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Abstract: In this paper we are dealing with population size growth systems called Q-processes. The class of trajectories of
these systems is a subset of the family of all possible trajectories of the ordinaryGalton-Watson branching system, provided
that they do not decay in the remote future. We observe the total progeny of a single founder-individual, generated by
the reproduction law of the Q-process up to time n. By analogy with branching systems models, this variable is of great
interest in studying the deep properties of the Q-process. Our main results are analogues of Central Limit Theorem and
Law of Large Numbers for Sn, denoting the total progeny of a single founder-individual, generated by the reproduction
law of the Q-process up to time n. We find that the total progeny as a random variable approximates the standard normal
distribution function under a second moment assumption for the initial Galton-Watson system offspring law. We estimate
the speed rate of this approximation. We also prove an analogue of the law of large numbers with an estimate of the
approximation rate to the degenerate distribution.
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1. Introduction and main results
Models of stochastic branching systems are an important mathematical simulation for describing an evolution of

various population processes. Since the origin of the fundamental theory of branching systems, numerous branching
schemes have been developed depending on the context of the problems being studied. Nowadays, there is great interest
in these models. The origin of the theory of branching models is due to the prospect of estimating the survival probability
of the population of monotypic individuals using branching schemes. A discrete-time branching model was introduced
by the English statisticians Henry Watson and Francis Galton in the late 19th century. Studying eproductive rates of
English lords, they developed a mathematical model for the population family growth is now called the Galton-Watson
Branching (GWB) system; see [1–7]. Models of branching systems play an extremely important role both in theory and in
applications of random processes. In the family of random trajectories of branchingmodels, there is a class of positive ones
such that they continue indefinitely long time. In the case of the GWB model, the class of such trajectories forms another
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stochastic model called the Q-process; see [2] and [8]. In the case of continuous-timeMarkov branching systems, a similar
model, calledMarkov Q-process, was first introduced in [9]. Among the random trajectories of branching systems, there
are those that continue a long time. Some properties of Q-process in discrete and continuous type are studied in [8–10]
and [11].

GWB system is also useful to model species extinction, infectious diseases propagation, and many other phenomena.
We can use this system to model the fiscal multiplier and the total consuming impact on the economy. The above model
can be used to describe the behaviour of neutrons in nuclear fission reactions, such as that in an atomic bomb. In this
case, the particles being considered are the neutrons. Their offspring are the neutrons released from the splitting of larger
nuclei into smaller nuclei by collision with a neutron. This problem was initially discussed by Feller [12].

Consider the ordinary GWB system with branching rates {pk, k ∈ N0}, where N0 = {0}∪N and N = {1, 2, . . .}.
Let Z(n) denotes a population size at the moment n in the system. The evolution of the system occurs according to the
following branching mechanism. Each individual lives a unit length life time and then produces k ∈ N0 descendants
with probability pk. The system {Z(n), n ∈ N0} is a reducible, homogeneous-discrete-time Markov chain with a state
space consisting of two classes: S0 = {0}∪S, where {0} is absorbing state, and S ⊂ N is the class of possible essential
communicating states.

Example 1 Figure 1 illustrates GWB system.

Figure 1. Branching scheme example

Let Z(0) = 1. If we set Z(n) as the number of particles in n-th generation, then we have

Z(n+1) =


Z(n)
∑

i=1
ξ (i)

n+1, if Z(n)> 0,

0, if Z(n) = 0,

where ξ (i)
n+1 is the number of generations produced by the i-th particle in the n-th generation. For example, in Figure 1, we

have

Z(1) = ξ (1)
1 = 3 and Z(2) = ξ (1)

2 +ξ (2)
2 +ξ (3)

2 = 2+1+3 = 6.
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In this paper we consider the system {Z(n)} in the Schröder case, i.e., p0 > 0 and p0 + p1 > 0. We assume also that

p0 + p1 < 1 and m: = ∑
k∈S

kpk < ∞.

In the Schröder case, the particle can either die or leave behind 1 offspring. In Böttcher case (p0 = p1 = 0), the
particle does not die and at the end of its life leaves behind at least 2 generations.

