[Research Article](http://ojs.wiserpub.com/index.php/CM/)

On a Matrix Trace Inequality for Hermitian Matrices

Areerak Chaiworn

Department of Mathematics, Faculty of Science, Burapha University, Thailand E-mail: areerak@buu.a[c.th](https://orcid.org/0000-0003-3602-9676)

Received: 17 April 2023; **Revised:** 31 May 2023; **Accepted:** 19 July 2023

Abstract: Da-Wei Chang, obtained the matrix trace inequality for Hermitian matrices $tr((AB)^{2^k}) \leq tr(A^{2^k}B^{2^k})$ for any integer *k*. In this paper, we give an equality condition for this inequality by using the weak majorization of eigenvalue.

*Keywords***:** trace function, trace inequality, the weak majorization

MSC: 14A18

1. Introduction

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices over the complex number field \mathbb{C} . The eigenvalues of $A \in M_n(\mathbb{C})$ are $\lambda_1(A)$, $\lambda_2(A)$, ..., $\lambda_n(A)$, with $|\lambda_1(A)| \geq |\lambda_2(A)| \geq \cdots \geq |\lambda_n(A)|$. The singular values of $A \in M_n(\mathbb{C})$, denoted by $\sigma_1(A)$, $\sigma_2(A)$, ..., $\sigma_n(A)$, are the eigenvalues of the matrix $|A| = (AA^*)^{1/2}$ arranged in such a way that $\sigma_1(A) \ge \sigma_2(A) \ge$ $\cdots \ge \sigma_n(A)$. Note that $\sigma_i^2(A) = \lambda_i(A^*) = \lambda_i(A^*A)$, so for a positive semidefinite matrix A, we have $\sigma_i(A) = \lambda_i(A)$ for all $i = 1, 2, ..., n$.

Given two real vectors $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ in decreasing order we say that *x* is weakly log majorized by y and we write $\log x \prec_w \log y$ if $\prod_{i=1}^k x_i \le \prod_{i=1}^k y_i$, for every $k = 1, 2, ..., n$ but if equality occurs at $k = n$ we write it as $\log x \prec \log y$. We say that x is weakly majorized by y and we write $x \prec_w y$ if $\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i$ for every $k = 1, 2, \ldots, n$. We say that *x* is majorized by *y* and we write $x \prec y$ if

$$
x \prec_w y
$$
 and $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$.

A normal matrix *A* can be decomposed as $A = UDU^*$ using the spectral decomposition, where $D = \text{diag}\{\lambda_1(A),\lambda_2(A)\}$ $\lambda_2(A), \ldots, \lambda_n(A)$ and *U* is a unitary matrix.

It is well know that for all positive semidefinite matrices *A* and *B*,

$$
0 \leq \operatorname{tr}(AB) \leq \operatorname{tr}(A)\operatorname{tr}(B).
$$

Copyright ©2024 Areerak Chaiworn.

DOI: https://doi.org/10.37256/cm.5220242863

This is an open-access article distributed under a CC BY license (Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Lieb and Thirring [1] showed that

$$
tr((AB)^{\alpha}) \le tr(A^{\alpha}B^{\alpha})
$$
 (1)

for all positive operators *A*, *B* on a separable Hilbert space and any real number $\alpha \ge 1$. In the case where $\alpha = m$ is a positive integer, some upper and lower bounds for the inequality (1) were obtained by Marcus [2], Le Couteur [3] and proved again by Bushell and Trustrum [4] as

$$
\sum_{i=1}^{n} \lambda_i^{m}(A)\lambda_{n-i+1}^{m}(B) \le \text{tr}((AB)^{m}) \le \text{tr}(A^{m}B^{m}) \le \sum_{i=1}^{n} \lambda_i^{m}(A)\lambda_i^{m}(B). \tag{2}
$$

