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Abstract: This work focuses on the detection of fake digital information using various machine learning and deep 
learning algorithms to prevent its spread through Internet of Things (IoT) devices and systems. The research highlights 
the significance of detecting and preventing false or misleading information in critical areas such as healthcare, 
public safety, and emergency response. The study compares the performance of several supervised machine learning 
algorithms and identifies logistic regression as the most accurate (98.03%). The empirical analysis used data from The 
Indian Express, PolitiFact, and Kaggle and leveraged natural language processing (NLP) to prepare, clean, and model 
the data. To detect fraudulent posts, the study employed random forest, a supervised machine learning algorithm, which 
achieved an impressive accuracy rate of 99.71% on a Kaggle dataset. The research also developed a model for detecting 
false reporting related to COVID-19, utilizing the support vector machine technique, which achieved an accuracy rate of 
78.69%. The presented work also determined the authenticity of images through convolutional neural networks (CNNs). 
Lastly, a content-based recommendation system was developed to enhance people’s security and confidence.
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1. Introduction
From an Internet of Things (IoT) perspective, the proliferation of “fake news” can have severe consequences for 

connected devices and systems. Misinformation, defined as inaccurate or incorrect information unintentionally made 
or distributed, can spread rapidly through IoT devices, leading to false assumptions and misguided actions [1, 2]. 
Meanwhile, the intentional creation and dissemination of disinformation can manipulate public opinion and obstruct 
factual evidence, potentially causing damage to the IoT system’s trust and the government’s ability to make informed 
decisions. In such cases, it becomes crucial to employ techniques like fake digital information detection to prevent the 
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spread of false or misleading information through IoT devices, ensuring that decisions are based on accurate and factual 
evidence [3, 4]. Misinformation and disinformation can be broken down into seven distinct categories, which are as 
follows:

1.	 Satire or parody: The use of satire or parody is risky, even though the author does not intend to cause harm to 
anyone.

2.	 Misleading content: Misleading content is characterized by the inappropriate use of facts to present a topic or a 
person in an unfavorable light.

3.	 Imposter content: Imposter content is created when genuine sources are misrepresented as being something 
else.

4.	 Fabricated content: Recently fabricated content is wholly untrue, and its creators intend it to mislead and harm 
people.

5.	 False connection: This is what happens when the headlines, photos, or captions do not adequately support the 
content.

6.	 Context: This occurs when authentic content is distributed together with contextualized fake information.
7.	 Manipulated content: It can be defined as changing truthful information or imagery to trick someone into 

believing something untrue.
Websites that specialize in creating or sensationalizing stories are frequently the ones responsible for the 

dissemination of fake news [5]. It often employs controversial and provocative headings. Its growth poses a significant 
obstacle to the functioning of democratic societies in the modern world [6]. Fact-checkers are people who investigate the 
claims made in the media to ensure that they are accurate. These professionals debunk false claims made in fake news 
by pointing out why they are false. The use of machine learning and natural language processing (NLP) techniques, as 
shown in [7, 8], can now be used to supplement the manual fact-checking procedure that has traditionally been used. An 
application of artificial intelligence known as machine learning allows a computer to learn independently without being 
specifically programmed to do so. It not only processes but also learns from the data. We provide machine learning 
with the dataset, and the software generates the algorithm independently. There are three different ways of acquiring 
knowledge: (i) supervised learning (ii) unsupervised learning (iii) reinforcement learning.

“What we see is what we believe”. A person cannot readily think of a made-up truth without first validating it, 
which results in its dissemination to others. Individuals begin to feel something is proven only after it has been exposed 
several times, which explains the illusory truth effect. The repetition effect persuades us to think previously incorrect 
information is true; this is the impact’s strength. The illusory truth effect is one of the factors that contributes to 
misleading news reports gaining traction and drawing an audience. [9, 10]

A tremendous amount of image data has been generated by social networking platforms such as Facebook and 
Instagram. GANs (generative adversarial networks) are a burgeoning topic in machine learning/artificial intelligence 
that generate a lot of fake images. Many people have fallen victim to picture counterfeiting using image and video 
processing software like GNU Gimp, Adobe Photoshop, etc. Fake news and mob provocation rely heavily on photos 
like this, which are excellent targets for malicious manipulation [11-13].

Several techniques for facial manipulation in videos, including deepfake and faceswap, have been developed in 
the last several years, allowing anyone to easily change faces in video sequences with amazingly realistic results and no 
effort [14-18]. Modern technology, powerful smartphone cameras, and the widespread availability of high-speed internet 
connections have enormously boosted social media’s ever-growing reach. Technological advancements, increased 
network access, and improved peer-to-peer connectivity have simplified the creation and transmission of digital videos 
across media sharing platforms. Deep learning has become extremely powerful as processing power has increased, 
which was thought to be unachievable only a few years ago [19]. However, this disruptive technology has introduced 
some new obstacles. Free deep learning-based software tools have made it possible to create credible face exchanges in 
films that leave minimal indications of manipulation, dubbed deepfake (DF) videos or artificial intelligence-generated 
media. The proliferation of DF on social media platforms has resulted in spamming and the propagation of false 
information [20]. DF detection is critical for resolving such a problem.

Supervised learning entails training the model with labeled samples, after which the machine performs the task on 
unseen data [21-23]. Our study will utilize a supervised learning algorithm to detect bogus news. Supervised learning 
applies to two distinct sorts of problems: classification and regression [24-26]. In this endeavor, we classify news 
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as ‘false’ or ‘real’. The optimal classification method for the false news detector is chosen based on the maximum 
accuracy achieved after comparing various classification algorithms [27, 28]. An approach based on deep learning 
can successfully distinguish artificial intelligence-generated false videos (DF videos) from real videos [29-32]. 
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used to identify DF. The system 
uses a CNN at the frame level to extract features from the CNN. These features are used to train a RNN that learns to 
classify whether a video has been manipulated or not and whether detection of temporal inconsistencies between frames 
introduced by the DF creation tools is possible [33-35].

1.1 Motivation

From Amazon to LinkedIn, Uber Eats to Spotify, and Netflix to Facebook, recommender systems are widely used 
to offer “similar things,” “related employment,” “preferred cuisines,” “interesting movies or series,” and “songs to 
try based on interest” to their customers. The number of press releases has expanded significantly, and it has become 
difficult for one to go through all online news resources in search of relevant news stories. Search engines assist 
consumers in navigating the massive amounts of information available online. Since then, recommendation systems 
have evolved to address various issues and provide users with information relevant to their requirements, either based on 
their preferences or on content similarity [36-38]. Each online news publisher controls its content and employs various 
strategies to propose stories to users based on shared interests. In a very dynamic environment, it becomes difficult to 
propose news articles due to various obstacles, including frequent changes in the set of news articles, the set of users, 
and rapid changes in user preferences. As a result, recommendation systems must be capable of continuously processing 
incoming news streams in real-time [39, 40]. There are two kinds of recommendation methods:

•	 Content-based recommendation
•	 Collaborative filtering
A content-based recommendation system uses similarities between users or objects as determined by their qualities 

[41-43]. It uses additional information (metadata) about people or products, i.e., it uses already-existing content. This 
metadata may include the user’s age, gender, occupation, location, and skill sets. It comprises the item’s name, specs, 
category, and registration date. In this article, we develop a content-based recommendation system to recommend news 
articles comparable to previously read articles based on article headline, category, author, and publishing date [44, 45].

1.2 Contribution

In this paper, we provide the results of an empirical study to identify fake news, as shown in Figure 1. The accuracy 
of the detection has been measured using a variety of machine learning and deep learning methodologies. Immediately 
after detecting fake information, we introduced the concept of a recommended system. This approach boosts the user’s 
confidence when working with digital media, which is beneficial. The key contributions to this work are:

•	 We propose an intelligent approach to dealing with fake digital information.
•	 We conduct experiments to evaluate our approach to detecting fabricated news stories, job listings, COVID-19 

information, and manipulated images online.
•	 We propose a trustworthy recommendation system to increase users’ confidence in consuming digital media 

online.
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Figure 1. Fake news detection and recommendation approach

1.3 Outline

The organization of the paper is as follows: the first section overviews bogus digital information, its influence on 
society, and work requirements. The second section of the article describes the current condition of the field. Section 3 
provides a detailed evaluation of the empirical inquiry. The fourth section addresses the analysis of the empirical study’s 
results. Section 5 suggests a method for suggesting to the user that they maintain their faith while ingesting digital 
information. Section 6 concludes with a synopsis of the work and its potential scope.

