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1. Introduction 
Differential equations and systems represent a dedicated class of models of many real processes, giving 

mathematical expression to specific laws. As a rule, they incorporate a number of parameters, some fixed and specific to 
the quantities involved and others susceptible to being influenced in order to reach a certain objective, the controllability 
condition. This change is made mathematically using some control parameters whose expression can, in many cases, 
be expressed in terms of state variables. These expressions, once inserted into the equations, transform them into 
functional-differential equations whose study can be reduced to that of the fixed points of some nonlinear operators. In 
this way, we speak of the fixed point method for control problems. It was frequently used in studies related to control 
theory in a particular way, specific to each investigated problem (see, [1-5] for example, and the monograph [6]). 
A general, unifying formulation of the method was given in the work [7]. We describe it as follows.

The problem is to find (w, λ), a solution to the following system
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associated to the fixed point equation w = N (w, λ). Here w is the state variable, λ is the control variable, W is the 
domain of the states, Λ is the domain of controls and D is the controllability domain, usually given by means of some 
condition/property imposed to w, or to both w and λ. Notice that all involved sets are not necessarily structured sets and 
N is any mapping from W × Λ to W.

One says that the equation w = N (w, λ) is controllable in W × Λ with respect to D, providing that problem (1) has a 
solution (w, λ). If the solution is unique, we say that the equation is uniquely controllable.

Let Σ be the set of all possible solutions, (w, λ) of the fixed point equation, and Σ1 be the set of all w that are first 
components of some solutions of the fixed point equation, that is

{ }
{ }1

( , ) : ( , ) ,

:  there is with ( , ) .

w W w N w

w W w

λ λ

λ λ

Σ = ∈ ×Λ =

Σ = ∈ ∈Λ ∈Σ

Then, the set of all solutions to the control problem (1) is equal to .DΣ∩   
Define the set-valued map 1:F Σ →Λ by

{ }( ) :  ( , ) .F w w Dλ λ= ∈Λ ∈Σ∩

Thus, F gives the ‘expression’ of the control variable in terms of the state variable.
It is easily seen that if for some extension :F W →Λ  of F from Σ1 to W, the fixed point inclusion

( ), ( ) ,w N w F w∈ 

has a solution w ∈ W, that is

w = N (w, λ),

for some ( ),F wλ∈   then the couple (w, λ) solves the control problem (1).
In many cases, F and ( ),F wλ∈   are single-valued maps and the extension ( ),F wλ∈   can be done using the expression of F.
In applications, this principle should be accompanied by a fixed point principle to solve the resulting fixed point 

problem. The fixed point theorems of Banach, Schauder, and Leray-Schauder are currently used. Some illustrative 
examples were given in papers [7-10].

The purpose of this paper is to draw attention to the vector technique of the fixed point theory, based on the use 
of the concept of contraction in the sense of Perov and on matrices instead of constants in the Lipschitz and growth 
conditions. As first shown in [11] (see also [12, Chapter 10]), the vector approach, compared to the scalar one, proves to 
be more suitable for the study of systems of equations. It is consistent with the vector structure of a system viewed as a 
single equation decomposed on a product space.

We use the vector fixed point approach to discuss three control problems related to Kolmogorov systems, which, 
for example, model the dynamics of several species that mutually influence their per capita growth rates (see, e.g., 
[13-19]). The problems consist of finding appropriate changes to growth rates or per capita growth rates so that at 
a given time, certain desired levels are reached. Such issues are extremely important in controlling epidemics and 
ecological balances. In the models that describe the evolution of the production of components of a certain product, 
the control is carried out through production policies to reach the desired level of production. Control issues are also 
important in medicine, where control is achieved by dosing the drug in order to achieve the desired result.