Letting

Pi j(n): = P
{

Z(n+ k) = j
∣∣ Z(k) = i

}
for any k ∈ N0

be the n-step transition probabilities and using the Kolmogorov-Chapman equation, we observe that the probability
generating function (GF)

∑
j∈S0

Pi j(n)s j =
[

fn(s)
]i
, (1)

where

fn(s): = ∑
k∈S0

pk(n)s
k,

herein pk(n): = P1k(n), and the GF fn(s) is n-fold iteration of the offspring GF

f (s): = ∑
k∈S0

pksk.

Evidently that fn(0) = p0(n) is a vanishing probability of the system initiated by single founder. Note that this
probability approaches monotonously to a finite limit q as n → ∞, which called an extinction probability of the system,
i.e., limn→∞ p0(n) = q. The extinction probability
·q = 1 if m ≤ 1;
·q < 1 if m > 1.
Based on this, according to the values of the parameter m, the system is called
·sub-critical if m < 1;
·critical if m = 1;
·super-critical if m > 1; see [2] [Ch.I].
In what follows, the symbols Pi

{
∗
}
and Ei[∗] will denote the probability distribution and mean provided that the

system initiated by
{

Z(0) = i
}
founder and, we will write P

{
∗
}
and E[∗] instead of P1

{
∗
}
and E1[∗] respectively. We are

dealing with the GWB system conditioned on the event {n <H < ∞}, whereH: = min{n ∈ N: Z(n) = 0} is the system
extinction time. Define the following conditioned probability measure:

PH(n+k)
i {∗}: = Pi

{
∗
∣∣ n+ k <H < ∞

}
for any k ∈ N.
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In [2] [p. 58] proved, that

Qi j(n): = lim
k→∞

PH(n+k)
i

{
Z(n) = j

}
=

jq j−i

iβ n Pi j(n), (2)

where β := f ′(q) and∑ j∈NQi j(n)= 1 for each i∈N. Thus, the probability measureQi j(n) can determine a new population
growth system with the state space E ⊂ N which we denote by {W (n), n ∈ N0}. This is a discrete-homogeneous-time
irreducible Markov chain defined in [2] [p. 58] and called the Q-process. Undoubtedly W (0)

d
=Z(0) and transition

probabilities

Qi j(n): = Pi
{

W (n) = j
}
= Pi

{
Z(n) = j

∣∣∣H = ∞
}
,

so that the Q-process can be interpreted as a “long-living” GWB system.
Recent results on limiting structures of Q-process can be found in [13]. Some limit results on continuous-state Q-

processes are available in [10].
Let’s consider a GF

w(i)
n (s): = ∑

j∈E
Qi j(n)s j.

Combining relations (1) and (2) we get

w(i)
n (s) = wn(s)

[
fn(qs)

q

]i−1

, (3)

where wn(s): = w(1)
n (s) = EsW (n) has a form of

wn(s) = s
f ′n(qs)

β n for any n ∈ N. (4)

Using iterations over f (s) in (3), we obtain the following functional equation:

w(i)
n+1(s) =

w(s)
fq(s)

w(i)
n
(

fq(s)
)
, (5)

where w(s): = w1(s) and fq(s) = f (qs)
/

q. Thus, Q-process is completely defined by setting the GF

w(s) = s
f ′(qs)

β
. (6)
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The asymptotic behavior of trajectories of the Q-process is completely regulated by its structural parameter β > 0.
In fact, by [2] [p. 59, Theorem 2], that

·E is positive recurrent if β < 1;
·E is transient if β = 1.
By default, the positive recurrent case β < 1 of Q-process is in a definition character of the non-critical case m ̸= 1

of the initial GWB system. Note that β ≤ 1 and nothing but.
In this paper we deal with the positive recurrent case assuming that the first moment α: = w′(1−) be finite. Then

differentiating with respect to s at the point s = 1 we obtain α = 1+ γq · (1−β ), where

γq: =
q f ′′(q)

β (1−β )
.

At the same time it follows from (3) and (4) that EiW (n) = (i−1)β n +EW (n), where

EW (n) = 1+ γq ·
(
1−β n).

It is obvious, that when initial GWB system is sub-critical, the condition α < ∞ is equivalent to that f ′′(1−) < ∞.
Further we everywhere will be accompanied by this condition by default.