2. Related work
A significant number of academics have made important contributions to the ongoing quest to locate and recognize 

reliable sources of digital information. In this section, we will talk about the numerous reviews that have been done and 
the research proposals that have been suggested by a variety of experts. Articles were obtained and examined from both 
online and offline archives using keywords such as fake news, bogus COVID-19 articles, fraudulent job advertisements, 
fake photos, and recommendation algorithms from the fake digital information domain.

Kesarwani at el. [46] demonstrated a straightforward method for detecting fake news on social media using the 
K-Nearest Neighbor (KNN) classifier, with a 79% accuracy rate. The KNN algorithm is a supervised machine learning 
algorithm that addresses classification and regression issues. The article attempts to assess fake news using the KNN 
classification algorithm by collecting users’ implicit and explicit n characteristics across many dimensions. According 
to the article, KNN becomes slower as the model size increases. As indicated in the paper, the dataset for the model was 
obtained from Buzz Feed News (BFN), and it was utilized to train and test the model in this research. BFN uses the 
social analytics platform BuzzSumo to determine the best-performing Facebook content among 167 websites that post 
articles consistently. This dataset collected data on Facebook posts, each representing a news article. The authors culled 
these news pieces from Politico, ABC News, and CNN. The dataset contained the following four categories: “mainly 
true,” “primarily false,” “combination of true and false,” and “no factual material.” Apart from this, information on user 
social activity is collected via the Facebook API (application programming interface), including the number of shares, 
comments, and reactions to each post. After testing the model with various values of K, the study determined that the 
value of K provided the greatest accuracy. On the test set, the proposal achieved an approximate 79% classification 
accuracy for this model. The model’s average weight precision was 0.75, and its recall was 0.79. This article offered 
a framework for predicting bogus news on social media. The method of extracting features from datasets was deemed 
critical due to their application in the data mining algorithm KNN for classifying news articles on social media.

The purpose of [47] is to categorize news stories as genuine or fabricated. The authors identify fake news using 
various models and classifiers and then forecast the model’s accuracy using the Kaggle dataset. They constructed models 
using NLP, machine learning, and deep learning approaches and compared them to ensure optimum accuracy. The study 
analyzed results swiftly using an Nvidia DGX-1 supercomputer. This investigation examined several different models, 



Volume 4 Issue 4|2023| 1295 Contemporary Mathematics

including CNN, KNN, LSTM (long short-term memory), decision tree, random forest, and naive Bayes theorem, as well 
as deep learning networks, including shallow convolutional neural networks (SCNNs), very deep convolutional neural 
networks (VDCNNs), LSTM networks, gated recurrent unit (GRU) networks, and a combination of CNNs with LSTM 
(CNN-LS; CNN-GRU). We investigated feature extraction and features such as the n-gram. The model was constructed 
using term frequency-inverse document frequency (TF-IDF) features that were extracted. Additionally, they discovered 
features such as word embedding and word2vec in deep neural networks. For feature extraction in the machine learning 
model, the proposal used pick k best and chi2. 

The study presented by [48] develops a model for classifying Instagram photographs in order to identify potential 
threats and fake images. The model is constructed utilizing deep learning methods, CNNs, the AlexNet network, and 
AlexNet transfer learning. According to the findings model, the AlexNet network had a higher accuracy rate of 97% 
than the other networks. This research presents a method for classifying images by taking them as input and classifying 
them using a practical system (the CNN model). The training phase will use a label or classification assigned to the 
input sample. Two tags are used: one for the original image class and another for the fictitious image class. The target 
photographs were collected from the Instagram program, and they represent the dataset, which is necessary to answer 
the research questions, test the hypothesis, and evaluate the results. The convolutional layer was developed with typical 
mathematical methods to extract visual features. These convolutional processes operate as two-dimensional digital 
filters. Following that, the activation function was created. Because picture data is nonlinear, a nonlinear activation 
function called the Rectified Linear Unit (ReLU) was applied. A technique called max pooling was used to minimize the 
array’s size.

The authors of [49] presented a solution for detecting misleading information about COVID-19. A model is 
developed using World Health Organization (WHO), United Nations International Children’s Emergency Fund 
(UNICEF), and United Nations data. The study constructed a voting ensemble classifier using seven feature extraction 
approaches and ten distinct machine-learning algorithms. To ensure the validity of the acquired data, the proposal used 
fivefold cross-validation and then produced an evaluation technique. The detection technique used ensemble learning 
to train ten machine learning classifiers on the acquired ground truth data. The author collected COVID-19 ground 
truth by scraping the websites of the WHO and its regional branches, UNICEF, related organizations, and the United 
Nations. It gathered all information about the COVID-19 outbreak from these organizations’ daily situation updates, the 
WHO Director-General’s briefing on COVID-19, and news published in their newsrooms on their websites. The Google 
Fact Check Tools API was used, which enables users to browse and search for facts from a variety of fact-checking 
websites worldwide, including opensecrets.org, snopes.com, factcheck.afp.com, washingtonpost.com, factcheck.org, 
and politifact.com. The results established the veracity of the gathered ground truth data and yielded favorable results. 
The neural networks, decision trees, and logistic regression classifiers produced the best results in the empirical study. 
Another good study about COVID-19-related analysis can be found in [50].

The article [51] described a new deep-learning method that can distinguish AI-generated fake videos from real 
videos. To detect the DF, it is necessary to grasp the GAN. GAN is fed a video and an image of a specific target. 
It generates further films in which the target’s face is replaced by another individual who serves as a source. GAN 
divides video into frames and outputs the input image at the end of each frame. Additionally, it reconstructs and utilizes 
additional autoencoders. Due to resource constraints and production time constraints, the DF method can only generate 
face images of a given size. They must undergo affinal warping in order to match the source’s face configuration. The 
approach discussed here detects such abnormalities by dividing the movie into frames and comparing the resulting face 
regions to their surrounding areas. The features are then extracted using a ResNExt CNN, a RNN with LSTM, and by 
recording the GAN-induced temporal discrepancies between frames. It uploaded and classified videos using a web-
based platform; the primary purpose was to assess performance, security, user friendliness, correctness, and reliability 
[52-54].

The primary goal of [55] was to determine whether or not a job posting was phony using the Kaggle dataset. There 
were 17,880 job postings in the dataset. Prior to using this data in the classifier, it is pre-processed to eliminate stop 
words, superfluous attributes, and excessive spaces. The decision tree classifier outperformed the naive Bayes, multi-
layer perceptron, and KNN classifiers. The technique evaluated the ensemble approach method in order to determine 
whether it might improve the model’s performance or not. We implement and compare random tree classifiers, AdaBoost 
classifiers, and Gradient Boost classifiers. The investigation demonstrated that the random tree classifier outperformed 

http://opensecrets.org
http://snopes.com
http://factcheck.afp.com
http://washingtonpost.com
http://factcheck.org
http://politifact.com
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the others. The random forest classifier achieved an accuracy of 98.27%, a Cohen-Kappa score of 0.74, an F1-score of 
0.97, and an a mean squared error (MSE) of 0.02, indicating that it was the most accurate approach.

In its simplest form, a metadata analyzer is a tag search algorithm. Assume that terms such as Photoshop, Gimp, 
and Adobe are discovered in the text, maybe at a higher rate. The technique provided in [56] resulted in the creation 
of two distinct variables, dubbed fakeness and realness. Each variable describes the probability of an image being 
genuine or a forgery. After the tag is assigned, it is assessed, and the relevant variables are incremented by a specified 
weight. Metadata analysis revealed encouraging results in the field of non-shared photos. Under minimal processing, it 
can detect anomalies in all ’photoshopped’ photographs. However, it did not work with pictures posted on WhatsApp, 
Google+, or other social media platforms. When the system provides photos with modified metadata, it generates an 
error. They trained the neural network successfully, utilizing error-level analysis on 4,000 fake and 4,000 true photos. 
The image was classified as false or real using a neural network trained to a maximum success rate of 83 percent. Using 
this program on mobile devices will almost certainly result in a decrease in the propagation of fraudulent photographs 
via social media. A reliable false picture identification algorithm is created and evaluated by combining metadata 
analysis (40%), neural network output (40%), and findings (60%). The concept used in [57] explored the malicious URL 
detection method.

