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Abstract: The main goal of the article is to obtain matrix representation for the third and fourth kinds of Chebyshev
polynomials by using a tridiagonal matrix. We present a connection between the determinant of the tridiagonal matrix
and the third and fourth kinds of Chebyshev polynomials. We also determine the characteristic equations for the third
and fourth kinds of the Chebyshev polynomials up to degree three. We also prove some properties relating to matrix
representation. We obtain a connection between the second, third kind and fourth kinds of Chebyshev polynomials and
matrix power. It elaborates the theorem to validate through examples. The applications of the Chebyshev polynomials is
also discussed. The practical application of the Chebyshev polynomials of the third kind in approximation theory is also
detailed.
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1. Introduction
The eminent Chebyshev polynomials for m ≥ 0 of four kinds are defined as follows:
The first kind Tm(p) is defined as:

T0(p) = 1, T1(p) = p, Tm(p) = 2pTm−1(p)−Tm−2(p), for m ≥ 2, 3, ...

The second kindUm(p) is defined as:

U0(p) = 1, U1(p) = 2p, Um(p) = 2pUm−1(p)−Um−2(p), for m ≥ 2, 3, ...
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The third kind Vm(p) is defined as:

V0(p) = 1, V1(p) = 2p−1, Vm(p) = 2pVm−1(p)−Vm−2(p), for m ≥ 2, 3, ...

The fourth kindWm(p) is defined as:

W0(p) = 1, W1(p) = 2p−1, Wm(p) = 2pWm−1(p)−Wm−2(p), for m ≥ 2, 3, ...

Hence, these polynomials are a succession of recurrence relations. Chebyshev polynomials comes under the class
of classical orthogonal polynomials. In literature [1], there are many types of classical orthogonal polynomials i.e.,
Laguerre polynomials, Jacobi polynomials, and Hermite polynomials. Ugur Duran et al. studied Hermite polynomials,
(p, q)-Bernstein polynomials with their modifications. Khan et al. [2] investigated the properties related to Laguerre
polynomials. It obtained Laguerre-based Hermite-Bernoulli polynomials. These polynomials are closely related to
Chebyshev polynomials. Many authors studied the third and fourth kinds of Chebyshev polynomials and also discovered
many lemmas and identities related to these polynomials [3–7]. The basic definitions of the Chebyshev polynomials were
studied from very fantastic books written by Doman and Manson [8, 9]. Da Fonseca [10, 11] provided explicit inverses
for tridiagonal matrices using the second kind of Chebyshev polynomials. They used an invertible matrix to find results
related to tridiagonal matrices. Yang and Zheng [12] used the Riordan array to give the determinant representation of
Chebyshev polynomials, Fibonacci numbers, and Pell numbers. Bucer et al. [13] gave the Characteristic Equation (C.E.)
of the Chebyshev matrix of the first kind, found associated polynomials of Chebyshev, and presented an explicit formula
from them. Singh et al. [14] examined properties related to extension with two variables of the second kind of Chebyshev
polynomials matrix second kind. And also obtained a generalized Chebyshev matrix of the second kind. Zhao et al. [15]
discussed the coupling system for electron-phonon via the product of the Chebyshev pseudo-site matrix. Raslan et al.
[16] discussed the Fredholm-Volterra integrodifferential equations with the first kind of shifted Chebyshev polynomials
contingent on the operational matrix. The techniques are based on the first kind of shifted Chebyshev polynomials.
Metwally et al. [17] described and study the second kind of Chebyshev matrix polynomials and discuss 3-term recurrence
relations. Primo et al. [18] obtained many identities for the first and second kinds of Chebyshev polynomials with a
non-singular complex matrix. They employ the matrix’s power, trace, and determinant, yielding the following result:

Let X be a non-singular 2 × 2 matrix. The integral power of X , for m ≥ 2

Xm = a
(m−1)

2
2 Um−1

 a1

2a
1
2
2

X −a
m
2

2 Um−2

 a1

2a
1
2
2

 I,

where I is the identity matrix andUm(p), is the second kind of Chebyshev polynomials [18].
Let X be a non-singular 2 × 2 matrix . For any integer m ≥ 0,

Trace Xm = 2a
m
2

2 Tm

 a1

2a
1
2
2

 ,

where, Tm(p) is the first kind of Chebyshev polynomials [18].

