulations. Klimek [8] examines the utilization of reflection symmetry in the Euler-Lagrange equations of 
fractional mechanics, demonstrating the concept with a practical example. Okur and Yigider [9] applied conformable 
fractional reduced differential transformation method (CFRDTM). To solve time fractional differential equations. Shah 
et al. [10] applied a new semi-analytical method called variational iteration transformation method for solving nonlinear 
homogeneous and nonhomogeneous fractional-order gas dynamics equations. A realistic method for resolving fractional 
hyperbolic telegraph equations (FHTEs) and other fractional differential equations is presented by Kapoor and Khosla 
[11]. Khater et al. [12] utilized five semi-analytical and numerical techniques, namely Adomain decomposition (AD), El 
Kalla (EK), cubic B-spline (CBS), extended cubic B-spline (ECBS), exponential cubic B-spline (ExCBS), to check the 
accuracy of analytical solutions of the fractional nonlinear space-time telegraph equation. Rezaei and Izadi [13] suggested 
a novel method for resolving a time-space fractional Black-Scholes equation that occurs in financial market. Singh and 
Singh [14] used the New Laplace variational iteration method (NLVIM) to solve the coupled Burgers’ equation in three 
dimensions. The method is also applicable to system partial differential equations in three dimensions that arise in variety 
of scientific and engineering applications.  

In this paper, we apply the accelerated homotopy perturbation transformation method (AHPTM) to the time-fractional 
Swift-Hohenberg (S-H) equation. The S-H equation, which was originally established and obtained from the equations 
of thermal convection by Swift and Hohenberg [15], rapidly became known as an approximate model for the creation of 
nonlinear patterns. It is well-known for its capacity to generate results that are remarkably similar to those of the Navier-
Stokes equations, which can be difficult to solve with numerical methods [16]. 

The fractional order of S-H equation is [17] 
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t x

α

α

ω βω ω α
 ∂ ∂

= − + − < ≤ ∂ ∂                                                           
(1)

where ω is the scalar function, β the real constant, and the nonlinear term N(ω). 
This equation has been utilised to make sense of a variety of pattern development wonders, including truing examples, 

hexagonal designs, and spirals. It is ordinarily utilised to model frameworks, for example, Rayleigh-Benard convection, 
laser elements, and synthetic responses. Various strategies and methodologies have been employed by researchers to 
study the S-H equation, such as the power series method [18], the q-homotopy analysis transform method [19], the 
iterative method [20], the homotopy analysis method [21], the homotopy perturbation method with the fractional complex 
transform [17], the fractional natural transform decomposition method (FNTDM) [22], the Laplace residual power series 
(LRPS) technique [23], etc. 

In this paper, we present a variant of He’s polynomial known as the accelerated He’s polynomial [24], which 
increases the method’s convergence. We then apply the AHPTM, a semi-analytical approach that does not require a 
problem critique or linearization of a nonlinear problem. Instead, the solution can be obtained after a few repetitions 
and with ease. With the help of Mathematica software, we are able to compute more terms with ease, which lowers the 
computational cost of handling such complicated problems. Finally, a comparison between the accelerated homotopy 
perturbation transformation technique’s output and the exact solution is made. 

2. Preliminaries
In this part, we will go over definitions that will be useful for this article, such as the Riemann-Liouville fractional 

integral, the Gamma function, the Mittag-Leffler function, the Liouville-Caputo derivative fractional, and the Laplace 
transform. 

Definition 2.1. The Riemann-Liouville fractional integral  
β f (t) of order β ∊ ℂ ℜ(β) > 0 ), for a function f(t) is defined 

as [25] 
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Definition 2.2. Liouville-Caputo fractional order derivative: Let w(t) ∈ AC 

n(a, b), the Liouville-Caputo [26] is 
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Definition 2.3. Laplace transform: The Liouville-Caputo derivative’s Laplace transform is provided by Caputo 
[27].
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Definition 2.4. Mittag-Leffler function: The Mittag-Leffler function [28] is defined as

0
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Definition 2.5. Gamma function: The gamma function was developed by Swiss mathematician, Leonhard Euler 
(1707- 1783), in an effort to expand the notion of the fractional to a non-integer number [29].

1

0
( ) .z tz t e dt

∞ − −Γ = ∫

3. AHPTM
To demonstrate the basic concept of this technique, take the generic nonlinear nonhomogeneous fractional partial 

differential equation with an initial condition. 