The system they develop in [58] learns from sentences how to identify bogus news. The initial step was to amass 
datasets. They gathered data from a variety of online sites. The acquired data was then labeled training data. 30% of that 
data was used for validation purposes. The data was then processed using the processes detailed in the flowchart below. 
Following the implementation of the method, the data were further processed using the bidirectional LSTM model. Two 
stages are required for the bi-LSTM architecture. In the first stage, after encoding headlines and bodies into input before 
passing them to the classifier based on terms that have been sub-worded, 28 headlines will be entered based on the 
largest number of words in the real headline. Simultaneously, 1,000 words will be fed into the body to ensure that it does 
not consume an excessive amount of memory. It retains the article’s text, with a vector dimension of 300 for each word 
entered in the headline or news body. They then utilized a Softmax activation function to determine class opportunities 
in the second stage.

According to the observed findings in [59], KNN is the weakest algorithm in terms of predictive capacity, with a 
mean accuracy of 75% (EN-English), 89% (PT-Portuguese), and 75% (ES-Spanish). The ensemble algorithms random 
forest and extreme gradient boosting (XGB) produced comparable and steady results, with random forest achieving 
79.9% (EN), 93.9% (PT), and 82.3% (ES), while XGB achieved 80.3% (EN), 94.7% (PT), and 82.3% (ES). Support 
vector machines showed the second-worst prediction performance on EN (79%) but the highest on PT (95%) and tied 
with ensemble algorithms on ES (82%). According to the results, the PT and ES collections are more linearly separable 
than the EN collection, with PT exhibiting slightly more linear behavior. Identifying false news is crucial in light of the 
increased news consumption via online social media (OSM), which allows for unregulated content streaming. Due to 
the rapid expansion of OSM, detection requires an automated method. The concept proposed a comparative examination 
of language-independent characteristics, stylometric complexity, and psychological types in a multilingual setting.

3. Empirical study: Fake information detection
The following sections detail the procedures we took to identify fake news. The step-by-step explanation will assist 

readers in comprehending the use of machine learning algorithms.

3.1 Data collection, assembling, and platform

A web scraper was used for the collection of data. The dataset for fake news detection was made by scraping data 
from websites like PolitiFact and The Indian Express. GitHub was also used for obtaining data. Data collected from 
various sources was arranged together depending on the four columns for fake news detection, which were title, author, 
text, and label. Google Colaboratory (Colab) Notebooks were used for the implementation of our model. For performing 
deep learning tasks, Google Colab has proven to be an excellent tool. It is a hosted Jupyter notebook that requires no 
setup and has an excellent free version, giving free access to Google computing resources such as GPUs and TPUs.
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3.2 Importing libraries

Our model made use of the Natural Language Toolkit (NLTK), Pandas, NumPy, Matplotlib, Wordcloud, Regex, and 
Sklearn packages. NLTK provides a systematic foundation for developing systematic Python programs for working with 
human language data. The interfaces include over 50 corpora and lexical resources, such as WordNet, as well as text-
processing libraries for classification, tokenization, stemming, lemmatization, tagging, parsing, and semantic reasoning 
wrappers. Pandas is a tool for manipulating large amounts of data at a high level. Constructed using the NumPy package 
and utilizing the DataFrame as the primary data structure.

The NumPy library contains multidimensional array objects and a plethora of algorithms for processing them 
(Numerical Python). NumPy is used to conduct mathematical and logical operations on arrays. Matplotlib is a powerful 
Python package that enables the creation of static, interactive, and animated displays. We created a data visualization 
using WordCloud to represent textual data. This library aids in visualizing the significance of each word based on 
its size, which corresponds to its frequency in the dataset. Regular expressions (abbreviated REs, regexes, or regex 
patterns) are a small, highly specialized computer language that is integrated into Python and imported via the re-
module. It is a string that has a sequence of characters that defines a search pattern. It can be used to determine whether a 
string contains the defined search pattern. Scikit-learn (Sklearn) is the most efficient library, providing a well-organized 
collection of methods for machine learning and statistical modeling, including classification, regression, clustering, and 
dimensionality reduction, via a logical Python interface.

3.3 Information about the datasets

Kaggle is used to provide a comprehensive training dataset with the following attributes: (i) id: a unique identifier 
for a news item, (ii) title: a news article’s title, (iii) author: the news article’s author, and (iv) text: the article’s text; it 
may be incomplete. The training dataset is 20,800 rows long and has five columns, whereas the testing dataset is 5,988 
rows long and has four columns. A label of 1 in training data indicates that the news is authentic, whereas a label of 0 
suggests that the item is false, as illustrated in Figure 2.

                                      

Figure 2. Top five rows of training and testing data

3.4 Cleaning and pre-processing

Typically, material scraped from websites is in raw textual format. Prior to analyzing or fitting a model to this 
data, it must be cleaned. Cleaning (or pre-processing) is the process of converting data to a format that a computer can 
interpret. This stage entails the removal of superfluous data. Stop words are meaningless words (data) in NLP. Regex, 
which is based on a context-free grammar approach, is beneficial for reducing superfluous punctuation.

•	 Tokenization: For English, we utilized the software Punkt tokenizer. An unsupervised algorithm divides a text 
into a list of sentences in order to create a model for abbreviated words, collocations, and words that begin 
sentences.
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•	 Stop words elimination: These are frequently used terms (such as “the,” “a,” “an,” and “in”) that a search 
engine has been trained to ignore, both when indexing entries for searching and when retrieving them in 
response to a search query. To avoid clogging up our database or wasting precious processing time, stop words 
must be removed. This is accomplished by keeping a list of words deemed to be stop words. Subsequently, the 
dataset will be cleaned of stop words.

•	 Lemmatization is the process of gathering together the various versions of a word so that they can be studied 
as a single item. This method grasps the term in its base form, called a lemma, i.e., in its dictionary form. 
This procedure preserves contextual information. The pre-processing of text entails both stemming and 
lemmatization. Wordnet is a freely accessible lexical database containing over 200 languages that was created 
primarily for NLP. It contains semantic associations (e.g., synonyms) between its terms. It is a frequently 
used lemmatizer approach. Synsets are a way for WordNet to organize synonyms. Synsets are a collection of 
semantically identical data components. After removing stop-words from our dataset, we employed a WordNet 
lemmatizer. 

•	 Situation normalization of items: In this case, we are just turning all characters in the text to lowercase. 
Because Python is a case-sensitive language, it distinguishes between nlp and NLP. The .lower() method can be 
used to transform a string to lowercase.

3.5 Applying feature extraction techniques

The conversion of document corpora into a numerical structure is required to make them more intelligible to 
computers. To do this, a vector space model, commonly known as a bag-of-words (BoW) model, is used. Vectorization 
is the process of transforming a collection of textual texts into numerical feature vectors. The BoW, or “Bag of N-grams,” 
representation is the methodological approach for tokenization, counting, and normalizing. The bag-of-words technique 
entails the following:

•	 Splitting of the documents into tokens.
•	 Giving weights to each token proportional to the frequency with which it arises in the document and/or corpora.
•	 Creating a document-term matrix with every row showcasing a document and each column addressing a token.
This approach involves describing documents in terms of word occurrences while fully disregarding the 

document’s relative location information for the words. The most frequently used feature extraction algorithms from 
the SKLearn.feature extraction. text classes are CountVectorizer and TfidfVectorizer. CountVectorizer converts text 
documents to a matrix of token counts, taking into account the occurrences of tokens in each document. As a result, a 
sparse representation of the counts is obtained.

The location of tokens or words is completely ignored when this technique is used in corpora. If a word is the 
entirety of a phrase, it will still be assigned a frequency of one; this is a significant disadvantage of the count vectorizer. 
As a result, the introduction of tfidf is necessary. A count matrix is transformed into a normalized tf: term-frequency 
or tf-idf: term-frequency times matrix. The inverse document-frequency representation is accomplished using the 
TfidfTransformer. Equation 1 specifies the formula for calculating the tf-idf for a term ‘t’ in a document ‘d’ in a 
document collection.

                                                                   
*- ( , ) ( , )

( ) 1
ntf id t d tf t d log

df t
 

=  +                                                                 
(1)

3.6 Data modelling

The present work makes use of supervised machine-learning classification techniques. The accuracy, F1-score, Fβ-
score, precision, specificity, AUCROC, and recall of several models are compared.