Contemporary Mathematics 4236 | Pankaj Pandey, et al.



Andreescu and Mushkarov [19] discussed the quadratic form and determinant representation of the Chebyshev
polynomials matrix for the first type of Chebyshev polynomials, obtained the following identity connected to the first
kind of Chebyshev polynomials matrix.

The following result holds for all integers m ≥ 3,

Xm(2p) = 2Tm(p)+2(−1)m.

Matrix X have the following Eigenvalues;

λk = cos
(
(2k−1)π

m

)
, 1 ≤ k ≤ m.

Minimal and maximal Eigenvalues of X are:

λmin =

−2cos
( π

m

)
, if m is even.

−2, if m is odd.

λmin = 2cos
( π

m

)
.

Arya and Verma [20] gave identities for Fibonacci polynomials and generalized Fibonacci numbers. They also
obtained an exceptional representation in the form of a matrix by using obtained identities. Metwally et al. [21]
investigated associated matrix polynomials linked with the second kind of Chebyshev matrix polynomials. They found
many results related to the associated Chebyshev matrix polynomial. Sanford [22] presented the solution to a problem
from the American mathematical journal’s problem section. The Chebyshev polynomials of the second kind with matrix
representations was central to the problem. Qi et al. [23] linked tridiagonal determinants with Fibonacci polynomials,
Fibonacci numbers, and Chebyshev polynomials. They also presented two formulas to calculate tridiagonal determinants.
Kocik [24] found a matrix representation of the Chebyshev polynomials, Fibonacci series and Lucas polynomials by
using the symmetric tensor and power of a particular matrix. Milica et al. [25] found a two-determinant generalized
formula situated on the second kind of Chebyshev polynomials. For this purpose, they utilized a tridiagonal matrix and
a Heisenberg matrix. Da Fonseca [10] discussed the relationship between the second kind of Chebyshev polynomials
and Fibonacci numbers. To obtain the result, he used a tridiagonal matrix determinant and presented some new identities.
Oteles et al. [26] worked on a family of tridiagonal matrices relating to the first kind of Chebyshev polynomials and
obtained Eigen vectors and Eigen values. Altın and Cekim [27] presented recurrence relations for Chebyshev matrix
polynomials, especially for the second kind. They also found generating matrix functions and several identities for
this second kind of Chebyshev polynomials. Ahmed [28] derived an algorithm for the Lane-Emden equation with the
help of shifted Chebyshev polynomials of the first kind. This method makes a well approximate solution. Regmi et al.
[29] discussed the application of Chebyshev polynomials for nonlinear equations under weak conditions. Erdmanna and
Schroll [30] derived the results on the Chebyshev polynomials of the second kind by using symmetric matrices. Aiyub
et al. [31] presented a binomial matrix connected to Poisson Fibonacci. They specified some results of rough statistical
convergence. And also deduce that approximation theory consolidated the rough statistical convergence. Pucanovic and
Pesovic [32] used the properties of circulant matrices and Chebyshev polynomials. They connect circulant matrices and
Chebyshev polynomials. Many authors [12, 33–38] also worked on the first and second kinds and gave many theorems

Volume 5 Issue 4|2024| 4237 Contemporary Mathematics



with their applications. Fouad [39] studied a shifted Chebyshev polynomials of the third kind for operational matrices.
Chishti [40] studied a shifted Chebyshev polynomials of the fourth kind for operational matrices.