( , ) ( , ) ( , ) ( , ), with condition ( ,0) ( ).tD t R t N t g t kαω ϕ ϕ ω ϕ ϕ ω ϕ ϕ+ + = =                                    (2)

where tD
t

α
α

α

∂
=
∂

 is the fractional Liouville-Caputo derivative of the function ω(φ, t), R and N are the linear and the 

nonlinear differential operator and g(φ, t) is the source term.
Taking the Laplace transform on both sides of equation (2), we get  

[ ( , )] [ ( , )] [ ( , )] [ ( , )],tD t R t N t g tαω ϕ ω ϕ ω ϕ ϕ+ + =                                                    (3)

operating the properties of Laplace transformation to equation (3), we get

( )1 1[ ( , )] ( ,0) ( , ) ( , ) ( , ) ,t g t R t N t
s sα αω ϕ ω ϕ ϕ ω ϕ ω ϕ= + − − 

                                           (4)

operating the inverse of Laplace transform to both sides of equation (4), we get
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by using homotopy perturbation method (HPM), we get
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where p ∈ [ 0, 1] is a parameter. Let 
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and the nonlinear term decompose as
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where nH  represents accelerated He’s polynomial with 
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where 0 0 0 1( ( )) and ( ).k kH N Sω ϕ ω ω ω= = + + +



Substituting equations (7) and (8) in equation (6), we get
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When we compare similar powers of p, we get
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Hence, when p → 1, the approximate solution of equation (2) is obtained as 

0 1 3( , )tω ϕ ω ω ω= + +                                                                        (11)



Contemporary Mathematics 1066 | Shabnam Jasrotia, et al.

4. Convergence analysis
The condition of convergence of the above-mentioned approach is mentioned below. 
Theorem 4.1. If there exists an η in the range 0 < η < 1 for the ω and ωn(φ, t) described in Banach space [30], then 

the equation defined series solution (10) converges to the solution defined by equation (2), if ωn+1 ║� Ƞ║ωn║.
Proof. For convergence of sequence {Sn} of the partial sums of the series (10), we prove that {Sn} is a Cauchy 

sequence in ( [0, ], . ).C K  
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also, ω0 is bounded, therefore ║sn ⁻ sm ║→ 0 as m, n → ∞. So, {Sn} is a Cauchy sequence in C [0, K]. Hence, 
0

( , )n
n

tω ϕ
∞
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∑  

is convergent [30, 31].

5. Numerical examples
Example 5.1. Regarding the nonlinear time fractional S-H equation in the Liouville-Caputo sense [32]. 
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With the initial condition ω(φ, 0) = eφ. 
Apply AHPTM, we get
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by equating the same power of p on both sides of equation (13), we obtain
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The approximate series solution of equation (12) is obtained by AHPTM.
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and the exact solution of equation (12) is 

( )( , ) E ( 4) .t e tϕ α
αω ϕ β= −

Example 5.2. Consider the nonlinear time fractional S-H equation [32].
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With the initial condition ω(φ, 0) = eφ. 
Apply AHPTM, we get
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by equating the same power of p on both sides of equation (16), we obtain
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The approximate series solution of equation (15) is obtained by AHPTM.

0 1 2
0

2 2 3 3

( , ) ( , ) ( , ) ( , ) ( , )

( 4) ( 4) ( 4)( , )
( 1) (2 1) (3 1)

m
m

x

t t t t t

e t e t e tt e
α ϕ α ϕ α

ϕ

ω ϕ ω ϕ ω ϕ ω ϕ ω ϕ

ρ β ρ β ρ βω ϕ
α α α

∞

=

= = + + +

+ − + − + −
= + + + +

Γ + Γ + Γ +

∑ 



                               
(17)

and the exact solution of equation (15) is 
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Example 5.3. Consider the non-linear time fractional S-H equation [27].
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With the initial condition ω(φ, 0) = cos (x). 
Apply AHPTM, we get 
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by equating the same power of p on both sides of equation (19), we obtain
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The approximate series solution of equation (18) is obtained by AHPTM.
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6. Results and discussion
This study presents the AHPTM for solving time-fractional S-H equations. Graphical representations are used to 