For simplicity, we shall consider two-dimensional Kolmogorov systems, but the technique used and the results 
obtained can be adapted to the general case of n-dimensional systems. More exactly, we are concerned with the 
solvability of the control problems from below. In all cases, x0, y0 are the initial states at time t = 0, and xT, yT are 
the desired levels at a given time T. Also, x, y are the state variables, and λ, μ are the control parameters. Thus, the 
controllability conditions are

x(T) = xT ,     y(T) = yT.
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Problem 1 (with control of both per capita growth rates):

( )
( )

( ) ( ) ( ( ), ( ))
( ) ( ) ( ( ), ( )) .

x t x t f x t y t dy
y t y t g x t y t dx

λ
µ

′ = −
 ′ = − (2)

Problem 2 (with control on both growth rates):

( )
( )

( ) ( ) ( ), ( )
( ) ( ) ( ), ( ) .

x t x t f x t y t
y t y t g x t y t

λ
µ

′ = −
 ′ = − (3)

Problem 3 (with control of the per capita growth rate of one species and control of the growth rate of the other 
one):

( )
( )

( ) ( ) ( ( ), ( ))
( ) ( ) ( ), ( ) .

x t x t f x t y t
y t y t g x t y t

λ
µ

′ = −
 ′ = − (4)

Notations and auxiliary results. Throughout this work, by || . ||∞ we shall denote de max norm on the space C [0, T], 
i.e., [0, ]max ( ) .t Tu u t∈∞

=
By a matrix that converges to zero we mean a square matrix M with nonnegative entries and the property that 

its power Mk converges to the zero matrix as k → ∞. It is well-known that this property is equivalent to the fact that 
the spectral radius of M is strictly less than one, and also the fact that the matrix I – M (I being the unit matrix of the 
same size) is nonsingular and its inverse also has nonnegative entries. We mention that a square matrix of size two 

a b
M

c d
 

=  
 

 with nonnegative entries is convergent to zero if and only if

tr min{2,1+det },M M< (5)

that is

2 and 1 .a d a d ad bc+ < + < + − (6)

We shall use this notion in two situations: in order to obtain the existence and uniqueness of the solution of a 
system, by means of Perov’s fixed point theorem, and to guarantee the invariance condition to a given operator, when 
we will be led to solving vector inequations.

For the first situation, a matrix that converges to zero plays the role of the contraction constant from Banach’s 
fixed point theorem. More exactly, we have the vector version of the contraction principle, namely Perov’s fixed point 
theorem that we present here in a form sufficient for us.

Theorem 1.1. (Perov). Let (X, || . ||) be a Banach space, D a closed subset of X × X and N : D → D, N = (N1, N2),
Ni : D →  X (i = 1, 2) be an operator satisfying the following vector inequality

1 1 1 1

2 2 2 2

( () )
)( ()

N x N y x y
M

N x N y x y
 −   − 

≤   − −   

for all x = (x1, x2), y = (y1, y2) ∈ D, where M is a convergent to zero matrix of size two. Then, N has a unique fixed point 
in D which is the limit of the sequence ( )

1
)(k

k
N x

≥
 of successive approximations starting from any x ∈ D.

For the second situation, trying to solve in x and y a vector inequation of the form
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,
x a x

M
y b y
     

+ ≤     
     

or equivalently, the inequation

( ) ,
x a

I M
y b
   

− ≥   
   

we shall multiply by (I – M )–1 to obtain the solution

1( ) .
x a

I M
y b

−   
≥ −   

   

This is possible with keeping the inequality sense, if I – M is nonsingular and its inverse has nonnegative entries, that is, 
if M is convergent to zero.

2. Main results
In this section, the general method of solving control problems for fixed-point equations that was presented in 

Section 1 is followed for each of the three problems: (2), (3) and (4).
In the following we use the following numbers involving the initial and final values:

0 0
1 0 2 0: ln ln , : ln ln .

T T

x yC x C y
x y

= + = + (7)

2.1 First control problem

Consider the control problem (2). The first result guarantees the unique controllability of the system, with a given 
bound of the states x, y.