Da-Wei Chang [5] obtained the inequality

$$
tr((AB)^{2^k}) \le tr(A^{2^k}B^{2^k}),
$$
\n(3)

where k is a positive integer, A and B are hermitian. Wang and Gong [6] generalized the inequality (2) in terms of majorization and proved

$$
\log \lambda^{1/\alpha} (A^{\alpha} B^{\alpha}) \prec \log \lambda^{1/\beta} (A^{\beta} B^{\beta}), \qquad 0 < \alpha \le \beta,
$$
 (4)

$$
\lambda^{1/\alpha}(A^{\alpha}B^{\alpha}) \prec_{\omega} \lambda^{1/\beta}(A^{\beta}B^{\beta}), \qquad 0 < \alpha \leq \beta, \qquad (5)
$$

$$
\lambda^{1/\beta} (A^{\beta} B^{\beta}) \prec_{\omega} \lambda^{1/\alpha} (A^{\alpha} B^{\alpha}), \qquad \alpha \leq \beta < 0,\tag{6}
$$

$$
\lambda^{\alpha}(AB) \prec_{\omega} \lambda(A^{\alpha}B^{\alpha}), \qquad |\alpha| \ge 1, \tag{7}
$$

$$
\lambda(A^{\alpha}B^{\alpha}) \prec_{\omega} \lambda^{\alpha}(AB), \qquad |\alpha| \leq 1. \tag{8}
$$

In 1999 Chang [5] proved tr $((AB)^{2^k}) \leq tr(A^{2^k}B^{2^k})$ for Hermitian matrices *A*, *B*. In this paper we show that equality holds if and only if *A, B* commute by using the weak majorization of eigenvalue.

2. Main resul[ts](#page-6-1)

Throughout this section, we work with square matrices. First of all we have to show that for any Hermitian matrices *A* and *B*, $tr((AB)^2) = tr(A^2B^2)$ if and only if $AB = BA$.

Lemma 1 Let $A \in M_n(\mathbb{R})$ be a diagonal matrix and $B \in M_n(\mathbb{C})$ a Hermitian matrix. If $tr((AB)^2) = tr(A^2B^2)$, then $AB = BA$.

Proof. Suppose that $tr((AB)^2) = tr(A^2B^2)$, while

Volume 5 Issue 2|2024| 3281 *Contemporary Mathematics*

$$
A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ \overline{b}_{12} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{b}_{1n} & \overline{b}_{2n} & \cdots & b_{nn} \end{bmatrix}
$$

in which *a*₁*, a*₂*,..., a*_{*n*} ∈ ℝ and *b*₁₁*, b*₂₂*,..., b*_{*nn*} ∈ ℝ. Then we have

tr
$$
tr((AB)^{2}) = (a_{1}b_{11}a_{1}b_{11} + a_{1}b_{12}a_{2}\overline{b}_{12} + \cdots + a_{1}b_{1n}a_{n}\overline{b}_{1n})
$$

+
$$
(a_{2}\overline{b}_{12}a_{1}b_{12} + a_{2}b_{22}a_{2}b_{22} + \cdots + a_{2}b_{2n}a_{n}\overline{b}_{2n})
$$

+
$$
\cdots + (a_{n}\overline{b}_{1n}a_{1}b_{1n} + a_{n}\overline{b}_{2n}a_{2}b_{2n} + \cdots + a_{n}b_{nn}a_{n}b_{nn})
$$

=
$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}|b_{ij}|^{2}
$$

and

$$
tr(A^{2}B^{2}) = (a_{1}a_{1}b_{11}b_{11} + a_{1}a_{1}b_{12}\overline{b}_{12} + \cdots + a_{1}a_{1}b_{1n}\overline{b}_{1n})
$$

+
$$
(a_{2}a_{2}\overline{b}_{12}b_{12} + a_{2}a_{2}b_{22}b_{22} + \cdots + a_{2}a_{2}b_{2n}\overline{b}_{2n})
$$

+
$$
\cdots + (a_{n}a_{n}\overline{b}_{1n}b_{1n} + a_{n}a_{n}\overline{b}_{2n}b_{2n} + \cdots + a_{n}a_{n}b_{nn}b_{nn})
$$