•	 Logistic regression: When the dependent variable or target is categorical, logistic regression is utilized. Here, 
we’re forecasting if our news is phony, whether it’s real, or whether it’s a 1. Because there are only two 
possible outcomes, binary logistic regression will be employed. The logistic regression value must be between 
0 and 1 and cannot exceed this number to produce a curve in the ‘S’ shape referred to as the sigmoid function 
or logistic function. The logistic sigmoid function transforms the output, producing a probability value that 
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may then be mapped to two or more discrete classifications. It will be beneficial to investigate a model’s 
nonlinearity. A logit function is used in logistic regression. The model becomes non-linear as a result of this 
logic function. In logistic regression, the concept of a threshold value is used to determine the probability that 
a value is either 0 or 1. Values greater than the threshold value are assigned a value of 1, while values less than 
the threshold value are assigned a value of 0.

•	 KNN is a supervised machine learning technique that may be used to handle classification and regression 
problems. Due to the fact that it does not immediately learn from the training set, it is often referred to as a 
lazy learner algorithm. Rather than that, a dataset is stored, and action is performed on it during categorization. 
KNN can estimate which of two categories, Category A, real, and Category B, fake, a new data point will fall 
into.

•	 Random forest: This is a commonly used machine learning algorithm that falls under the category of supervised 
learning. It is utilized for both classification and regression issues in machine learning. Random forest is a 
machine learning algorithm that is based on the concept of ensemble learning. It solves a complex problem by 
combining numerous classifiers and optimizing the model’s performance. The ultimate forecast is formed by 
integrating all of the trees’ projections. Ensemble approaches are a method for collecting data in order to reach 
a final conclusion.

•	 Decision tree: A decision tree is a subset of supervised machine learning in which data is continually 
partitioned by a defined parameter. A decision tree’s internal nodes reflect dataset properties; branches indicate 
decision rules, and a leaf node represents the outcome. The tree is divided into two sections, which we refer 
to as decision nodes and leaves. The leaves denote the final outcomes, and the decision nodes denote the data 
splitting points. The tests are run in accordance with the data’s properties. After posing a question, the tree is 
separated into yes or no responses. It is a graphical depiction that is used to determine all viable solutions to a 
problem/decision given certain conditions. The CART algorithm is utilized. CART stands for classification and 
regression tree algorithm.

•	 Support vector machine (SVM): SVM is a supervised machine learning technique that is used to solve 
classification and regression problems. Its objective is to determine the ideal line or decision boundary 
(hyperplane) for classifying n-dimensional space. A hyperplane is a mathematical term for this optimal choice 
boundary. The SVM algorithm determines the hyperplane’s extreme points/vectors. This type of vector is 
referred to as a support vector. The figure below depicts how a decision boundary, or hyperplane, is used to 
classify two distinct groups. Our dataset is referred to as linearly separable data since it can be divided into two 
groups using a single straight line, and the classifier utilized is a linear SVM classifier.

4. Result analysis
Binary classification has four possible types of results, given by a confusion matrix: (i) True Negatives (TN): 

correctly predicted negatives (zeroes); (ii) True Positives (TP): correctly predicted positives (ones); (iii) False Negatives 
(FN): incorrectly predicted negatives (zeros); and (iv) False Positives (FP): incorrectly predicted positives (ones). 
For the dataset we employed, the following result is obtained: (i) TP: Out of 5,200 samples, 2,502 were real and were 
predicted to be real; (ii) TN: 2,496 samples were fake and were predicted to be fake; (iii) FP: 62 samples were fake and 
were predicted to be real; and (iv) FN: 40 samples were real and were predicted to be fake. To measure the performance 
of various machine learning algorithms, we used the following indicators of binary classifiers:

•	 Accuracy (equation 2): It is the most often used categorization metric, and it is straightforward to grasp.

                                           Accuracy = (TP + TN)/(TP + FP + FN + TN)                                       (2)

•	 Precision (equation 3): The precision of a forecast is an acceptable option as an evaluation metric when we 
want to be certain about our prediction.

                                          Precision = (TP)/(TP + FP)                                        (3)

•	 Recall (equation 4): When it comes to diagnostic accuracy, recall, also known as sensitivity or TP rate, is 
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defined as the ratio of TP to actual positives.

                                         Recall = (TP)/(TP + FN)                                         (4)

•	 F1-score (equation 5): It is a number between 0 and 1, and it is also referred to as the harmonic mean of 
precision and recall, among other things. The F1-score assigns equal importance to precision and recall, 
resulting in significant difficulty.

                                        F1-score = (TP)/(TP +1/2(FP + FN))                                          (5)

•	 Fβ-score (equation 6): It creates a weighted F1 metric as below, where beta manages the trade-off between 
precision and recall.

 
                                       Fβ-score = (1 + β2) * (precision * recall)/ ((β2 * precision) + recall)                                   (6)

•	 Specificity (equation 7): The specificity (or rate of TN) is the ratio of TN to actual negatives.

                                      Specificity = TN/FN + TN                                    (7)

•	 AUC-ROC curve: Area under the curve (AUC)-receiver operating characteristics (ROC) curve is a performance 
statistic for classifying problems over several thresholds. The receiver operating characteristic curve (ROC) 
represents the probability curve, whereas the area under the curve (AUC) represents the degree or measure 
of separability. It demonstrates the model’s capacity to distinguish between classes. The greater the AUC, the 
more accurate predictions for identifying 0s as 0s and 1s as 1s are made.

For the purpose of automating machine learning workflows, a machine learning pipeline is utilized. Their business 
model incorporates the process of transforming a sequence of data and correlating them with one another in a model that 
is capable of being tested and evaluated in order to arrive at a result, which may be positive or negative. The process of 
training a model typically takes place in a series of stages known as a pipeline. They are carried out over and over again 
in order to develop an effective algorithm and continually improve the model’s precision. Joblib is a SciPy module that 
assists with pipelining. Additionally, it facilitates the saving and loading of objects that make use of NumPy data. The 
joblib API serializes Python objects to NumPy arrays efficiently. joblib.dump() and joblib.load() acts as replacements 
for pickle when dealing with large amounts of data, most notably large NumPy arrays. Front-end web development was 
carried out using HTML and CSS, while back-end web development was carried out using Python. Flask was used to 
deploy the website.

4.1 Fake news detection

As shown in Table 1, logistic regression achieves the highest accuracy, 98.03%. SVM came in second with an 
accuracy of 97.92%.

Table 1. Fake news performance parameters

Model Accuracy (%) F1-score Fβ-score AUC Specificity Recall Precision Log loss

Logistic 
regression

98.03 81.90 91.68 84.63 69.53 100 76 5.38

KNN 80.84 80.78 81.61 85.71 79.43 95.24 93.65 6.61

Random forest 82.82 82.83 83.51 81.93 81.71 95.24 93.65 5.93

Decision tree 95.67 95.75 95.54 95.66 96.09 95.24 93.65 1.49

SVM 97.92 97.95 97.71 97.91 98.36 97.46 96.79 0.71
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4.2 Fraudulent job-postings detection

Datasets from Kaggle’s datasets were used to predict fraudulent job postings. In the CSV file, the following 
categories were used to group the data for job postings: job ID, title, location, department, salary range, company profile, 
description, requirements, benefits, telecommuting, company logo (if present), questions (if present), employment type, 
required experience, required education, industry, function, and fraudulent. Our concept was put into practice using 
Google Colab Notebooks. The dataset has 18 columns and 17,880 rows. All fraudulent job profiles have a value of 1, 
while all legitimate job profiles have a value of 0.

Table 2. Fraudulent job-postings performance parameters

Model Accuracy (%) F1-score Fβ-score AUC Specificity Recall Precision Log loss

Logistic 
regression

69.08 69.21 68.57 69.62 70.31 67.88 62.59 10.07

KNN 93.30 93.65 90.22 92.52 100 86.76 88.07 23.24

Random forest 99.71 99.71 99.54 100 100 99.43 99.42 9.84

Decision tree 97.72 99.71 99.54 53.56 100 99.43 99.42 9.82

SVM 73.50 73.57 71.98 76.53 76.40 70.79 65.60 9.15

From Table 2, it is noted that the random forest supervised classification algorithm has the greatest accuracy of 
99.71%. In comparison to other algorithms, several evaluation criteria were also higher. With other criteria like F1-
score, Fβ- score, specificity, recall, precision, and log loss having the same value, decision trees provided the next-best 
accuracy of 97.72%.