Theorem 2.1. Let ρ > 0 be such that ln ρ > C1, ln ρ > C2, and let f, g :[0, ρ]2 → ℝ be bounded by a constant C. Assume 
that f and g satisfy the Lipschitz conditions

11 12( , ) ( , ) | |,f x y f x y a x x a y y− ≤ − + − (8)

21 22( , ) ( , ) | |g x y g x y a x x a y y− ≤ − + − (9)

for all , , , [0, ].x y x y ρ∈  Then, for each

1 2ln ln0 min ,C CT
C C
ρ ρ− − < ≤  

 
(10)

for which the matrix

1 , 2: [ ]ij i jM T aρ ≤ ≤= (11)

converges to zero, the control problem (2) has a unique solution (x*, y*, λ*, μ*) with x*, y* positive and , .x yρ ρ∗ ∗

∞ ∞
≤ ≤
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Proof. Looking for positive x and y, we may take them under the form x = eu and y = ev. In the new variables u, v, the 
initial conditions are u(0) = u0 where v(0) = v0, where u0 = ln x0  and v0 = ln y0 . Also, the controllability conditions become 
u(T) = uT , v(T) = vT , where uT = ln xT and vT = ln yT . Substitution and integration then yield the Volterra type integral system

( ) ( )
0 0

( ) ( )
0 0

( ) ( , ) ,

( ) ( , ) .

t u s v s

t u s v s

u t u f e e ds t

v t v g e e ds t

λ

µ

 = + −

 = + −

∫
∫ (12)

Using the controllability conditions u(T) = uT  and v(T) = vT  gives the expression of the control parameters in terms of the 
variables u and v, namely

( )
( )

( ) ( )
0 0

( ) ( )
0 0

1 ( , ) ,

1 ( , ) .

T u s v s
T

T u s v s
T

u u f e e ds
T

v v g e e ds
T

λ

µ

= − +

= − +

∫

∫ (13)

Replacing in (12) we obtain a Volterra-Fredholm type integral system which can be seen as a fixed point equation for the 
operator N = (A, B) giving by

0 0 0 0

0 0 0

0 0 0 0

0 0 0

( , )( ) ( ) ( , ) ( , ) ,

( ) 1 ( , ) ( , ) .

( , )( ) ( ) ( , ) ( , ) ,

( ) 1 ( , )

T tu v u v
T

t Tu v u v
T t

T tu v u v
T

t u v
T

t tA u v t u u u f e e ds f e e ds
T T
t t tu u u f e e ds f e e ds
T T T
t tB u v t v v v g e e ds g e e ds
T T
t t tv v v g e e ds
T T T

= − − − +

 = − − + − − 
 

= − − − +

 = − − + − − 
 

∫ ∫

∫ ∫

∫ ∫

∫ ( , ) .
T u v

t
g e e ds∫

We shall apply Perov’s theorem (see [12]) in the set

{ }2: ( , ) ([0, ]; ) : || || , || || ,RD u v C T u R v R∞ ∞= ∈ ≤ ≤

where ln . Let ( , ), ( , ) .RR u v u v Dρ= ∈  Using the Lipschitz condition on f, we obtain the following estimate

( ) ( )
0

0

11 120

| ( , )( ) ( , )( ) |

1 ( , ) ( , ) ( , ) ( , )

| ( , ) ( , ) |

( | | | |) .

t Tu v u v u v u v

t

T u v u v

T u u v v

A u v t A u v t

t tf e e f e e ds f e e f e e ds
T T

f e e f e e ds

a e e a e e ds

−

 = − − − − 
 

≤ −

≤ − + −

∫ ∫

∫
∫

Now using Lagrange’s mean value theorem we obtain

11 120

11 12

| ( , )( ) ( , )( ) |

( | ( ) ( ) | | ( ) ( ) |)

( || || || || ).