Our work is motivated by the earlier work of Primo et al. [18]. The authors derived the theorems and many identities
related to the Chebyshev polynomials of the first and second kind via 2× 2 matrix. Another motivation for our passion
in establishing the presented results is the research of Bucur et al. [13]. The authors obtained the character equations
for Chebyshev polynomials of the first and second kind. We have prior studied Arya and Verma [20], Yang and Zheng
[12], and Altın and Cekim [27] research to generate matrix representation and characteristic equations of Chebyshev
polynomials of the third and fourth kind.

The outline of this paper is as follows:
The paper is mainly divided in to four segments. In the Ist section, we look back at the basic definitions of Chebyshev

polynomials. In the next section, we present the determinant representation for the third and fourth kinds and discover the
characteristic equation up to degree three for the third and fourth kind of the Chebyshev polynomials. In the next section,
we obtained theorems which describe the relationship between matrix power and Chebyshev polynomials of second, third,
and fourth kinds. The last section is about the applications related to the Chebyshev polynomials. The practical application
of the Chebyshev polynomials in approximation theory is also discussed.

2. Matrix representation of chebyshev polynomials of third kind
Now we present determinant representation and characteristic equations for the Chebyshev polynomials of the third

kind,

V0(p) = 1, V1(p) = 2p−1, Vm(p) = 2pVm−1(p)−Vm−2(p), for m ≥ 2, 3, ...

Tri-diagonal matrix, [bq, r] represents a matrix sequence for the Chebyshev polynomials of the third kind:

[bq, r] =


bq, r = ap−1, if q = r = 1

bq, r = ap, if q = r ≥ 2

bq, r = 1, if q = r+1, q = r−1

bq, r = 0, otherwise

In general, determinant representation:

X(m) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ap−1 1 0 ... ... 0
1 ap 1 ... ... 0
0 1 ap ... ... ...

... ... ... ... ... ...

... ... ... ... ap 1
0 0 ... ... 1 ap

∣∣∣∣∣∣∣∣∣∣∣∣∣
When a = 2;
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X(m) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2p−1 1 0 ... ... 0
1 2p 1 ... ... 0
0 1 2p ... ... ...

... ... ... ... ... ...

... ... ... ... 2p 1
0 0 ... ... 1 2p

∣∣∣∣∣∣∣∣∣∣∣∣∣
X(m) = Determinants are of type, i.e., the determinant of Chebyshev matrices Vm(p),

|X(1)|= t1, 1 = 2p−1 =V1(p).

|X(2)|= t1, 1t2, 2 − t2, 1t1, 2 = Det

(
2p−1 1

1 2p

)

= 4p2 −2p−1 =V2(p).

|X(3)|= t3, 3|D(2)|− t3, 2t2, 3|D(1)|

= 8p3 −4p2 −4p+1

= Det

2p−1 1 0
1 2p 1
0 1 2p

=V3(p).

|X(4)|= t4, 4|D(3)|− t4, 3t3, 4|D(2)|

= 16p4 −8p3 −12p2 +4p+1

= Det

2p−1 1 0 0
0 1 2p 1
0 0 1 2p

=V4(p).

Volume 5 Issue 4|2024| 4239 Contemporary Mathematics



|X(5)|= t5, 5|D(4)|− t5, 4t4, 5|D(3)|

= 32p5 −16p4 −32p3 +12p2 +6p−1

= Det


2p−1 1 0 0 0

1 2p 1 0 0
0 1 2p 1 0
0 0 1 2p 1
0 0 0 1 2p

=V5(p).

In general,

|X(m)|= tm, m|D(m−1)|− tm, m−1tm−1, m|D(m−2)|

= Det



2p−1 1 0 ... ... 0
1 2p 1 ... ... 0
0 1 2p ... ... ...

... ... ... ... ... ...

... ... ... ... 2p 1
0 0 ... ... 1 2p


=Vm(p).