Our purpose is to investigate asymptotic properties of a random variable

Sn =W (0)+W (1)+ · · ·+W (n−1),

denoting the total progeny of a single founder-individual, generated by the reproduction law of the Q-process up to time
n, see e.g., [6, 7, 11, 14].

Throughout the paper we will use famous Landau symbols o, O and O∗ to describe kinds of bounds on asymptotic
varying rates of positive functions f (x) and g(x). So, f = o(g) means that limx f (x)

/
g(x) = 0, and we write f =

O(g) if limsupx f (x)
/

g(x) < ∞ and also we write f = O∗(g) if the ratio f (x)
/

g(x) has a positive explicit limit. i.e.,
limx f (x)

/
g(x) =C < ∞. Moreover, f (x)∼ g(x) means that limx f (x)

/
g(x) = 1.

Our main results are analogues of Central Limit Theorem and Law of Large Numbers for Sn. Let N
(
0, σ2

)
be a

normal distributed random variable with the zero mean and the finite variance σ2 and Φ0, σ2(x) is its distribution function.
Theorem 1 Let β < 1 and α < ∞. Then there exists a positive real-valued sequence Kn such that Kn = O∗ (

√
n)

and

Sn −ESn

Kn

D−→N
(
0, σ2) as n → ∞,

where the symbol “ D−→” means the convergence in distribution and σ2 is a (finite) positive number that depends on beta
and alpha moments.

Remark 1 (Explanation of Theorem 1) The asymptotic behaviour of Sn has been widely studied in probability
theory, in which the Law of Large Numbers and Central Limit Theorems play an important role. The Central Limit allows
us to describe the class consisting of the limits of the distribution function, where the sum of the sequence of independent
random variables is infinitely small compared to the sum of the contributions of each participant. For example, consider
a process where the generating function is fractional-linear:
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f (s) =
a+bs
1−δ s

, 0 < δ < 1, a+b+δ = 1, k ∈ N0.

In that case, the sequence of random variables (Sn −ESn)
/
Kn approaches a normal (or Gaussian) random variable

with parameter
(
0, σ2

)
in distribution.

In the theory of probability, the problem of finding the convergence rate is considered very relevant and complex,
and this rate allows us to conclude about the solution of the problem. Below is such a convergence rate.

Theorem 2 Let β < 1 and α < ∞. Then there exists slowly varying function at infinity L(∗) such that

∣∣∣∣P{Sn −ESn

Kn
< x
}
−Φ0, σ2(x)

∣∣∣∣≤ L(n)
n1/4

uniformly in x.
Let Ia be a degenerate distribution concentrated at the point a, i.e.

Ia(B) =


1 if x ∈ B,

0 if x /∈ B.

Theorem 3 Let β < 1 and α < ∞. Then

Sn

n
D−→ 1+ γq as n → ∞.

Moreover there exists slowly varying function at infinity Lγ(∗) such that

∣∣∣∣P{Sn

n
< x
}
− I1+γq(x)

∣∣∣∣≤ Lγ(n)√
n

uniformly in x, where

I1+γq(x) =


0 if x ≤ 1+ γq,

1 if x > 1+ γq.

Remark 2 (Explanation of Theorem 3) The arithmetic mean of the first n terms of a sequence of independent
random variables loses its randomness at sufficiently large n and approaches the arithmetic mean of the mathematical
expectation. This assertion is called the law of large numbers. In particular, consider a sequence of random variables with
a 1− p parameter geometric distribution:

pk = (1− p)pk, 0 < p < 1, k ∈ N0 and f (s) = (1− p)
/
(1− ps).
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Then, by the Theorem 3, we have

Sn

n
D−→ 1+

2pq
(1− pq)(1−β )

as n → ∞

with a rate of O∗ (
√

n).
The rest of this paper is organized as follows. Section 2 provides auxiliary statements that will be essentially used in

the proof of our theorems. Section 3 is devoted to the proof of main results.

2. Preliminaries
Further we need the joint GF of the variables W (n) and Sn

Jn(s; x) = ∑
j∈E

∑
l∈N

P{W (n) = j, Sn = l}s jxl

on a two-dimensional domain

K =

{
(s; x) ∈ R2: s ∈ [0, 1], x ∈ [0, 1],

√
(s−1)2 +(x−1)2 > 0

}
.