T

A u v t A u v t

a u s u s a v s v s ds

T a u u a v v

ρ

ρ ∞ ∞

−

≤ − + −

≤ − + −
∫

A similar estimate is obtained for B. Taking the maximum for t ∈ [0,T], we have
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11 12

21 22

|| ( , ) ( , ) || ( || || || || ),
|| ( , ) ( , ) || ( || || || || ).

A u v A u v T a u u a v v
B u v B u v T a u u a v v

ρ
ρ

∞ ∞ ∞

∞ ∞ ∞

− ≤ − + −
− ≤ − + −

These two inequalities can be put in the vector form

|| ( , ) ( , ) || || ||
,

|| ( , ) ( , ) || || ||
A u v A u v u u

M
B u v B u v v v

∞ ∞

∞ ∞

− −   
≤   − −   

where the matrix M is assumed to converge to zero. Hence the operator N = (A, B) is a Perov contraction. It remains to 
prove the invariance of the set DR ,  that is,

|| || , || || imply || ( , ) || , || ( , ) || .u R v R A u v R B u v R∞ ∞ ∞ ∞≤ ≤ ≤ ≤

One has

	  0 0 10
( , )( ) | ( , ) | ,

T u v
TA u v t u u u f e e ds C TC R≤ + − + ≤ + ≤∫

since 1ln .CT
C
ρ −

≤   Similarly,

	  
0 0 20

( , )( ) | ( , ) | ,
T u v

TB u v t v v v g e e ds C TC R≤ + − + ≤ + ≤∫

since  2ln .CT
C
ρ −

≤  Therefore, the operator N = (A, B) invariants the set DR  and thus Perov’s fixed point theorem applies

and guarantees a unique fixed point (u*, v*) ∈ DR . Finally, x* = eu*, y* = ev* and λ*, μ* calculated according to (13) give the 
solution of the control problem (2). 

For the next result instead of the Lipschitz conditions on f and g, we assume a logarithmic growth. The bounds of the 
states x, y is not imposed from the beginning, but they are obtained by calculation.

Theorem 2.2. Let 2, :f g + →  be continuous and satisfy logarithmic growth conditions

11 12 1

21 22 2

( , ) ln ln ,

( , ) ln ln ,  

f x y a x a y b

g x y a x a y b

≤ + +

≤ + + (14)

for all , (0, )x y∈ ∞  and some constants .(, , 1,2)ij ia b i j+∈ =  Then for each T > 0 for which the matrix

[ ]ijM T a=
  

converges to zero, the control problem (2) has at least one solution (x*, y*, λ*, μ*) with x* > 0 and y* > 0.
Proof. We shall apply Schauder’s fixed point theorem (see, e.g., [20]) to the operator (A, B) in a bounded set D of 

the form

D = BR1
 × BR2

,

where { }([0, ]; : 1,2).) (
iR iB w C T w R i+ ∞
= ∈ ≤ =  We need to prove that one can find two positive numbers R1 and R2 

such that the following invariance condition is satisfied:

	  
1 2 1 2, imply ( , ) , ( , ) .u R v R A u v R B u v R

∞ ∞ ∞ ∞
≤ ≤ ≤ ≤
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Using (14) we have

1 0

1 11 12 10

1 11 1 12 2 1

( , )( ) | ( , ) |

( )

( ).

T u v

T

A u v t C f e e ds

C a u a v b ds

C T a R a R b

≤ +

≤ + + +

≤ + + +

∫
∫

A similar estimate holds for B. Hence,

11 1 12 2 1 1

21 1 22 2 2 2

( , ) ( ) ,

( , ) ( ) ,

A u v T a R a R C Tb

B u v T a R a R C Tb
∞

∞

≤ + + +

≤ + + +

that is, in the vector form

1 1

2 2

( , )
,

( , )
A u v R

M
B u v R

α
α

∞

∞

     
≤ +     

    

where 1 1 1 2 2 2: and : .C Tb C Tbα α= + = +  Thus, for the desired invariance property, we would like to have

1 1 1

2 2 2

,
R R

M
R R

α
α

     
+ ≤     

     

equivalently

1 1

2 2

( ) .
R

I M
R

α
α
   

≤ −   
   

If the matrix M converges to zero, then ( )1
2 2( )I M −
× +− ∈   and thus, we can multiply and preserve inequality sign. It 

turns out that

1 11

2 2

( ) .
R

I M
R

α
α

−    
− ≤   

   

This inequality allows the choice of the radii R1, R2 > 0 to guarantee the invariance property. Thus, Schauder’s fixed point 
theorem can be applied in BR1

 × BR2 .