4.3 Fraudulent COVID-19 information detection

Datasets from Kaggle were gathered for the COVID-19 and fraudulent job posting predictions.
The data for the COVID-19 dataset was organized into the following categories in the CSV file: title, text, source, 

and label. Our concept was put into practice using Google Colab Notebooks. There are 4 columns and 1,164 rows in the 
dataset. Title, text, source, and label are the many columns of data. The website data that has been scraped is available 
in raw text form. Prior to analysis or model fitting, this data needs to be cleaned. As was done earlier in “Fake News 
Detection”, this entails using the regex library, performing tokenization, deleting stop words, lemmatization, and case 
normalization.

From Table 3, it is noted that the SVM-supervised classification algorithm has the greatest accuracy of 78.69%. F1-
score and Fβ-score were two additional evaluation measures that outperformed existing methods. With other measures, 
such as recall and precision, having a greater value than SVM, KNN provided the next-best accuracy of 73.88%.

Table 3. Fraudulent COVID-19 information performance parameters

Model Accuracy (%) F1-score Fβ-score AUC Specificity Recall Precision Log loss

Logistic 
regression

54.98 54.98 54.98 100 100 53 62.59 10.07

KNN 73.88 73.88 73.88 100 95 83 88.07 23.24

Random forest 63.57 63.57 63.57 100 90 71 99.42 9.84

Decision tree 60.82 60.82 60.82 100 90 71 99.42 9.82

SVM 78.69 78.69 78.69 100 70.79 65.60 65.60 9.15
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4.4 Forged image detection

Datasets from GitHub and Kaggle were used to gather information for faked image detection. The data were 
separated into training and testing folders. Two folders — one containing phony photographs and the other real images 
— were contained inside the training folder. Comparably, the testing folder contained phony images and a separate 
folder of real images.

CNNs, or ConvNet, were used in this study to classify images as fake or real. CNN classifications of images start 
with an input image, process it, and assign it to one of several categories. It is a deep learning system that recognizes 
photos, groups them based on shared characteristics, and then identifies objects in the images. CNN employs a 
distinctive aspect of an image to identify it. CNN is superior to older neural networks for image processing. CNN and 
artificial neural network (ANN) are comparable. CNN first gathers information using layers before using ANNs to 
extract some of the image’s properties. A high-level neural network API called Keras runs on top of TensorFlow. The 
implementation of that algorithm is provided by the Python module multi-task cascade CNN (MTCNN). We will utilize 
MTCNN, which is based on deep learning, because it is thought to be the best method for detecting faces in images. 

First, we go through the folder iteratively, find and crop faces, and then save them in the appropriate folder. In this 
case, we’ll be using the image-processing library Pillow. The most crucial module of PIL (Python Image Library) is 
a library named Pillow that operates on top of PIL. But since 2011, the PIL module has not been used. Pillow offers a 
variety of features that are compatible with all popular operating systems and even support Python 3. It is compatible 
with a wide range of image formats, including “bmp”, “gif”, “ppm”, “tiff”, “jpeg”, and “png”. The pillow library utilizes 
an image class to display the image. The image module in Pillow comes with built-in features, including the ability to 
load or generate new images, among others.

The code that begins with “from PIL import Image” imports the image module from the pillow before calling 
Image.open() and supplying the image filename as a parameter. Fake photos can be identified by executing the detect 
faces() function once the model has been loaded and configured. This gives a list of dictionary objects that each have a 
number of keys for the information about each face that was detected. For example, the dictionary object “box” has the 
x and y coordinates of the bottom left corner of the bounding box, along with its width and height. and the image will 
then be cropped. A function in the pillow named crop() is used to crop a picture’s rectangular section. It takes a four-
element tuple as input and returns the cropped rectangle portion of the image. We are transforming the created image 
from an array back to a NumPy array and saving it.

Three convolutional (CONV) layers, three max-pool layers, one flattening layer, and ultimately an output layer 
with sigmoid activation are included in this classifier. With the sequential API, a model is built. Sequential is one of 
the most used Keras models. The sequential API allows us to stack layers one on top of the other. A sequential object is 
made, then layers are added using the add function to form a convolutional neural network. The method above builds 
a sequential object first, then adds some convolutional, maxpooling, and dropout layers. It then flattens the output and 
sends it to a final dense layer before sending it to our output layer. The CONV layer is used to compute the result of 
neurons connected to local regions in the input. Each neuron computes a dot product between its weights and the local 
area in the input volume that it is connected to. The downsampling operation for the POOL layer is carried out along 
the spatial dimensions (width, height). Breaking up linearity is done with an activation function. We will employ the 
activation functions of sigmoid and ReLU.

•	 Padding: Convolutional operations, as mentioned above, decrease the size of the image, which is why we apply 
padding to preserve our input size.

•	 Pooling: This layer is used for reducing parameters and the computation process. In this pooling process, max 
pooling will be used.

•	 Flattening: Flattening is taking a matrix from convolutional and pooling processes and turning it into a one-
dimensional array. This is important because the input of a fully connected layer, or ANN, consists of a one-
dimensional array.

We set up the learning process before we began training the model. The optimizer, a loss function, and, optionally, 
certain metrics like accuracy, must all be specified. Because optimizers employ gradients to update the weights, they can 
reduce the loss function, which assesses how effectively our model meets the specified objective. The Adam Optimizer 
has been utilized. Adam is an optimization technique that dynamically modifies the learning rate. By combining 
multiple orientations of existing data, augmentation produces new information; overfitting is avoided. Before supplying 
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the photos to the model as input during training or model evaluation, the pixel values in the image should be scaled. 
Image augmentation is possible using the imageDataGenerator function. Before modeling, the ImageDataGenerator 
class in Keras provides a variety of methods for scaling variables in the image dataset. The class encapsulates the picture 
collection before returning photos in batches and performing the necessary scaling operations as needed.

Our model is now prepared for training. In order to train the model, we used a fit generator and gave train data, the 
number of epochs, and the batch size to our generator. To track the loss and accuracy on both sets, we also handed it a 
validation set, which is currently test data. It will also pass if steps per epoch, a requirement when using a generator, are 
set to the length of the training set and validation steps are set to the length of the test data. Epoch refers to the overall 
quantity of times the algorithm examines the full data set. We can split up an epoch into smaller pieces if it is too big to 
run all at once. A collection of these pieces is referred to as a batch.

For describing any model in JSON format, Keras provides the to json() function. A function named model from 
json() is used to load this information once it has been saved to a file and create a new model from the JSON file. The 
weights are then immediately saved using the load weights() symmetrical function and saved directly using the save 
weights() method. The complete model is then written to model.json in JSON format. A new model is built when the 
model and weight information are loaded from the saved files. Later, the model can be loaded by executing the load 
model() function with the filename as an argument. The model with the same architecture and weights is returned by the 
function. By using the Image.open() function, which returns a value of the picture object data type, the image is loaded. 
It recognizes the file type automatically. Figure 3 shows the accuracy over a number of epochs, and Figure 4 shows 
the loss over a number of epochs. The dataset comprises real and fake images, as shown in Figure 5. We achieved an 
accuracy of 97.69% with the use of MTCNN.
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5. Recommendation system
Kaggle datasets were used for the data collection for the recommendation algorithm. The link, text, title, date, 

keywords, summary, and title summary columns of the recommendation were used to group the data together. The 
application of our concept was carried out using Google Colab Notebooks. Imported packages included Sklearn, 
NumPy, Pandas, Matplotlib, NLTK, Regex, Random, and String. By adding a new column ID, eliminating duplicates, 
and deleting any null values that were previously included in the dataset, the dataset is transformed. ID, date, title, 
text, and link are some of the columns in the modified dataset, which has 1,496 rows and 5 columns. By invoking the 
modules in the NLTK library, the cleaning and pre-processing stage entails changing the data in the “text” column 
to lowercase and eliminating stop words and punctuation. By first compiling the HTML tag patterns using the regex 
library’s compile function and then replacing any occurrences with spaces, HTML tags are eliminated from the dataset.