Now due to theMarkov nature of the Q-process we see that the two-dimensional one-step joint-transition probabilities

P
{

W (n+1) = j, Sn+1 = l
∣∣∣W (n) = i, Sn = k

}
= Pi {W (1) = j, S1 = l}δl, i+k,

where δi j is the Kronecker’s delta function:

δi j =


1 if i = j,

0 if i ̸= j.

Therefore, we have

Ei

[
sW (n+1)xSn+1

∣∣∣ Sn = k
]
= ∑

j∈E
∑
l∈N

Pi {W (1) = j, S1 = l}δl, i+ks jxl

= ∑
j∈E

Pi {W (1) = j}s jxi+k = w(i)(s)xi+k.

Next, we obtain
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Jn+1(s; x) = E
[
E
[
sW (n+1)xSn+1

∣∣∣W (n), Sn

]]
= E

[
wW (n)(s)xW (n)+Sn

]

= E
[(

w(s) fq(s)
)W (n)−1xW (n)+Sn

]
=

w(s)
fq(s)

E
[(

x fq(s)
)W (n)xSn

]
.

In the last line we used formula (3). Thus for (s; x) ∈ K and any n ∈ N

Jn+1(s; x) =
w(s)
fq(s)

Jn
(
x fq(s); x

)
. (7)

Using relation (7), we can now obtain an explicit expression for the GF Jn(s; x). Indeed, applying it consistently,
taking into account (6) and, after standard transformations, we have

Jn(s; x) =
s

β n
∂Hn(s; x)

∂ s
, (8)

where the function Hn(s; x) is defined for any (s; x) ∈ K by the following recursive relations:


H0(s; x) = s;

Hn+1(s; x) = x fq
(
Hn(s; x)

)
.

(9)

Since ∂Jn(s; x)
/

∂x
∣∣∣
(s; x)=(1; 1)

= ESn, from (8) and (9), we find that

ESn = (1+ γq)n− γq
1−β n

1−β
. (10)

Remark 3 Needles to say that the GF fq(s) = f (qs)
/

q generates a sub-critical GWB system. Denoting the
population in this system as Zq(n), we define the sum Vn = ∑n−1

k=0 Zq(k) which is a total progeny of individuals that
participated in the evolution of the system

{
Zq(n), n ∈ N0

}
, up to the n-th generation. It is known that the GF of the

joint distribution
(
Zq(n), Vn

)
satisfies the recursive equation (9); see [14] [p. 126]. Thus, the function Hn(s; x) is a

two-dimensional GF for all n ∈ N and (s; x) ∈ K and obeys to all properties of the GF E
[
sZq(n)xVn

]
.

By virtue of what said in Remark 3, in studyingHk(s; x)we use the properties of theGFE
[
sZq(n)xVn

]
. Since the system{

Zq(n)
}
is sub-critical, it goes extinct with probability 1. Therefore, there exists a proper random variableV = limn→∞Vn,

which means the total number of individuals participated in the whole evolution of the system. So

h(x): = ExV = lim
n→∞

ExVn = lim
n→∞

Hn(1; x)

and, according to (9) it satisfies the functional equation
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h(x) = x fq
(
h(x)

)
. (11)

Further, we note that

P
{

Zq(n) = 0, Vn = k
}
= P

{
Zq(n) = 0, V = k

}
.

Then, we find

P
{

V = k
}
− ∑

i∈N

P
{

Zq(n) = i, Vn = k
}

si ≤ P
{

V = k, Zq(n)> 0
}
.

Therefore, denoting

Rn(s; x): = h(x)−Hn(s; x)

for (s; x) ∈ K, we have

Rn(s; x)≤ ∑
k∈N

P
{

V = k, Zq(n)> 0
}

xk = Rn(0; x).