2.2 Second control problem

We consider now the control problem (3), when the control parameters act on the growth rates.
Theorem 2.3. Assume that the functions 2, :f g →  satisfy the following conditions:

	  
11 12

21 22

( , ) ( , ) | | | |,

( , ) ( , ) | |,

xf x y xf x y a x x a y y

yg x y yg x y a x x a y y

− ≤ − + −

− ≤ − + −

for all , , , ,x y x y∈  and the matrix

	  
1 , 2ij i j

M T a
≤ ≤

 =  
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converges to zero. Then the control problem (3) has a unique solution.
Proof. Integration leads to the integral system

0 0

0 0

( ) ( ) ( ( ), ( )) ,

( ) ( ) ( ( ), ( )) .

t

t

x t x x s f x s y s ds t

y t y y s g x s y s ds t

λ

µ

 = + −

 = + −

∫
∫ (15)

Using the controllability conditions, we find the expressions of λ and μ, namely

 

( )
( )

0 0

0 0

1 ( ) ( ( ), ( )) .

1 ( ) ( ( ), ( )) .

T

T

T

T

x x x s f x s y s ds
T

y y y s g x s y s ds
T

λ

µ

= − +

= − +

∫

∫

Replacing in (15) we obtain a Volterra-Fredholm type integral system which can be seen as a fixed point equation in 
C ([0, T ]; ℝ2),  for the operator 2 2 3)( , ) : ([0, ]; ([0, ]; ,1 .) 5N A B C T C T= →   defined by

0 0 0 0

0 0 0

0 0 0 0

0 0 0

( , )( ) ( ) ( , ) ( , )

( ) 1 ( , ) ( , ) .

( , )( ) ( ) ( , ) ( , )

( ) 1 ( , ) ( ,

T t

T

t T

T t

T t

T

t T

T t

t tA x y t x x x x f x y ds x f x y ds
T T
t t tx x x x f x y ds x f x y ds
T T T
t tB x y t y y y yg x y ds yg x y ds
T T
t t ty y y yg x y ds yg x y
T T T

= − − − +

 = − − + − − 
 

= − − − +

 = − − + − − 
 

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ) .ds

We apply Perov’s fixed point theorem in the whole space C ([0, T ]; ℝ2). Similarly to the proof of the previous theorems, 
we have the following estimate

	  
0

( , )( ) ( , )( ) | ( , ) ( , ) | .
T

A x y t A x y t xf x y xf x y ds− ≤ −∫

Using the Lipschitz conditions from the hypothesis gives

11 120

11 12

( , )( ) ( , )( ) ( )

.

T
A x y t A x y t a x x a y y ds

Ta x x Ta y y
∞ ∞

− ≤ − + −

≤ − + −

∫

In this way we obtain the estimates

	  11 12

21 22

( , ) ( , )

( , ) ( , .

,

)

A x y A x y Ta x x Ta y y

B x y B x y Ta x x Ta y y
∞ ∞ ∞

∞ ∞ ∞

− ≤ − + −

− ≤ − + −

We write them in the vector from

	  ( , ) ( , )
,

( , ) ( , )
A x y A x y x x

M
B x y B x y y y

∞ ∞

∞ ∞

 −   − 
≤   − −   

where the matrix M is convergent to zero. Thus, the operator N is a Perov contraction on C ([0, T ]; ℝ2). Its unique fixed 
point gives the solution of the control problem.
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2.3 Third control problem