2.1 Characteristic equations of a chebyshev polynomials of the third kind

Here we obtain the characteristic equations of the Chebyshev polynomials of the third kind up to degree three.
1. λ −V1 = 0.
2. λ 2 − (4p−1)λ +V2 = 0.
3. λ 3 − (6p−1)λ 2 +(12p2 −4p−2)λ −V3 = 0.

3. Matrix representation of chebyshev polynomials of fourth kind
Nowwe present determinant representations and characteristic equations for the fourth kind of Chebyshev polynomials.

The Chebyshev polynomials of the fourth kind are defined by a recurrence relation,

W0(p) = 1, W1(p) = 2p+1, Wm(p) = 2pWm−1(p)−Wm−2(p), for m ≥ 2, 3, ...

Tri-diagonal matrix, [dq, r] represents a matrix sequence for the Chebyshev polynomials of the fourth kind:
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[dq, r] =


dq, r = ap+1, if q = r = 1

dq, r = ap, if q = r ≥ 2

dq, r = 1, if q = r+1, q = r−1

dq, r = 0, otherwise

In general, determinant representation:

Y (m) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ap+1 1 0 ... ... 0
1 ap 1 ... ... 0
0 1 ap ... ... ...

... ... ... ... ... ...

... ... ... ... ap 1
0 0 ... ... 1 ap

∣∣∣∣∣∣∣∣∣∣∣∣∣
When a = 2;

Y (m) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2p+1 1 0 ... ... 0
1 2p 1 ... ... 0
0 1 2p ... ... ...

... ... ... ... ... ...

... ... ... ... 2p 1
0 0 ... ... 1 2p

∣∣∣∣∣∣∣∣∣∣∣∣∣
Y (m) = Determinants are of type, i.e., the determinant of Chebyshev matricesWm(p),

|Y (1)|= p1, 1 = 2p+1 =W1(p).

|Y (2)|= p1, 1 p2, 2 − p2, 1 p1, 2 = Det

(
2p+1 1

1 2p

)

= 4p2 +2p−1 =W2(p).
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|Y (3)|= p3, 3|D(2)|− p3, 2 p2, 3|D(1)|

= 8p3 +4p2 −4p−1

= Det

2p+1 1 0
1 2p 1
0 1 2p

=W3(p).

|Y (4)|= p4, 4|D(3)|− p4, 3t3, 4|D(2)|

= 16p4 +8p3 −12p2 −4p+1

= Det

2p+1 1 0 0
0 1 2p 1
0 0 1 2p

=W4(p).

|Y (5)|= p5, 5|D(4)|− p5, 4 p4, 5|D(3)|

= 32p5 +16p4 −32p3 −12p2 +6p+1

= Det


2p+1 1 0 0 0

1 2p 1 0 0
0 1 2p 1 0
0 0 1 2p 1
0 0 0 1 2p

=W5(p).

In general,

|Y (m)|= pm, m|D(m−1)|− pm, m−1 pm−1, m|D(m−2)|

= Det



2p+1 1 0 ... ... 0
1 2p 1 ... ... 0
0 1 2p ... ... ...

... ... ... ... ... ...

... ... ... ... 2p 1
0 0 ... ... 1 2p


=Wm(p).
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3.1 Characteristic equations of a chebyshev polynomials of the fourth kind

Now we determine the characteristic equations up to degree three for the Chebyshev polynomials of the fourth kind.
1. λ −W1 = 0.
2. λ 2 − (4p+1)λ +W2 = 0.
3. λ 3 − (6p+1)λ 2 +(12p2 +4p−2)λ −W3 = 0.

4. Identities related to matrix power and chebyshev polynomials
Here, we prove theorems involving matrix power with Chebyshev polynomials of the second, third, and fourth kind.
Let X be a non-singular 2×2 matrix and let,

a1 = Trace X , a2 = Determinant X ̸= 0,

u =

 a1

2a
1
2
2

=

√
1+ p

2
.