showcase the results. Figures 1(a) and 1(b) show the 3D graph of the exact solution and AHPTM, and Figure 1(c) shows 
the combined exact and AHPTM 2D plot solution for α = 1. The results in Figure 2 show that the solutions for varying 
fractional-orders become closer to the solution for an integer-order as the fractional-orders approach an integer-order. The 
graphs are drawn for β = 5 and 0 < φ ≤ 1. Figures 3 and 4 present the same graphical representation for β = 5, ρ = 1 and 
0 ≤ φ ≤ 1. Figure 5 represents the line graph of Example 5.3 at different fractional order α = 1, 0.95, 0.85, 0.75, β = 0.5, 
ρ = 0.3, 0 < φ ≤ 1 and t = 0.2. Figure 5 shows the approximate solution of the fractional S-H equation up to three terms 
by using ρ = 0.3 and β = 0.5. Furthermore, we investigate the convergence analysis of this method and observed that 
‖ω1‖ > ‖ω2‖ > ‖ω3‖ (Tables 1 and 2). 



Volume 4 Issue 4|2023| 1070 Contemporary Mathematics 

          

Figure 1. (a) Surface graph of exact solution at α = 1; (b) Surface graph AHPTM at α = 1; (c) Line graph of exact solution and AHPTM at α = 1, β = 
5, 0 < φ ≤ 1 and t = 0.5

Figure 2. Solution of AHPTM at various fractional order α = 1, 0.75, 0.5, 0,25, β = 5, 0 < φ ≤ 1 and t = 0.5
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Figure 3. (a) Surface graph of exact solution at α = 1; (b) Surface graph AHPTM at α = 1; (c) Line graph of exact solution and AHPTM at α = 1, β = 5, 
ρ = 1, 0 < φ ≤ 1 and t = 0.2

Figure 4. Solution of AHPTM at various fractional order α = 1, 0.75, 0.5, 0.25, β = 5, ρ = 1, 0 < φ ≤ 1 and t = 0.2
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Figure 5. Solution of AHPTM at various fractional order α = 1, 0.75, 0.5, 0,25, β = 5, 0 < φ ≤ 1 and t = 0.5

Table 1. Error analysis of Example 5.1 at α = 1 (up to the fourth order) 

t x Exact AHPTM Absolute Error ║ω1║ ║ω2║ ║ω3║

0.1

0.1 
0.3 
0.5 
0.7 
0.9 

1.2214027 
1.4918247
1.8221188
2.2255409
2.7182818

1.2213981 
1.491819
1.8221118
2.2255324
2.7182714

4.6985E-06 
5.7388E-06
7.0093E-06
8.56129E-06
1.04568E-05

0.11051709 
0.13498588
0.16487213
0.20137527
0.24596031

0.0055259
0.0067493
0.0082436
0.0100688
0.012298

0.00018419 
0.00022497
0.00024787
0.00033563
0.00040993

0.3

0.1 
0.3 
0.5 
0.7 
0.9 

1.4918247 
1.8221188 
2.2255409 
2.7182818 
3.3201169 

1.4914282 
1.8216345 
2.2249494 
2.7175593 
3.3192344 

0.00039654 
0.00048434 
0.00059157 
0.00072255 
0.00088252 

 0.33155128 
0.40495764 
0.49461638 
0.60412581 
0.73788093 

0.0497327 
0.0607436 
0.0741925 
0.0906189 
0.1106821 

 0.00497327 
0.00607436 
0.00741925 
0.00906189 
0.01106821 

0.5

0.1 
0.3 
0.5 
0.7 
0.9 

1.8221188 
2.2255409 
2.7182818 
3.3201169 
4.0551999 

1.8189271 
2.2216426 
2.7135204 
3.3143013 
4.0480968 

0.00319166 
0.00389830 
0.00476140 
0.00581559 
0.00710318 

0.55258546 
0.6749294 
0.82436064 
1.00687635 
1.22980156 

0.1381464 
0.1687324 
0.2060902 
0.2517191 
0.3074504 

0.0230244 
0.0281221 
0.0343484 
0.0419532 
0.0512417 

Table 2. Error analysis Example 5.2 at α = 1 (up to the fourth order)