For problem (4), we apply again Perov’s fixed point theorem by combining the techniques used for the first two 
problems. Thus, we require the Lipschitz continuity of  f (x, y) and yg (x, y).
We look for solutions (x, y) with , [0, ], 0 on [0, ] and .x y C T x T x ρ

∞
∈ > ≤  

Theorem 2.4. Let , :[0, ]f g ρ × → 
 be such that

11 12

21 22

| ( , ) ( , ) | | | | |,
| ( , ) ( , ) | | | | |, 

f x y f x y a x x a y y
yg x y yg x y a x x a y y

− ≤ − + −
− ≤ − + −

for all , [0, ] and , .x x y yρ∈ ∈  Assume that

( , )f x y C≤

for ( , ) [0, ] ,x y ρ∈ ×

1 lnC TC ρ+ ≤ (16)

and that the matrix

11 12

21 22

a a
M T

a a
ρ
ρ
 

=  
 

(17)

is convergent to zero. Then, the control problem has a unique solution (x*, y*, λ*, μ*) such that x* > 0 and || x* ||∞ ≤ ρ.
Proof. Let x = eu and denote 0 : (0) ln (0).u u x= =  Making substitutions and integrating we obtain

( )
0 0

( )
0 0

( ) ( , ( )) ,

( ) ( ) ( , ( )) .

t u s

t u s

u t u f e y s ds t

y t y y s g e y s ds t

λ

µ

 = + −

 = + −

∫
∫ (18)

Using the controllability conditions u(T) = uT and y(T) = yT , we find the expressions of the control parameters in terms of 
the state variables,

( )
0

0

( )
0

0

1 ( , ( )) ,

1 ( ) ( , ( )) .

T
u s

T

T
u s

T

u u f e y s ds
T

y y y s g e y s ds
T

λ

µ

 
= − + 

 
 

= − + 
 

∫

∫

Replacing in (18) we arrive to the Volterra-Fredholm type integral system

0 0 0 0

0 0 0 0

( ) ( ) ( , ) ( , )

( ) ( ) ( , ) ( , ) ,

T tu u
T

T tu u
T

t tu t u u u f e y ds f e y ds
T T
t ty t y y y yg e y ds yg e y ds
T T

 = − − − +

 = − − − +


∫ ∫

∫ ∫

which can be seen as a fixed point equation for the operator N = (A, B), where
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0 0 0 0

0 0 0

0 0 0 0

0 0 0

( , )( ) ( ) ( , ) ( , )

( ) 1 ( , ) ( , ) .

( , )( ) ( ) ( , ) ( , )

( ) 1 ( , ) (

T tu u
T

t Tu u
T t

T tu u
T

t Tu
T t

t tA u y t u u u f e y ds f e y ds
T T
t t tu u u f e y ds f e y ds
T T T
t tB u y t y y y yg e y ds yg e y ds
T T
t t ty y y yg e y ds yg
T T T

= − − − +

 = − − + − − 
 

= − − − +

 = − − + − − 
 

∫ ∫

∫ ∫

∫ ∫

∫ ∫ , ) .ue y ds

We shall apply Perov’s theorem to the operator N in the set [0, ],RD B C T= ×  where { [0, ] : }.RB u C T u R
∞

= ∈ ≤  To this 
aim, using the Lipschitz conditions on f (x, y) and yg (x, y), we obtain estimates of A and B. One has

( ) ( )
0 0

0

( , )( ) ( , )( )

1 ( , ) ( , ) ( , ) ( , )

| ( , ) ( , ) | .

t tu u u u

T u u

A u y t A u y t

t tf e y f e y ds f e y f e y ds
T T

f e y f e y ds

−

 = − − − − 
 

≤ −

∫ ∫

∫

Then, using the Lipschitz condition on f, we obtain
 

( )

11 120

11 120

11 12

| ( , )( ) ( , )( ) |

( | | | |)

| | | |

|| || || || .