The TF-IDF encoding method was the one that we decided to employ for our dataset since it assigns a weight to 
each term that is proportional to how essential the term is to the document. The more frequently a term appears, the 
greater the weight it carries. Additionally, it provides an inverse that is weighted based on the frequency with which a 
given term appears in the dataset for each item. Therefore, it calls attention to uncommon terms throughout the entirety 
of the dataset that are nonetheless significant to the text at hand. The parameters for the TF-IDF vectorizer are:

•	 Analyzer: The analyzer is used to decide if the feature should be made up of n-grams of individual words and 
characters. In our case, the thing is words.

•	 ngram_rangetuple (min_n, max_n): The lower and upper limits of the range of n-values to be extracted for 
different n-grams. All n values between min_n and max_n are used. In our case, it’s in the ballpark (1, 3).

•	 max_dffloat or int: When building the vocabulary, don’t include words that appear in a document more than the 
given threshold. In this case, the threshold is 0.8.

•	 min_dffloat or int: When building the vocabulary, don’t include words that appear in fewer than the given 
number of documents. This number is also known as the cutoff. Here, its value is 0.0.

•	 use_idfbool, default = True: Turn on inverse-document-frequency reweighting.
Now, we calculated how relevant or similar one document was to another. Here, each item is stored as a vector of 

its attributes (also vectors) in an n-dimensional space, and the angles between the vectors are used to figure out how 
similar they are. The user’s likes and dislikes are measured by taking the cosine of the angle between the user profile 
vector (Ui) and the document vector. In our case, it’s the angle between two document vectors. The reason for using 
cosine is that the cosine value increases as the angle between two vectors decreases, which means that the vectors 
are more alike. When making suggestions for a user, a recommender system has to choose between two ways to send 
information:

•	 Exploitation: The system picks documents that are similar to the ones the user has already chosen.
•	 Exploration: The system picks documents for which the user profile doesn’t give enough information to predict 

how the user will react.
We used the exploitation technique as shown in Figures 6 and 7. A machine learning method for spotting 
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bogus news was discussed here. We presented a suggestion mechanism as soon as we discovered the bogus news. 
Increased confidence in online digital media consumption can be achieved through the deployment of a user-friendly 
recommendation system.

      

Figure 6. Recommended articles in case of min_df = 0.1

      

Figure 7. Recommended articles in case of min_df = 0.2

6. Conclusion and future scope
It is crucial to follow basic rules and regulations when consuming information through digital media to ensure 

the safety and security of IoT systems. The affordability, convenience, and rapid transmission of information through 
social media have made it a popular source for news consumption. However, this convenience also makes spreading 
“fake news easier,” which includes deliberately misleading and deceptive material. The widespread dissemination of 
false information can be detrimental to individuals and society, potentially leading to incorrect decisions and actions by 
IoT systems and devices. Consequently, detecting false news on social media has emerged as a critical research topic, 
requiring unique machine learning and deep learning techniques that can identify and mitigate these threats. In this 
article, we have discussed various methods for identifying fake news on social media, focusing on enhancing trust in 
digital media sources. Additionally, we have suggested a recommendation system to promote informed decision-making 
and enhance the security of IoT devices and systems. In the future, we will focus on the following aspects:

•	 The models of the work are based solely on English, which is one of its significant constraints. Other languages 
are not taken into account. Therefore, our strategy will be to create a model to identify fake news using 
multilingual data. We’ll strive to use a variety of tongues, such as French, Greek, Sanskrit, Hindi, German, and 
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Spanish.
•	 Since predetermined datasets are typically used for detection, we built a dynamic dataset that would gather all 

real-time news and refresh the dataset with the most recent information. In the future, accuracy predictions will 
be based on a different algorithm.

•	 We will create a cross-platform, hybrid application based on our website (Android and iOS).
•	 Plans include creating fake video detection models and the online deployment of video and picture detection 

models.
•	 We aim to implement the recommendation algorithm online as a dashboard to display various news categories 

based on the user’s interests.
•	 Additionally, a methodology for spotting fake news produced by social media platforms (WhatsApp, Twitter, 

Facebook, and Instagram) will be developed.

Conflict of interest
The authors declare no conflict of interest.

References

[1]	 Shu K, Sliva A, Wang S, Tang J, Liu H. Fake news detection on social media: A data mining perspective. ACM 
SIGKDD Explorations Newsletter. 2017; 19(1): 22-36. Available from: https://doi.org/10.1145/3137597.3137600.

[2]	 Jain A, Kasbe A. Fake news detection. In: 2018 IEEE International Students’ Conference on Electrical, 
Electronics and Computer Science (SCEECS). Bhopal, India: IEEE; 2018. Available from: https://doi.org/10.1109/
SCEECS.2018.8546944.

[3]	 Shu K, Wang S, Liu H. Beyond news contents: The role of social context for fake news detection. In: Proceedings 
of the Twelfth ACM International Conference on Web Search and Data Mining. New York, US: Association for 
Computing Machinery; 2019. p.312-320. Available from: https://doi.org/10.1145/3289600.3290994.

[4]	 Pérez-Rosas V, Kleinberg B, Lefevre A, Mihalcea R. Automatic detection of fake news. In: Bender EM, Derczynski 
L, Isabelle P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, 
USA: Association for Computational Linguistics; 2018. p.3391-3401.

[5]	 Zhou X, Zafarani R, Shu K, Liu H. Fake news: Fundamental theories, detection strategies and challenges. In: 
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York, US: 
Association for Computing Machinery; 2019; p.836-837. Available from: https://doi.org/10.1145/3289600.3291382. 

[6]	 Zhang X, Ghorbani AA. An overview of online fake news: Characterization, detection, and discussion. Information 
Processing & Management. 2020; 57(2): 102025. Available from: https://doi.org/10.1016/j.ipm.2019.03.004.

[7]	 Zhou X, Zafarani R. A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM 
Computing Surveys. 2020; 53(5): 1-40. Available from: https://doi.org/10.1145/3395046.

[8]	 Oshikawa R, Qian J, Wang WY. A survey on natural language processing for fake news detection. In: Proceedings 
of the Twelfth Language Resources and Evaluation Conference. France: European Language Resources 
Association; 2020. p.6086-6093.

[9]	 Ogundokun RO, Arowolo MO, Misra S, Oladipo ID. Early detection of fake news from social media networks 
using computational intelligence approaches. In: Lahby M, Pathan A-SK, Maleh Y, Yafooz WMS. (eds.) Combating 
fake news with computational intelligence techniques. Cham: Springer; 2022. p.71-89. Available from: https://doi.
org/10.1007/978-3-030-90087-8_4.

[10]	Prasad R, Udeme AU, Misra S, Bisallah H. Identification and classification of transportation disaster tweets 
using improved bidirectional encoder representations from transformers. International Journal of Information 
Management Data Insights. 2023; 3(1): 100154. Available from: https://doi.org/10.1016/j.jjimei.2023.100154.

[11]	Abayomi-Alli A, Abayomi-Alli O, Misra S, Fernandez-Sanz L. Study of the yahoo-yahoo hash-tag tweets using 
sentiment analysis and opinion mining algorithms. Information. 2022; 13(3): 152. Available from: https://doi.

https://doi.org/10.1145/3137597.3137600
https://doi.org/
https://doi.org/10.1145/3289600.3290994
https://doi.org/10.1145/3289600.3291382
https://doi.org/10.1016/j.ipm.2019.03.004
https://doi.org/10.1145/3395046
https://doi.org/10.1007/978-3-030-90087-8_4
https://doi.org/10.1007/978-3-030-90087-8_4
https://doi.org/10.1016/j.jjimei.2023.100154
https://doi.org/10.3390/info13030152


Volume 4 Issue 4|2023| 1307 Contemporary Mathematics

org/10.3390/info13030152.
[12]	Olaleye T, Abayomi-Alli A, Adesemowo K, Arogundade OT, Misra S, Kose U. Sclavoem: Hyper parameter 

optimization approach to predictive modelling of COVID-19 infodemic tweets using smote and classifier vote 
ensemble. Soft Computing. 2022; 27: 3531-3550. Available from: https://doi.org/10.1007/s00500-022-06940-0.

[13]	Peter A, Omole R, Misra S, Garg L, Oluranti J. Machine learning approaches for classifying the peace-war 
orientations of global news organizations’ social media posts. In: Information Systems and Management Science: 
Conference Proceedings of 4th International Conference on Information Systems and Management Science (ISMS) 
2021. Cham: Springer; 2022. p.301-317. Available from: https://doi.org/10.1007/978-3-031-13150-9_26.