t x Exact AHPTM Absolute Error ║ω1║ ║ω2║ ║ω3║

0.1

0.1 
0.3 
0.5 
0.7 
0.9 

1.349858808 
1.648721271 
2.013752707 
2.459603111 
3.004166024 

1.3497821 
1.6486276 
2.0136382 
2.4594633 
3.0039953 

0.000076726 
9.37137E-05 
0.000114462 
0.000139804 
0.000170758 

0.2210342 
0.269972 
0.3297443 
0.4027505 
0.4919206 

0.022103418 
0.026997176 
0.032974425 
0.040275054 
0.049192062 

0.001473561 
0.001799812 
0.002198295 

0.002685 
0.003279471 

0.3

0.1 
0.3 
0.5 
0.7 
0.9 

2.013752707 
2.459603111 
3.004166024 
3.669296668 
4.48168907  

2.0069904 
2.4513436 
2.9940778 
3.6569749 
4.4666392  

0.00676232 
0.008259517 
0.010088196 
0.012321751 
0.01504982 

 0.6631026 
0.8099153 
0.9892328 
1.2082516 
1.4757619  

0.001473561 
0.001799812 
0.002198295 

0.002685 
0.003279471  

 0.039786153 
0.048594917 
0.059353966 
0.072495097 
0.088545712  

0.5

0.1 
0.3 
0.5 
0.7 
0.9 

3.004166023 
3.669296668 
4.48168907 
5.473947392 
6.685894442 

2.9471224 
3.5996235 
4.3965901 
5.3700072 
6.5589416 

0.057043576 
0.069673181 
0.085099015 
0.103940172 
0.126952813 

1.1051709 
1.3498588 
1.6487213 
2.0137527 
2.4596031  

0.552585459 
0.674929404 
0.824360635 
1.006876353 
1.229801556  

0.184195153 
0.224976468 
0.274786878 
0.335625451 
0.409933852 

1.00.80.60.40.2

0.5

1.0

2.0

1.5

α = 1.00
α = 0.95
α = 0.85
α = 0.75

2.5
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7. Conclusion
The time-fractional S-H equations are solved using a semi-analytical approach. We show how successful this method 

is by applying it to the nonlinear S-H with an initial condition. The solutions are graphically shown for each example to 
illustrate the approach’s simplicity, correctness, and ease of application. As a result, this method is an effective tool for 
solving other fractional-order differential equations, and we can also use this method for solving other types of nonlinear 
problems like Benjamin-Bona-Mahony equations, Boussinesq-type equations, etc. 

Acknowledgement
The authors would like to thank the editor and the reviewers for their valuable comments which improved the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References
[1] Ortigueira MD, Machado JT. What is a fractional derivative? Journal of Computational Physics. 2015; 293: 4-13. 

Available from: https://doi.org/10.1016/j.jcp.2014.07.019.
[2] Kuroda LK, Gomes AV, Tavoni R, de Arruda Mancera PF, Varalta N, de Figueiredo Camargo R. Unexpected behavior 

of Caputo fractional derivative. Computational and Applied Mathematics. 2017; 36: 1173-1183. Available from: 
https://doi.org/10.1007/s40314-015-0301-9.

[3] Katugampola UN. Correction to “What is a fractional derivative?” by Ortigueira and Machado [Journal of 
Computational Physics, volume 293, 15 July 2015, pages 4–13. Special issue on Fractional PDEs]. Journal of 
Computational Physics. 2016; 321: 1255-1257. Available from: https://doi.org/10.1016/j.jcp.2016.05.052.

[4] Khan NA, Khan NU, Ayaz M, Mahmood A. Analytical methods for solving the time-fractional Swift–Hohenberg 
(S–H) equation. Computers & Mathematics with Applications. 2011; 61(8): 2182-2185.  Available from: https://doi.
org/10.1016/j.camwa.2010.09.009.

[5] Baleanu D, Rezapour S, Mohammadi H. Some existence results on nonlinear fractional differential equations. 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013; 
371(1990): 20120144. Available from: https://doi.org/10.1098/rsta.2012.0144.

[6] Chen D, Sheng H, Chen Y, Xue D. Fractional-order variational optical flow model for motion estimation. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013; 371(1990): 20120148. 
Available from: https://doi.org/10.1098/rsta.2012.0148.

[7] Li C, Zhang F. Equivalent same-order system for multi-rational-order fractional differential system with caputo 
derivative. Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers 
and Information in Engineering Conference. 2011; 3: 105-114. Available from: https://doi.org/10.1115/DETC2011-
47204.

[8] Klimek M. On reflection symmetry and its application to the Euler-Lagrange equations in fractional mechanics. 
Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and 
Information in Engineering Conference. 2011; 3: 241-250. Available from: https://doi.org/10.1115/DETC2011-
47721.