And the characteristic equation is,

λ 2 −a1λ +a2 = 0.

Here λ denotes the Eigenvalues of X .

4.1 Relation between matrix power and chebyshev polynomials of the third kind

Here we consider the result that connects the trace of matrix powers with the first kind, and the second kind proved
in [7]. We also used the identity that gave a relationship between the first kind, and third kind of Chebyshev polynomials.

Theorem 1 For any integer, m ≥ 0, it follows:

Trace X2m+1 = 2ua
2m+1

2
2 Vm(p).

Vm(p) denotes the mth degree for the Chebyshev polynomials of the third kind,

V0(p) = 1,

V1(p) = 2p−1,

V2(p) = 4p2 −2p−1,

V3(p) = 8p3 −4p2 −4p+1, ...
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Proof. Since trace X = a1, trace X2 = a2
1 −2a2.

Using the formulas given by Newton-Girard, we can find the following:

Trace Xm = a1(trace Xm−1)−a2(trace Am−2).

Now we used the result obtained in [18]

Trace Xm = 2a
m
2

2 Tm

 a1

2a
1
2
2

 .

Put m = 2m+1 in the above equation,

Trace X2m+1 = 2a
2m+1

2
2 T2m+1

 a1

2a
1
2
2

 .

Using the identity in the above equation

Vm(p) = u−1T2m+1(u)

where u =

 a1

2a
1
2
2

=

√
1+ p

2

Trace X2m+1 = 2a
2m+1

2
2 Vm(p).

Put m = 0

trace X1 = 2a
1
2
2 V0(p).

Put m = 1

Trace X3 = 2a
3
2
2 V1(p).

Put m = 2

Trace X5 = 2a
5
2
2 V2(p).
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Example 2 To verify the result stated in theorem 1:

Trace X2m+1 = 2ua
2m+1

2
2 Vm(p).

Proof. The theorem presents the connection between trace of matrix and Chebyshev polynomials of the third kind.
Vm(p), represents the mth degree Chebyshev polynomials of the third kind. We have proved our theorem with a random
non-singular 2×2 matrix for m = 0, 1, 2, ...

Let X =

(
1 2
3 8

)
be a 2 × 2 non-singular matrix.

Trace= a1 = 9

Det = a2 = 2

u =

 a1

2a
1
2
2

=

√
1+ p

2
,

Hence,

p =
77
4
.

Put m = 0,

Trace X1 = 2a
1
2
2 V0(p).

Left Hand Side (L.H.S.)= Trace X1 = a1 = 9.

Right Hand Side (R.H.S.)= 2a
1
2
2 V0(p) = 2× 9

2
√

2
×2

1
2 ×1 = 9.

Hence result is true for m = 0
Put m = 1

Trace X3 = 2a
3
2
2 V1(p).

X3 =

(
61 158
237 614

)

L.H.S.= Trace X3 = 675.
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R.H.S.= 2a
3
2
2 V1(p) = 2× 9

2
√

2
×2

3
2 × 75

2
= 675.

Hence result is true for m = 1
Put m = 2,

Trace X5 = 2a
5
2
2 V2(p).

X5 =

(
4,693 12,158
18,237 47,246

)
.

L.H.S.= Trace X5 = 51,939.

R.H.S.= 2a
5
2
2 V2(p) = 2× 9

2
√

2
×2

5
2 × 5,771

4
= 51,939.

Hence result is true for m = 2.
This example verified the above result for m = 0, 1, 2, ...
Similarly we can prove our result for m = 3, 4, 5 ...

Hence, this result is hold for any non-singular matrix X i.e.,

Trace X2m+1 = 2ua
2m+1

2
2 Vm(p).