[14]	Shu K, Cui L, Wang S, Lee D, Liu H. dEFEND: Explainable fake news detection. In: Proceedings of the 25th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, US: Association for 
Computing Machinery; 2019. p.395-405. Available from: https://doi.org/10.1145/3292500.3330935.

[15]	Parikh SB, Atrey PK. Media-rich fake news detection: A survey. In: 2018 IEEE Conference on Multimedia 
Information Processing and Retrieval (MIPR). Miami, FL, USA: IEEE; 2018. p.436-441. Available from: https://
doi.org/10.1109/MIPR.2018.00093. 

[16]	Granik M, Mesyura V. Fake news detection using naive Bayes classifier. In: 2017 IEEE First Ukraine Conference 
on Electrical and Computer Engineering (UKRCON). Kyiv, UKraine: IEEE; 2017. p.900-903. Available from: 
https://doi.org/10.1109/UKRCON.2017.8100379. 

[17]	Thota A, Tilak P, Ahluwalia S, Lohia N. Fake news detection: A deep learning approach. SMU Data Science 
Review. 2018; 1(3): 10.

[18]	Abiodun EO, Alabdulatif A, Abiodun OI, Alawida M, Alabdulatif A, Alkhawaldeh RS. A systematic review of 
emerging feature selection optimization methods for optimal text classification: The present state and prospective 
opportunities. Neural Computing and Applications. 2021; 33(22): 15091-15118. Available from: https://doi.
org/10.1007/s00521-021-06406-8.

[19]	Taofeek OT, Alawida M, Alabdulatif A, Omolara AE, Abiodun OI. A cognitive deception model for generating 
fake documents to curb data exfiltration in networks during cyber-attacks. IEEE Access. 2022; 10: 41457-41476. 
Available from: https://doi.org/10.1109/ACCESS.2022.3166628. 

[20]	Ahmed U, Jhaveri RH, Srivastava G, Lin JC-W. Explainable deep attention active learning for sentimental analytics 
of mental disorder. ACM Transactions on Asian and Low-Resource Language Information Processing. New York, 
US: Association for Computing Machinery; 2022. Available from: https://doi.org/10.1145/3551890.

[21]	Patel A, Shah J. Sensor-based activity recognition in the context of ambient assisted living systems: A review. 
Journal of Ambient Intelligence and Smart Environments. 2019; 11(4): 301-322. Available from: https://doi.
org/10.3233/AIS-190529.

[22]	Patel A, Shah J. Real-time human behaviour monitoring using hybrid ambient assisted living framework. Journal 
of Reliable Intelligent Environments. 2020; 6(2): 95-106. Available from: https://doi.org/10.1007/s40860-020-
00100-7. 

[23]	Patel AD, Shah JH. Performance analysis of supervised machine learning algorithms to recognize human activity 
in ambient assisted living environment. In: 2019 IEEE 16th India Council International Conference (INDICON). 
Rajkot, India: IEEE; 2019. Available from: https://doi.org/10.1109/INDICON47234.2019.9030353. 

[24]	Jadhav Y, Mathur H. Detection of breast cancer by using various machine learning and deep learning algorithms. 
In: Jain V, Juneja S, Juneja A, Kannan R. (eds.) Handbook of machine learning for computational optimization. 
CRC Press; 2021. p.51-70. 

[25]	Jadhav Y, Patil V, Parasar D. Machine learning approach to classify birds on the basis of their sound. In: 2020 
International Conference on Inventive Computation Technologies (ICICT). Coimbatore, India: IEEE; 2020. p.69-73. 
Available from: https://doi.org/10.1109/ICICT48043.2020.9112506.

[26]	Khan A, Worah G, Kothari M, Jadhav YH, Nimkar AV. News popularity prediction with ensemble methods of 
classification. In: 2018 9th International Conference on Computing, Communication and Networking Technologies 
(ICCCNT). Bengaluru, India: IEEE; 2018. Available from: https://doi.org/10.1109/ICCCNT.2018.8494095. 

[27]	Ruchansky N, Seo S, Liu Y. CSI: A hybrid deep model for fake news detection. In: Proceedings of the 2017 
ACM on Conference on Information and Knowledge Management. New York, US: Association for Computing 
Machinery; 2017. p.797-806. Available from: https://doi.org/10.1145/3132847.3132877.

https://doi.org/10.3390/info13030152
https://doi.org/10.1007/s00500-022-06940-0
https://doi.org/10.1007/978-3-031-13150-9_26
https://doi.org/10.1145/3292500.3330935
https://doi.org/10.1109/MIPR.2018.00093
https://doi.org/10.1109/MIPR.2018.00093
https://doi.org/10.1109/UKRCON.2017.8100379
https://doi.org/10.1007/s00521-021-06406-8
https://doi.org/10.1007/s00521-021-06406-8
https://doi.org/10.1109/ACCESS.2022.3166628
https://doi.org/10.1145/3551890
https://doi.org/10.3233/AIS-190529
https://doi.org/10.3233/AIS-190529
https://doi.org/10.1007/s40860-020-00100-7
https://doi.org/10.1007/s40860-020-00100-7
https://doi.org/10.1109/INDICON47234.2019.9030353
https://doi.org/10.1109/ICICT48043.2020.9112506
https://doi.org
https://doi.org/10.1145/3132847.3132877


Contemporary Mathematics 1308 | Rutvij Jhaveri, et al.

[28]	Ahmad I, Yousaf M, Yousaf S, Ahmad MO. Fake news detection using machine learning ensemble methods. 
Complexity. 2020; 2020: 8885861. Available from: https://doi.org/10.1155/2020/8885861.

[29]	Khattar D, Goud JS, Gupta M, Varma V. MVAE: Multimodal variational autoencoder for fake news detection. 
In: The World Wide Web Conference. New York, US: Association for Computing Machinery; 2019. p.2915-2921. 
Available from: https://doi.org/10.1145/3308558.3313552. 

[30]	Gravanis G, Vakali A, Diamantaras K, Karadais P. Behind the cues: A benchmarking study for fake news detection. 
Expert Systems with Applications. 2019; 128: 201-213. Available from: https://doi.org/10.1016/j.eswa.2019.03.036.

[31]	Singhania S, Fernandez N, Rao S. 3HAN: A deep neural network for fake news detection. In: Liu D, Xie S, Li Y, 
Zhao D, El-Alfy E-SM. (eds.) Neural information processing. Cham: Springer; 2017. p.572-581. Available from: 
https://doi.org/10.1007/978-3-319-70096-0_59. 

[32]	Alkhodhairi RK, Aljalhami SR, Rusayni NK, Alshobaili JF, Al-Shargabi AA, Alabdulatif A. Bitcoin candlestick 
prediction with deep neural networks based on real time data. Computers, Materials and Continua. 2021; 68(3): 
3215-3233. Available from: https://doi.org/10.32604/cmc.2021.016881. 

[33]	Yang Y, Zheng L, Zhang J, Cui Q, Li Z, Yu PS. TI-CNN: Convolutional neural networks for fake news detection. 
arXiv [Preprint] 2018. Version 3. Available from: https://doi.org/10.48550/arXiv.1806.00749.

[34]	Wani A, Joshi I, Khandve S, Wagh V, Joshi R. Evaluating deep learning approaches for covid19 fake news 
detection. In: Chakraborty T, Shu K, Bernard HR, Liu H, Akhtar MS. (eds.) Combating online hostile posts in 
regional languages during emergency situation. Cham: Springer; 2021. p.153-163. https://doi.org/10.1007/978-3-
030-73696-5_15. 

[35]	Yang S, Shu K, Wang S, Gu R, Wu F, Liu H. Unsupervised fake news detection on social media: A generative 
approach. Proceedings of the AAAI Conference on Artificial Intelligence. 2019; 33(1): 5644-5651. Available from: 
https://doi.org/10.1609/aaai.v33i01.33015644. 

[36]	Chen X, Jia S, Xiang Y. A review: Knowledge reasoning over knowledge graph. Expert Systems with Applications. 
2020; 141: 112948. Available from: https://doi.org/10.1016/j.eswa.2019.112948. 

[37]	Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, Atiah F, et al. A review of deep learning with special emphasis 
on architectures, applications and recent trends. Knowledge-Based Systems. 2020; 194: 105596. Available from: 
https://doi.org/10.1016/j.knosys.2020.105596. 