[9] Okur S, Yigider M. Application of the conformable reduced differential transform method to fractional order K(m, 
n) non-linear differential equations. Thermal Science. 2022; 26(Spec. issue 2): 603-611. Available from: https://doi.
org/10.2298/TSCI22S2603O.

[10] Shah R, Saad Alshehry A, Weera W. A semi-analytical method to investigate fractional-order gas dynamics equations 
by Shehu transform. Symmetry. 2022; 14(7): 1458. Available from: https://doi.org/10.3390/sym14071458.

[11] Kapoor M, Khosla S. Semi-analytical approximation of time-fractional telegraph equation via natural transform 

https://doi.org/10.1016/j.jcp.2014.07.019
https://doi.org/10.1007/s40314-015-0301-9
https://doi.org/10.1016/j.jcp.2016.05.052
https://doi.org/10.1016/j.camwa.2010.09.009
https://doi.org/10.1016/j.camwa.2010.09.009
https://doi.org/10.1098/rsta.2012.0144
https://doi.org/10.1098/rsta.2012.0148
https://doi.org/10.1115/DETC2011-47204
https://doi.org/10.1115/DETC2011-47204
https://doi.org/10.1115/DETC2011-47721
https://doi.org/10.1115/DETC2011-47721
https://doi.org/10.2298/TSCI22S2603O
https://doi.org/10.2298/TSCI22S2603O
https://doi.org/10.3390/sym14071458


Contemporary Mathematics 1074 | Shabnam Jasrotia, et al.

in Caputo derivative. Nonlinear Engineering. 2023; 12(1): 20220289. Available from: https://doi.org/10.1515/
nleng-2022-0289.

[12] Khater MM, Park C, Lee JR, Mohamed MS, Attia RA. Five semi analytical and numerical simulations for the 
fractional nonlinear space-time telegraph equation. Advances in Difference Equations. 2021; 2021: 227. Available 
from: https://doi.org/10.1186/s13662-021-03387-9.

[13] Rezaei D, Izadi M. An analytical solution to time-space fractional Black-Scholes option pricing model. University 
Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics. 2023; 85(1): 129-140. 
Available from: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full0cc_493168.pdf.

[14] Singh G, Singh I. Semi-analytical solutions of three-dimensional (3d) coupled Burgers’ equations by new Laplace 
variational iteration method. Partial Differential Equations in Applied Mathematics. 2022; 6: 100438. Available 
from: https://doi.org/10.1016/j.padiff.2022.100438.

[15] Swift J, Hohenberg PC. Hydrodynamic fluctuations at the convective instability. Physical Review A. 1977; 15(1): 
319. Available from: https://doi.org/10.1103/PhysRevA.15.319.

[16] Jani HP, Singh TR. Solution of time fractional Swift Hohenberg equation by Aboodh transform homotopy perturbation 
method. International Journal of Nonlinear Analysis and Applications. 2022; 14(1): 1005-1013. Available from: 
https://doi.org/10.22075/ijnaa.2022.27904.3754.

[17] Ban T, Cui RQ. He’s homotopy perturbation method for solving time fractional Swift-Hohenberg equations. Thermal 
Science. 2018; 22(4): 1601-1605. Available from: https://doi.org/10.2298/TSCI1804601B.

[18] Prakasha DG, Veeresha P, Baskonus HM. Residual power series method for fractional Swift–Hohenberg equation. 
Fractal and Fractional. 2019; 3(1): 9. Available from: https://doi.org/10.3390/fractalfract3010009.

[19] Veeresha P, Prakasha DG, Baleanu D. Analysis of fractional Swift-Hohenberg equation using a novel computational 
technique. Mathematical Methods in the Applied Sciences. 2020; 43(4): 1970-1987. Available from: https://doi.
org/10.1002/mma.6022.

[20] Li W, Pang Y. An iterative method for time-fractional Swift-Hohenberg equation. Advances in Mathematical Physics. 
2018; 2018: 2405432. Available from: https://doi.org/10.1155/2018/2405432.

[21] Vishal K, Kumar S, Das S. Application of homotopy analysis method for fractional Swift Hohenberg equation–
revisited. Applied Mathematical Modelling. 2012; 36(8): 3630-3637. Available from: https://doi.org/10.1016/j.
apm.2011.10.001.