T u u

T

A u y t A u y t

a e e a y y ds

a u u a y y ds

Ta u u Ta y y

ρ

ρ ∞ ∞

−

≤ − + −

≤ − + −

≤ − + −

∫
∫

Similarly,

( ) ( )
0 0

0

| ( , )( ) ( , )( )|

1 ( , ) ( , ) ( , ) ( , )

| ( , ) ( , ) | .

t tu u u u

T u u

B u y t B u y t

t tyg e y yg e y ds yg e y yg e y ds
T T

yg e y yg e y ds

−

 = − − − − 
 

≤ −

∫ ∫

∫

Furthermore,

	  

( )

21 220

21 220

21 22

| ( , )( ) ( , )( ) |

( | | | |)

| | | |

|| || || || .

T u u

T

B u y t B u y t

a e e a y y ds

a u u a y y ds

Ta u u Ta y y

ρ

ρ ∞ ∞

−

≤ − + −

≤ − + −

≤ − + −

∫
∫

Thus, we have

11 12

21 22

|| ( , ) ( , ) || || || || || ,
|| ( , ) ( , ) || || || || || .

A u y A u y Ta u u Ta y y
B u y B u y Ta u u Ta y y

ρ
ρ

∞ ∞ ∞

∞ ∞ ∞

− ≤ − + −
− ≤ − + −

Putting the above inequalities in the vector form
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11 12

21 22

|| ( , ) ( , ) || || ||
,

|| ( , ) ( , ) || || ||
A u y A u y a a u u

T
B u y B u y a a y y

ρ
ρ

∞ ∞

∞ ∞

− −     
≤ ⋅     − −     

we guarantee the Perov contraction condition under the assumption that matrix M is convergent to zero. Moreover, the 
invariance condition on BR holds as follows:
 

0 0 0

1 10

| ( , )( ) |

| | | | 1 ( , ) ( , )

| ( , ) | ln .

t Tu u
T t

T u

A u y t

t tu u u f e y ds f e y ds
T T

C f e y ds C TC Rρ

 ≤ + − + − − 
 

≤ + ≤ + ≤ =

∫ ∫

∫

Perov’s theorem can be applied on BR
 × C[0, T], and which guarantees the existence of a unique fixed point (u*, y* ) of the 

operator N. It yields the solution of the control problem (x*, y*, λ*, μ*) as desired.
Remark 2.1. The specific structure of the component equations in a Kolmogorov system makes an exponential 

change of a variable useful in order to explicitly obtain the expression of the control in terms of the state variables from the 
corresponding equivalent integral equations when the control acts on the per capita rate. Thus, for the first problem, both 
controls act on the per capita rates; for the second problem, no one of the controls acts on the per capita rate; and for the 
third problem, only one of the controls does. Correspondingly, both state variables have been changed for the treatment 
of Problem 1; no changes have been made for Problem 2; only one variable has been changed in the case of Problem 3.

Remark 2.2. The proofs of the previous theorems show the advantage of the vector method over the usual one, namely 
that it allows us, instead of a set of conditions imposed on the constants involved in Lipschitz or growth inequalities, to 
formulate a single condition imposed cumulatively by the matrix whose elements are these constants.

Example 1. This example illustrates Theorem 2.1. Consider the following self-limiting system

4

2 2

4

2 2

10
1

2 10 ,
1 4

x x
x y

y y
x y

λ

µ

−
′

−
′

  
= −  + +  


 ⋅ = −  + + 

where T = 5, ρ = 100, x0 = e, y0 = e2 and the final controllability conditions are x5 = e2 and y5 = e. We have that C = 2.10-4,

4 4
4 4

2 2 2 2 2 2

4 4
4 4

2 2 2 2 2 2

2 10 2 1010 , 10 ,
(1 ) (1 )