[38]	Han K. Personalized news recommendation and simulation based on improved collaborative filtering algorithm. 
Complexity. 2020; 2020: 8834908. Available from: https://doi.org/10.1155/2020/8834908. 

[39]	Gong W, Zhang W, Bilal M, Chen Y, Xu X, Wang W. Efficient web APIs recommendation with privacy-
preservation for mobile app development in industry 4.0. IEEE Transactions on Industrial Informatics. 2022; 
18(9): 6379-6387. Available from: https://doi.org/10.1109/TII.2021.3133614.

[40]	Wang Z, Wang W, Yang Y, Han Z, Xu D, Su C. CNN-and GAN-based classification of malicious code families: A 
code visualization approach. International Journal of Intelligent Systems. 2022; 37(12): 12472-12489. Available 
from: https://doi.org/10.1002/int.23094.

[41]	Javed U, Shaukat K, Hameed IA, Iqbal F, Alam TM, Luo S. A review of content-based and context-based 
recommendation systems. International Journal of Emerging Technologies in Learning. 2021; 16(3): 274-306. 
Available from: https://doi.org/10.3991/ijet.v16i03.18851. 

[42]	Khanal SS, Prasad PWC, Alsadoon A, Maag A. A systematic review: Machine learning based recommendation 
systems for e-learning. Education and Information Technologies. 2020; 25(4): 2635-2664. Available from: https://
doi.org/10.1007/s10639-019-10063-9.

[43]	Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: State of the art and trends. In: Ricci 
F, Rokach L, Shapira B, Kantor PB. (eds.) Recommender systems handbook. Boston: Springer; 2011. p.73-105. 
Available from: https://doi.org/10.1007/978-0-387-85820-3_3. 

[44]	Djenouri Y, Belhadi A, Srivastava G, Lin JC-W. An efficient and accurate GPU-based deep learning model for 
multimedia recommendation. ACM Transactions on Multimedia Computing, Communications, and Applications. 
2022; 20(2): 40. Available from: https://doi.org/10.1145/3524022.

[45]	Djenouri Y, Belhadi A, Srivastava G, Lin JC-W. Advanced pattern-mining system for fake news analysis. IEEE 
Transactions on Computational Social Systems. [Early Access] 2023. Available from: https://doi.org/10.1109/
TCSS.2022.3233408.

https://doi.org/10.1155/2020/8885861
https://doi.org/10.1145/3308558.3313552
https://doi.org/10.1016/j.eswa.2019.03.036
https://doi.org/10.1007/978-3-319-70096-0_59
https://doi.org/10.32604/cmc.2021.016881
https://doi.org/10.48550/arXiv.1806.00749
https://doi.org/10.1007/978-3-030-73696-5_15
https://doi.org/10.1007/978-3-030-73696-5_15
https://doi.org/10.1609/aaai.v33i01.33015644
https://doi.org/10.1016/j.eswa.2019.112948
https://doi.org/10.1016/j.knosys.2020.105596
https://doi.org/10.1155/2020/8834908
https://doi.org/10.1109/TII.2021.3133614
https://doi.org/10.1002/int.23094
https://doi.org/10.3991/ijet.v16i03.18851
https://doi.org/10.1007/s10639-019-10063-9
https://doi.org/10.1007/s10639-019-10063-9
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1145/3524022
https://doi.org/10.1109/TCSS.2022.3233408
https://doi.org/10.1109/TCSS.2022.3233408


Volume 4 Issue 4|2023| 1309 Contemporary Mathematics

[46]	Kesarwani A, Chauhan SS, Nair AR. Fake news detection on social media using K-nearest neighbor classifier. In: 
2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). Las Vegas, 
NV, USA: IEEE; 2020. Available from: https://doi.org/10.1109/ICACCE49060.2020.9154997. 

[47]	Kaliyar RK. Fake news detection using a deep neural network. In: 2018 4th International Conference on 
Computing Communication and Automation (ICCCA). Greater Noida, India: IEEE; 2018. Available from: https://
doi.org/10.1109/CCAA.2018.8777343. 

[48]	AlShariah NM, Khader A, Saudagar J. Detecting fake images on social media using machine learning. 
International Journal of Advanced Computer Science and Applications. 2019; 10(12): 170-176. Available from: 
http://dx.doi.org/10.14569/IJACSA.2019.0101224.

[49]	Elhadad MK, Li KF, Gebali F. Detecting misleading information on COVID-19. IEEE Access. 2020; 8: 165201-
165215. Available from: https://doi.org/10.1109/ACCESS.2020.3022867.

[50]	Iwendi C, Mahboob K, Khalid Z, Javed AR, Rizwan M, Ghosh U. Classification of COVID-19 individuals using 
adaptive neuro-fuzzy inference system. Multimedia Systems. 2022; 28: 1223-1237. Available from: https://doi.
org/10.1007/s00530-021-00774-w.

[51]	Güera D, Delp EJ. Deepfake video detection using recurrent neural networks. In: 2018 15th IEEE International 
Conference on Advanced Video and Signal Based Surveillance (AVSS). Auckland, New Zealand: IEEE; 2018. p.1-6. 
Available from: https://doi.org/10.1109/AVSS.2018.8639163.

[52]	Patel C, Bashir AK, AlZubi AA, Jhaveri R. EBAKE-SE: A novel ECC-based authenticated key exchange between 
industrial IoT devices using secure element. Digital Communications and Networks. 2022; 9(2): 358-366. Available 
from: https://doi.org/10.1016/j.dcan.2022.11.001.

[53]	Ramani S, Jhaveri RH. ML-based delay attack detection and isolation for fault-tolerant software-defined industrial 
networks. Sensors. 2022; 22(18): 6958.  Available from: https://doi.org/10.3390/s22186958. 

[54]	Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Jhaveri RH, et al. Performance assessment of supervised 
classifiers for designing intrusion detection systems: A comprehensive review and recommendations for future 
research. Mathematics. 2021; 9(6): 690. Available from: https://doi.org/10.3390/math9060690. 

[55]	Dutta S, Bandyopadhyay SK. Fake job recruitment detection using machine learning approach. International 
Journal of Engineering Trends and Technology .  2020; 68(4): 48-53. Available from: https://doi.
org/10.14445/22315381/IJETT-V68I4P209S.

[56]	Villan MA, Kuruvilla A, Paul J, Elias EP. Fake image detection using machine learning. International Journal of 
Computer Science and Information Technology & Security (IJCSITS). 2017; 7(2): 19-22.

[57]	Afzal S, Asim M, Javed AR, Beg MO, Baker T. URLdeepDetect: A deep learning approach for detecting malicious 
URLs using semantic vector models. Journal of Network and Systems Management. 2021; 29: 21. Available from: 
https://doi.org/10.1007/s10922-021-09587-8.

[58]	Ghinadya, Suyanto S. Synonyms-based augmentation to improve fake news detection using bidirectional LSTM. 
In: 2020 8th International Conference on Information and Communication Technology (ICoICT). Yogyakarta, 
Indonesia: IEEE; 2020. p.1-5. Available from: https://doi.org/10.1109/ICoICT49345.2020.9166230. 

[59]	Abonizio HQ, de Morais JI, Tavares GM, Junior SB. Language-independent fake news detection: English, 
Portuguese, and Spanish mutual features. Future Internet. 2020; 12(5): 87. Available from: https://doi.org/10.3390/
fi12050087.

https://doi.org/10.1109/ICACCE49060.2020.9154997
https://doi.org/10.1109/CCAA.2018.8777343
https://doi.org/10.1109/CCAA.2018.8777343
https://doi.org/10.1109/ACCESS.2020.3022867
https://doi.org/10.1007/s00530-021-00774-w
https://doi.org/10.1007/s00530-021-00774-w
https://doi.org/10.1109/AVSS.2018.8639163
https://doi.org/10.1016/j.dcan.2022.11.001
https://doi.org/10.3390/s22186958
https://doi.org/10.3390/math9060690
https://doi.org/10.14445/22315381/IJETT-V68I4P209S
https://doi.org/10.14445/22315381/IJETT-V68I4P209S
https://doi.org/10.1007/s10922-021-09587-8
https://doi.org/10.1109/ICoICT49345.2020.9166230
https://doi.org/10.3390/fi12050087
https://doi.org/10.3390/fi12050087