4.2 Relation between second, fourth kind of chebyshev polynomials and matrix power

Here we start with the result that connects the trace of matrix powers with the second kind of Chebyshev polynomials,
proved in [18] and we also used the identity that gave a relationship between the second, and fourth kind of Chebyshev
polynomials i.e.,

Xm = a
(m−1)

2
2 Um−1

 a1

2a
1
2
2

X −a
m
2

2 Um−2

 a1

2a
1
2
2

 I.

Now use the identity that connects the Chebyshev polynomials of the second and fourth kind with each other i.e.,

U2m(u) =Wm(p),

where u =

√
1+ p

2
.

Theorem 3 Let m ≥ 2, the integral power of X is given by:
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X2m+1 = am
2 Wm(p)X −a

2m+1
2

2 U2m−1

 a1

2a
1
2
2

 I

where I denote the identity matrix,Um(p), andWm(p) are the mth degree Chebyshev polynomials of the second and fourth
kind respectively.

U0(p) = 1, U1(p) = 2p, U2(p) = 4p2 −1, U3(p) = 8p2 −4p, ...

W0(p) = 1, W1(p) = 2p+1, W2(p) = 4p2 +2p−1,

W3(p) = 8p3 +4p2 −4p−1, ...

Proof. By using the above-mentioned results we obtain,

X2m+1 = am
2 U2m

 a1

2a
1
2
2

X −a
2m+1

2
2 U2m−1

 a1

2a
1
2
2

 I,

X2m+1 = am
2 Wm(p)X −a

2m+1
2

2 U2m−1

 a1

2a
1
2
2

 I

For m = 1

X3 = a2W1(p)X −a
3
2
2 U1

 a1

2a
1
2
2

 I.

For m = 2

X5 = a2W2(p)X −a
5
2
2 U3

 a1

2a
1
2
2

 I.

For m = 3

X7 = a2W3(p)X −a
7
2
2 U5

 a1

2a
1
2
2

 I.
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Example 4 To verify the result stated in Theorem 3:

X2m+1 = am
2 Wm(p)X −a

2m+1
2

2 U2m−1

 a1

2a
1
2
2

 I

Proof. The theorem presents the connection between matrix power and Chebyshev polynomials of the second kind
and fourth kind. Um(p), Wm(p), represents the mth degree Chebyshev polynomials of the second kind and fourth kind
respectively. We have proved our theorem with a random non-singular 2×2 matrix for m = 0, 1, 2, ...

Let X =

(
1 2
3 8

)
be a 2 × 2 non-singular matrix.

Trace= a1 = 9

Det = a2 = 2

u =

 a1

2a
1
2
2

=

√
1+ p

2
,

Hence,

p =
77
4

Put m = 1, we get

X3 = a1
2W1(p)X −a

3
2
2 U1

 a1

2a
1
2
2

 I.

L.H.S.= X3 =

(
61 158
237 614

)
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R.H.S.= a1
2W1(p)X −a

3
2
2 U1

 a1

2a
1
2
2

 I.

= 2× 79
2

×

(
1 2
3 8

)
−2

3
2 ×U1

(
9

2
√

2

)
×

(
1 0
0 1

)

=

(
79 158
237 632

)
−18

(
1 0
0 1

)

=

(
61 158
237 614

)

Hence result is true for m = 1 .
Put m = 2, we get

X5 = a2
2W2(p)X −a

5
2
2 U3

 a1

2a
1
2
2

 I.

L.H.S. X5 =

(
4,693 12,158

18,237 47,246

)
.

R.H.S.= a2
2W2(p)X −a

5
2
2 U3

 a1

2a
1
2
2

 I

= 4× 6,079
4

×

(
1 2
3 8

)
−2

5
2 ×U3

(
9

2
√

2

)
×

(
1 0
0 1

)

=

(
6,079 12,158
18,237 48,632

)
−1,386

(
1 0
0 1

)

=

(
4,693 12,158
18,237 47,246

)

Hence result is true for m = 2.
This example verified the above result for m = 1, 2.
Similarly we can prove our result for m = 3, 4, 5...
Hence, this result is hold for any non-singular matrix X i.e.,
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X2m+1 = am
2 Wm(p)X −a

2m+1
2

2 U2m−1

 a1

2a
1
2
2

 I.