8 2 10 2 2 104 10 , 2 10 .
(1 4 ) (1 4 )

f x f y
x x y y x y

g x g y
x x y y x y

− −
− −

− −
− −

∂ ⋅ ∂ ⋅
= − ≤ = − ≤

∂ + + ∂ + +

∂ ⋅ ⋅ ∂ ⋅ ⋅
= − ≤ ⋅ = − ≤ ⋅

∂ + + ∂ + +

Thus, the Lipschitz conditions (8), (9) become

4 4

4 4

( , ) ( , ) 10 | | 10 | |,

( , ) ( , ) 4 10 | | 2 10 | | .

f x y f x y x x y y

g x y g x y x x y y

− −

− −

− ≤ − + −

− ≤ ⋅ − + ⋅ −

Also, in this case, using (7), we have C1 = 2 and C2 = 3. For T = 5, condition (10) is satisfied. In addition, matrix M given 
by (11) is

	  2 2

1 1

5 10 5 10
.

2 10 10
M

− −

− −

 ⋅ ⋅
=  ⋅ 
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Recalling the necessary and sufficient condition (5) for a matrix of size two of being convergent to zero, it is easy to check 
that this condition holds for our matrix M. Indeed, we have

	  
-2 -1

-2 -1 -2 -1

tr 5 10 10 2,
tr 1 det 1 5 10 10 5 10 2 10 ,

M
M M

= ⋅ + <

< + = + ⋅ ⋅ − ⋅ ⋅ ⋅

that is tr M < min {2,1 + det M}.  Applying Theorem 2.1, it turns out that the control problem has a unique solution with 
100 and 100.x y∗ ∗

∞ ∞
≤ ≤    

Example 2. Theorem 2.2 in particular applies with the following choice of functions f and g

( )

( ) ( )

1, ln 1,
10 1
1, ln 1 , 0 ,

10 1

xf x y x
x y

yg x y y x y
x y

= +
+ +

= + >
+ +

extended by continuity to x = 0 and y = 0, respectively, that is f (0, y) = g (x, 0) = 1 (x, y  ℝ 
+ ). It is easy to check that the 

assumptions of Theorem 2.2 are satisfied for T = 5 and that the convergent to zero matrix M is

0.5 0
.

0 0.5
M  

=  
 

Thus, the corresponding Kolmogorov system is controllable for any initial and final values of x and y.
Example 3. The following functions make the assumptions of Theorem 2.3 to be fulfilled:

( ) ( )

( ) ( )

1 sin, 1 sin ,
10
1 sin, 1 sin .

10

xf x y y
x

yg x y x
y

= +

= +
 

Here, it is understood that ( ) ( ) ( ) ( )1 10, 1 sin and ,0 1 sin .
10 10

f y y g x x= + = +  The assumptions of Theorem 2.3 are

satisfied for T = 3 and that the convergent to zero matrix M is in this case

0.6 0.3
.

0.3 0.6
M  

=  
   

Example 4. Consider the functions

( ) ( )
( ) ( )

2 2

1, ,
100 1

1 sin, 1 sin ,
100

f x y
x y

yg x y x
y

=
+ +

= +

for which 11 12 21 22
1 2 1, and ,

100 100 100
a a a a C= = = = =  independently of ρ. Taking x0 = 1 and xT = e, we have C1 = 1.  Next, 

taking T = 10 and ρ = e2. we have that condition (16) holds. In addition, matrix (17) is
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2

2

11
10 2

e
M

e
 

=  
 

and by checking (6), it is convergent to zero. Thus, Theorem 2.4 applies.
Remark 2.3. (Approximation and numerical methods) As can be seen from the above, solving control problems often 

leads to Volterra-Fredholm integral systems, whose numerical solving is a real challenge. Starting from this finding, in the 
paper [8], an algorithm was developed for the approximation of solutions to control problems for fixed point equations. 
The algorithm was successfully applied in the recent work [21] to a control problem related to a three-dimensional system 
that models stem cell transplantation. It can also be used for the numerical solution of control problems for Kolmogorov 
systems, as shown in the paper [10], and can be easily combined with the vector method that was the subject of this work.
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