It can be seen Rn(0; x)≤ Rn(0; 1) = P
{

Zq(n)> 0
}
. Then

∣∣Rn(s; x)
∣∣≤ P

{
Zq(n)> 0

}
−→ 0 as n → ∞. (12)

On the other hand, due to the fact that |h(x)| ≤ 1 and |Hn(s; x)| ≤ 1 we have

Rn(s; x) = x
[

fq
(
h(x)

)
− fq

(
Hn−1(s; x)

)]
= xE

[
h(x)−Hn−1(s; x)

]Zq(n) ≤ βRn−1(s; x)

for all (s; x) ∈ K. This implies that

∣∣Rn(s; x)
∣∣≤ β n−k∣∣Rk(s; x)

∣∣ (13)

for any n ∈ N and k = 0, 1, . . . , n.
In what follows, where the function Rn(s; x) will be used, we deal with the domain K, where this function does not

vanish. By virtue of (12), taking into account (9), (11), we obtain the asymptotic formula
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Rn+1(s; x) = x f ′q
(
h(x)

)
Rn(s; x)− x

f ′′q
(
h(x)

)
+ηn(s; x)
2

R2
n(s; x), (14)

where |ηn(s; x)| → 0 as n → ∞ uniformly in (s; x) ∈ K. Since Rn(s; x)→ 0, it follows from (14) that

Rn(s; x) =
Rn+1(s; x)
x f ′q
(
h(x)

) (1+o(1)) as n → ∞.

Using last equality, we transform (14) to the form

Rn+1(s; x) = x f ′q
(
h(x)

)
Rn(s; x)−

[
f ′′q
(
h(x)

)
2 f ′q
(
h(x)

) + εn(s; x)

]
Rn(s; x)Rn+1(s; x)

and, therefore

u(x)
Rn+1(s; x)

=
1

Rn(s; x)
+υ(x)+ εn(s; x), (15)

where

u(x) = x f ′q
(
h(x)

)
and υ(x) = x

f ′′q
(
h(x)

)
2u(x)

and sup(s; x)∈K

∣∣εn(s; x)
∣∣ ≤ εn → 0 as n → ∞. By successively applying (15), we find the following representation for

Rn(s; x):

un(x)
Rn(s; x)

=
1

R0(s; x)
+

υ(x)
[
1−un(x)

]
1−u(x)

+
n

∑
k=1

εk(s; x)uk(x). (16)

In what follows, our discussions will essentially be based on formula (16). Now, for convenience, we write

Jn(s; x) = s
n−1

∏
k=0

x f ′q
(
Hk(s; x)

)
β

which is a direct consequence of formulas (8) and (9). In our notation, it is almost obvious that Tn(x): = ExSn = Jn(1; x).
Then it follows that

Tn(x) =
n−1

∏
k=0

uk(x), (17)
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where

un(x) =
x f ′q
(
hn(x)

)
β

,

at that hn(x) = ExVn which satisfies a recurrence equation hn+1(x) = x fq
(
hn(x)

)
. Accordingly, the function ∆n(x): =

h(x)−hn(x) satisfies the inequality

∣∣∆n(x)
∣∣≤ β n−k∣∣∆k(x)

∣∣ (18)

which is a consequence of (13). Successive application of the inequality (18) gives

∣∣∆n(x)
∣∣= O

(
β n)→ 0 as n → ∞ (19)

uniformly in x ∈ K. Similarly to the case Rn(s; x), taking into account (19) we find the following representation:

un(x)
∆n(x)

=
1

h(x)−1
+

v(x)
[
1−un(x)

]
1−u(x)

+
n

∑
k=1

εk(x)uk(x), (20)

where supx∈K

∣∣εn(x)
∣∣≤ εn → 0 as n → ∞.

In our further discussion we will also need expansions functions h(x) and u(x) in the left neighborhood of the point
x = 1.

Lemma 1 Let β < 1 and α < ∞. Then for GF h(x) = ExV the following local expansion holds:

1−h(x)∼ 1
1−β

(1− x)−
2β (1−β )+bq

2(1−β )3 (1− x)2 as x ↑ 1, (21)

where bq: = f ′′q (1−).
Proof. We write the Peano’s form Taylor expansion for h(x) = ExV :

h(x) = 1+h′(1−)(x−1)+
h′′(1−)

2
(x−1)2 +o(x−1)2 as x ↑ 1. (22)

Formula (11) and standard calculations produce that

h′(1−) =
1

1−β
and h′′(1−) =

2β (1−β )+bq

(1−β )3
.

Substituting these expressions in the expansion (22), entails (21).
The lemma is proved.
Similar arguments can be used to verify the validity of the following lemma.
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Lemma 2 Let β < 1 and α < ∞. Then

u(x) = βx
[
1− γq(1− x)

]
+ρ(x), (23)

where

ρ(x)
(1− x)2 → const as x ↑ 1.