This example verified the above result.

5. Applications
The Chebyshev polynomials are widely used to enhance the advanced technique for counting and to study the integer

function. These polynomials play a vital role to solve other polynomials that are used to obtain new trigonometric identities.
Chebyshev polynomials are in high demand in computer graphics to generate shapes, surfaces, and curves (Figure 1). The
approximate solution of the second-order differential equations can be obtained with the help of these polynomials and
the large data can be interpolated in the numerical and approximation theory. The approximate numerical solution can
be obtained for differential and integral equations. Chebyshev polynomials play a crucial role in computer science to
obtain signal processing, mainly in the design of filters known as Chebyshev filters. Chebyshev polynomials are high
demand in computer graphics to generate shapes, surfaces and curves. We can approximate every polynomials in terms
of Chebyshev polynomials. Here we approximate a polynomials in terms of the Chebyshev polynomials of the third kind
that enlightens the practical application of the Chebyshev polynomials in approximation theory. The primary benefit of
the given methods is the high accuracy of the approximation solution.

Figure 1. Application flow chart of Chebyshev polynomials

5.1 Practical application

Express p4 +2p3 −3p−2 in terms of Chebyshev polynomials of third kind.
Sol: The first four Chebyshev polynomials of third kind are:
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V0(p) = 1,

V1(p) = 2p−1,

V2(p) = 4p2 −2p−1,

V3(p) = 8p3 −4p2 −4p+1,

V4(p) = 16p4 −8p3 −12p2 +4p+1,

From above equations, we get

p =
1
2
[V0(p)+V1(p)]

p2 =
1
4
[2V0(p)+V1(p)+V2(p)]

p3 =
1
8
[3V0(p)+3V1(p)+V2(p)+V3(p)]

p4 =
1
16

[6V0(p)−4V1(p)+4V2(p)+V3(p)+V4(p)]

Put above values in

p4 +2p3 −3p−2

We get,

1
16

[6V0(p)−4V1(p)+4V2(p)+V3(p)+V4(p)]

+
2
8
[3V0(p)+3V1(p)+V2(p)+V3(p)]− 3

2
[V0(p)+V1(p]−2V0(p)

Hence,

1
16

V4(p)+
5
16

V3(p)+
1
2

V2(p)−V1(p)− 19
8

V0(p).
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6. Significance of the work
Here we recapitulate the significance of the present article in the following points:
• Introducing matrix representation of Chebyshev polynomials of the third kind and fourth kind.
• Obtaining characteristic equations of a Chebyshev polynomials of the third and fourth kinds.
• Identities related to matrix power and Chebyshev polynomials.
• Obtaining connections between the Chebyshev polynomials of the second and fourth kind with matrix power.
• Approximate a polynomial by using the Chebyshev polynomials of the third kind.
It has to be noted here that the above-obtained results and discussions are helpful. A few of their presumed uses are

given below:
• The matrix representation helps solve linear and nonlinear differential equations.
• The matrix representation is beneficial to acquiring numerical solutions of linear and nonlinear differential

equations.
• The characteristic equations of Chebyshev polynomials are helpful to obtaining Eigen values and Eigen vectors.
• The connections between the Chebyshev polynomials of the second, third, and fourth kinds with matrix power are

very fruitful to obtaining the identities related to them.
• The Chebyshev polynomials are fruitful in approximation theory.

7. Conclusion
It is observed that characteristic equations for the third and fourth kinds of Chebyshev polynomials can be extended up

to the mth degree. Further, by using matrix power, we can describe more identities that connect Chebyshev polynomials.
To obtain our result, we used the non-singular 2× 2 matrix and utilized the trace and determinant of the matrix. The
numerical examples authenticates the theoretical results.
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