[22] Huseen SN, Okposo NI. Analytical solutions for time-fractional Swift-Hohenberg equations via a modified integral 
transform technique. International Journal of Nonlinear Analysis and Applications. 2022; 13(2): 2669-2684. 
Available from: https://doi.org/10.22075/ijnaa.2022.26557.3384.

[23] Alaroud M, Tahat N, Al-Omari S, Suthar DL, Gulyaz-Ozyurt S. An attractive approach associated with transform 
functions for solving certain fractional Swift-Hohenberg equation. Journal of Function Spaces. 2021; 2021: 3230272. 
Available from: https://doi.org/10.1155/2021/3230272.

[24] El-Kalla L. An accelerated homotopy perturbation method for solving nonlinear equations. Journal of Fractional 
Calculus and Applications. 2012; 3(1): 1-6. Available from: https://doi.org/10.21608/jfca.2012.289931.

[25] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: 
Elsevier; 2006.

[26] Morales-Delgado VF, Gómez-Aguilar JF, Taneco-Hernández MA, Baleanu D. Modeling the fractional non-linear 
Schrödinger equation via Liouville-Caputo fractional derivative. Optik. 2018; 162: 1-7. Available from: https://doi.
org/10.1016/j.ijleo.2018.01.107.

[27] Caputo M. Elasticita e dissipazione. Bologna: Zanichelli; 1969.
[28] Mittag-Leffler GM. Sur la nouvelle fonction Eα(x). Comptes Rendus de l’Academie des Sciences. 1903; 137(2): 554-

558.
[29] Sebah P, Gourdon X. Introduction to the gamma function. American Journal of Scientific Research. 2002: 1-20. 

Available from: https://www.academia.edu/41062581/Introduction_to_the_Gamma_Function.
[30] Singh P, Sharma D. Comparative study of homotopy perturbation transformation with homotopy perturbation Elzaki 

transform method for solving nonlinear fractional PDE. Nonlinear Engineering. 2020; 9(1): 60-71. Available from: 
https://doi.org/10.1515/nleng-2018-0136.

[31] Singh P, Sharma D. On the problem of convergence of series solution of non-linear fractional partial differential 
equation. AIP Conference Proceedings. 2017; 1860(1): 020027. Available from: https://doi.org/10.1063/1.4990326.

https://doi.org/10.1515/nleng-2022-0289
https://doi.org/10.1515/nleng-2022-0289
https://doi.org/10.1186/s13662-021-03387-9
https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full0cc_493168.pdf
https://doi.org/10.1016/j.padiff.2022.100438
https://doi.org/10.1103/PhysRevA.15.319
https://doi.org/10.22075/ijnaa.2022.27904.3754
https://doi.org/10.2298/TSCI1804601B
https://doi.org/10.3390/fractalfract3010009
https://doi.org/10.1002/mma.6022
https://doi.org/10.1002/mma.6022
https://doi.org/10.1155/2018/2405432
https://doi.org/10.1016/j.apm.2011.10.001
https://doi.org/10.1016/j.apm.2011.10.001
https://doi.org/10.22075/ijnaa.2022.26557.3384
https://doi.org/10.1155/2021/3230272
https://doi.org/10.21608/jfca.2012.289931
https://doi.org/10.1016/j.ijleo.2018.01.107
https://doi.org/10.1016/j.ijleo.2018.01.107
https://www.academia.edu/41062581/Introduction_to_the_Gamma_Function
https://doi.org/10.1515/nleng-2018-0136
https://doi.org/10.1063/1.4990326


Volume 4 Issue 4|2023| 1075 Contemporary Mathematics 

[32] Nonlaopon K, Alsharif AM, Zidan AM, Khan A, Hamed YS, Shah R. Numerical investigation of fractional-order 
Swift–Hohenberg equations via a Novel transform. Symmetry. 2021; 13(7): 1263. Available from: https://doi.
org/10.3390/sym13071263.

[33] Alrabaiah H, Ahmad I, Shah K, Mahariq I, Rahman GU. Analytical solution of non-linear fractional order Swift-
Hohenberg equations. Ain Shams Engineering Journal. 2021; 12(3): 3099-3107. Available from: https://doi.
org/10.1016/j.asej.2020.11.019.

https://doi.org/10.3390/sym13071263
https://doi.org/10.3390/sym13071263
https://doi.org/10.1016/j.asej.2020.11.019
https://doi.org/10.1016/j.asej.2020.11.019