Proof. Write the Taylor expansion with Lagrange error bound for f ′q(y):

f ′q(y) = β + f ′′q (1)(y−1)+ r(y),

where r(y) ≤ A · (y−1)2 as y ↑ 1 and A = const. Since u(x) = x f ′q
(
h(x)

)
, taking herein y = h(x) and using (21) leads to

(23).
The lemma is proved.
The following two results directly follow from Lemma 1 and Lemma 2 respectively.
Lemma 3 Let β < 1, α < ∞. Then

h
(
eθ)−1 ∼ θ

1−β
+

2+βγq

2(1−β )2 θ 2 as θ → 0. (24)

Lemma 4 Let β < 1, α < ∞. Then

u
(
eθ)
β

−1 = (1+ γq)θ +ρ(θ), (25)

where ρ(θ) = O∗ (θ 2
)
as θ → 0.

Next Lemma follows from combination of (20), (24) and (25).
Lemma 5 Let β < 1, α < ∞. Then

∆n
(
eθ)

un(eθ
) =

1
1−β

θ +O∗(θ 2) as θ → 0 (26)

for any fixed n ∈ N.
Now we prove the following lemma.
Lemma 6 Let β < 1, α < ∞. Then

ln
n−1

∏
k=0

uk
(
eθ)∼−

(
1−

u
(
eθ)
β

)
n− γqθ ·

n−1

∑
k=0

uk(eθ) as θ → 0 (27)
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for any fixed n ∈ N.
Proof. Using the inequality ln(1− y)≥−y− y2

/
(1− y), which is valid for 0 ≤ y < 1, we have

ln
n−1

∏
k=0

uk
(
eθ)= n−1

∑
k=0

ln
{

1−
[
1−uk

(
eθ)]}

=
n−1

∑
k=0

[
uk
(
eθ)−1

]
+ρ(1)

n (θ) =: In(θ)+ρ(1)
n (θ), (28)

where

In(θ) =−
n−1

∑
k=0

[
1−uk

(
eθ)] , (29)

and

−
n−1

∑
k=0

[
1−uk

(
eθ)]2

uk
(
eθ
) ≤ ρ(1)

n (θ)≤ 0.

It is easy to see that the sequence of functions {hk(x)} does not decrease in k ∈ N. Then, by the property of the GF,
and the function uk

(
eθ) is non-decreasing in k, for any fixed n ∈ N and θ ∈ R. Therefore,

1−u0
(
eθ)

u0
(
eθ
) In(θ)≤ ρ(1)

n (θ)≤ 0. (30)

Due to the monotonously increasing property of probability GF and its derivatives, we will also verify that under the
conditions of our theorem 1−u0

(
eθ)→ 0 as θ → 0. Then, according to (30), ρ(1)

n (θ)→ 0 if only In(θ) has a finite limit
as θ → 0.

Write the following Taylor expansion with Lagrange error bound:

f ′q(t) = f ′q(t0)− f ′′q (t0)(t0 − t)+(t0 − t)g(t0; t),

where g(t0; t) = (t0 − t) f ′′′q (τ)
/

2 and t0 < τ < t. Hence, letting t0 = h(x) and t = hk(x) we have the following relation:

uk(x) =
u(x)

β
−

x f ′′q (h(x))
β

∆k(x)+∆k(x)gk(x),

where gk(x) = x∆k(x) f ′′′q (τ)
/

2β and hk(x)< τ < h(x). Therefore,
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uk
(
eθ)= u

(
eθ)
β

−
eθ f ′′q

(
h
(
eθ))

β
∆k
(
eθ)+∆k

(
eθ)gk

(
eθ).

Then (29) becomes

In(θ) =−

[
1−

u
(
eθ)
β

]
n−

eθ f ′′q
(
h
(
eθ))

β

n−1

∑
k=0

∆k
(
eθ)+ρ(2)

n (θ), (31)

where

0 ≤ ρ(2)
n (θ)≤ ∆0

(
eθ) n−1

∑
k=0

gk
(
eθ).

We used the fact that
∣∣∆n(x)

∣∣ ≤ β n
∣∣∆0(x)

∣∣ in the last step, which directly follows from inequality (18). It follows
from (24) that ∆0

(
eθ)= O(θ) as θ → 0. And also estimation (19) implies that gk

(
eθ)= O

(
β k
)
as k → ∞ and hence the

functional series ∑∞
k=0 gk

(
eθ) converges for all θ ∈ R. Therefore,

∆0
(
eθ) n−1

∑
k=0

gk
(
eθ)= O(θ)→ 0 as θ → 0.

Then the remainder term in (31)

ρ(2)
n (θ)→ 0 as θ → 0. (32)

Assertion (26) implies that

n−1

∑
k=0

∆k
(
eθ)= θ

1−β

n−1

∑
k=0

uk(eθ)(1+O∗(θ)) as θ → 0. (33)

Since eθ f ′′q
(
h
(
eθ))→ f ′′q (1) as θ → 0, combining relations (28), (31)–(33) and, after standard calculations, we will

come to (27).
The lemma is proved.

3. Proof of theorems
Proof of Theorem 1 Define a sequence of variables

ζn: =
Sn −ESn

Kn
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for some positive real-valued sequence Kn such that Kn → ∞ as n → ∞ and then an appropriate characteristic function

φζn(θ): = E
[
exp
{

iθζn
}]

= E
[

θ Sn
n · exp

{
−iθESn

Kn

}]
,

where θn: = exp
{

iθ
/
Kn
}
and θ ∈ R. Using (10) we write

lnφζn(θ)∼−(1+ γq)
iθ
Kn

n+ lnTn (θn) as n → ∞, (34)

where Tn(x) = ExSn . Simultaneously according to (17) and Lemma 6,

lnTn (θn)∼−
(

1− u(θn)

β

)
n−

iθγq

Kn
·

n−1

∑
k=0

uk (θn) (35)

as n → ∞. In turn, (25) implies

−
(

1− u(θn)

β

)
n = (1+ γq)

iθ
Kn

n+nρ
(

iθ
Kn

)
, (36)

where 0 < limθ→0 ρ(θ)
/

θ 2 =: Cρ < ∞. Now we readily choose

Kn = O∗ (√n
)

as n → ∞ (37)

which is equivalent to Kn
/√

n →CK > 0. Hence we see that

nρ
(

iθ
Kn

)
→−Kθ 2 as n → ∞, (38)

whereK: =Cρ
/

C2
K > 0. At the same time, since u(x) = x f ′q

(
h(x)

)
, in our assumptions we observe that u(x)≤ β uniformly

in x ∈ [0, 1]. Therefore, one can choose ε > 0 so desirably small that

∣∣∣uk (θn)−β k
∣∣∣≤ ε

for large enough n. This entails that limn→∞ ∑n−1
k=0 uk (θn) converges uniformly in θ ∈ R. Eventually, after combination of

asymptotic estimations (35)–(38), and denoting σ2: = 2Cρ , the relation (34) becomes

lnφζn(θ) =−σ2θ 2

2
+Kn(θ), (39)

Volume 5 Issue 3|2024| 2765 Contemporary Mathematics



where Kn(θ) = O∗ (iθ/Kn
)
as n → ∞. Finally, we conclude that

φζn(θ)−→ exp
{
−σ2θ 2

2

}
as n → ∞

for any fixed θ ∈ R. The assertion follows now from the continuity theorem for characteristic functions.
The proof is completed.
Proof of Theorem 2 The relation (39) and formal use of inequalities

∣∣eiy∣∣≤ 1 and
∣∣eiy −1− y

∣∣≤ |y|2

2

imply

∣∣∣φζn(θ)− e−σ2θ 2/2
∣∣∣≤ ∣∣∣e−σ2θ 2/2

∣∣∣ ∣∣∣eKn(θ)−1
∣∣∣

≤
∣∣∣eKn(θ)−1−Kn(θ)

∣∣∣+ ∣∣Kn(θ)
∣∣

≤
[
Kn(θ)

]2
2

+
∣∣Kn(θ)

∣∣ (40)

for all n. By definition we write

Kn(θ) =C(n)
iθ
Kn

,

where limn→∞ C(n) =C < ∞. Then, denoting

Fn(x): = P
{

ζn < x
}
,

and using the estimation (40), we obtain the Berry-Esseen approximation bound [12] [p. 538] as follows:

∣∣∣Fn(x)−Φ0, σ2(x)
∣∣∣≤ 1

π

T∫
−T

∣∣∣∣∣φζn(θ)− e−σ2θ 2/2

θ

∣∣∣∣∣dθ +
24M
πT

≤ 2
π

C(n)
Kn

T +
24M
πT

(41)

for all x and T > 0, where M is such that Φ′
0, σ2(x)≤ M. It can be decidedly taken that M = 1

/
σ
√

2π .
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We let now T → ∞ and in the same time it is necessary to be T = o(
√

n) since Kn = O∗ (
√

n) as n → ∞. We can
choose T in general, in the form of T = nδLT (n), where 0 < δ < 1/2 and LT (n) slowly varies at infinity in the sense of
Karamata. Then we reform (41) as follows:

∣∣∣Fn(x)−Φ0, σ2(x)
∣∣∣≤ LC(n)

n1/2−δ +
LM(n)

nδ
, (42)

where

LC(n): =
2C(n)

π
LT (n) and LM(n): =

24M
π

1
LT (n)

.

To come up to optimum degree of an estimation of approximation in (42), we would choose value of δ such that
(1/2− δ )δ has reached the maximum value for δ ∈ (0, 1/2). It happens only in a unique case when δ = 1/2− δ or
δ = 1/4. Thus (42) becomes

∣∣∣Fn(x)−Φ0, σ2(x)
∣∣∣≤ L(n)

n1/4
,

where L(n) = LC(n)+LM(n) slowly varies at infinity.
The proof is completed.
Proof of Theorem 3 First we will show that

Sn

n
D−→ 1+ γq as n → ∞. (43)

Writing

ηn: =
Sn

n
=

ESn

n
+

Kn

n
ζn,

and considering (10), we have

φηn(θ) : = E
[
exp
{

iθηn
}]

= eiθ(1+γq)[φζn(θ)
]Kn/n

(
1−

iθγq

1−β
1
n

(
1−β n)) , (44)

where φζn(θ) = E
[
exp
{

iθζn
}]
. Relation (39) implies

φζn(θ) = e−σ2θ 2/2 (1+O∗ (iθ/Kn
))

as n → ∞
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and hence
[
φζn(θ)

]Kn/n → 0 as n → ∞. Thus (44) entails

φηn(θ)→ eiθ(1+γq) as n → ∞.

According to the continuity theorem, this is sufficient for being of (43).
From (44) we obtain

∣∣∣φηn(θ)− eiθ(1+γq)
∣∣∣ ≤

∣∣∣∣[φζn(θ)
]Kn/n

(
1−

iθγq

1−β
1
n

(
1−β n))−1

∣∣∣∣
≤

∣∣∣∣ iθγq

1−β
1
n

(
1−β n)∣∣∣∣ .

We accounted in the last step that |φ∗(θ)| ≤ 1 for any characteristic function. Now we can write the Berry–Esseen
bound as follows:

∣∣∣P{ηn < x
}
− I1+γq(x)

∣∣∣ ≤ 1
π

T∫
−T

∣∣∣∣∣φηn(θ)− eiθ(1+γq)

θ

∣∣∣∣∣dθ +
24Mη

πT

≤
γq

π

(
1−β n

)
1−β

2T
n

+
24
πT

≤ 1
π

2γq

1−β
T
n
+

24
πT

,

where we put Mη = 1 which is suitable for the degenerate distribution function.
In this case we choose T = nδLT (n), where 0 < δ < 1 and LT (n) slowly varies at infinity. Therefore

∣∣∣P{ηn < x
}
− I1+γq(x)

∣∣∣≤ Lβ (n)

n1−δ +
L1(n)

nδ
, (45)

where

Lβ (n): =
1
π

2γq

1−β
LT (n) and L1(n): =

24
π

1
LT (n)

.

We find δ = 1/2 and (45) becomes

∣∣∣P{ηn < x
}
− I1+γq(x)

∣∣∣≤ Lγ(n)
n1/2

,

where Lγ(n) = Lβ (n)+L1(n) slowly varies at infinity.
The proof is completed.
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