=
$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}^{2} |b_{ij}|^{2}.
$$

Thus

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j |b_{ij}|^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i^2 |b_{ij}|^2.
$$

Now

$$
AB - BA = \begin{bmatrix} 0 & (a_1 - a_2)b_{12} & \cdots & (a_1 - a_n)b_{1n} \\ (a_2 - a_1)\overline{b}_{12} & 0 & \cdots & (a_2 - a_n)b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ (a_n - a_1)\overline{b}_{1n} & (a_n - a_2)\overline{b}_{2n} & \cdots & 0 \end{bmatrix}
$$

Contemporary Mathematics **3282 | Areerak Chaiworn**

But since $|b_{ij}| = |b_{ji}|$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} (a_i - a_j)^2 |b_{ij}|^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i^2 |b_{ij}|^2 + \sum_{i=1}^{n} \sum_{j=1}^{n} a_j^2 |b_{ij}|^2 - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j |b_{ij}|^2
$$

= $2 \Big\{ \sum_{i=1}^{n} \sum_{j=1}^{n} a_i^2 |b_{ij}|^2 - \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j |b_{ij}|^2 \Big\}.$

Thus *AB−BA* = 0*.*

Theorem 2 Let *A* and *B* be Hermitian matrices. Then $AB = BA$ if and only if $tr((AB)^2) = tr(A^2B^2)$.

Proof. If $AB = BA$, then it is easy to see that $tr((AB)^2) = tr(A^2B^2)$. Next suppose that $tr((AB)^2) = tr(A^2B^2)$. Since *A* is Hermitian, $A = UDU^*$ where *U* is a unitary matrix and *D* is a diagonal matrix whose diagonal entries are eignevalues of *A*. Thus

$$
\text{tr}((AB)^2) = \text{tr}[(UDU^*)B(UDU^*)B] = \text{tr}[D(U^*BU)D(U^*BU)]
$$

$$
= \text{tr}([D(U^*BU)]^2)
$$
(9)

and

.

$$
tr(A^{2}B^{2}) = tr[(UDU^{*})(UDU^{*})B^{2}] = tr[(UD^{2}U^{*})B^{2}]
$$

$$
= tr[D^{2}(U^{*}B^{2}U)].
$$
 (10)

From equality of (9) and (10), Lemma 1 implies that $AB = BA$.

Next we will give an equality condition for the inequality (3) in case $k \geq 1$.

Theorem 3 Let *A* and *B* be Hermitian matrices. Then for any natural number $k \ge 1$, $AB = BA$ if and only if $tr((AB)^{2^k}) = tr(A^{2^k}B^{2^k}).$

Proof. If *A* and *B* [co](#page-3-0)mmu[te t](#page-3-1)he results is trivial. To prove sufficiency, we will show that if $tr((AB)^{2^k}) = tr(A^{2^k}B^{2^k})$, $k \ge 1$ then $tr((AB)^2) = tr(A^2B^2)$ which implies $AB = BA$. Supp[os](#page-1-1)e that $tr((AB)^2) \ne tr(A^2B^2)$, so from the inequalily (3) we have that

$$
\sum_{i=1}^{n} \lambda_i^2 (AB) < \sum_{i=1}^{n} \lambda_i (A^2 B^2). \tag{11}
$$

Thus

$$
tr((AB)^{2^k}) = \sum_{i=1}^n \lambda_i^{2^{k-1}2} ((AB)) < \sum_{i=1}^n \lambda_i^{2^{k-1}} (A^2 B^2).
$$
 (12)

Since *A* and *B* are Hermitioan, A^2 and B^2 are positive semidefinite. Therefore by (7) we have that

Volume 5 Issue 2|2024| 3283 *Contemporary Mathematics*

 \Box

 \Box

$$
\sum_{i=1}^{n} \lambda_i^{2^{k-1}} \left(A^2 B^2 \right) \le \sum_{i=1}^{n} \lambda_i (A^{2^k} B^{2^k}). \tag{13}
$$

We can therefore conclude that if $tr((AB)^2) < tr(A^2B^2)$ then $tr((AB)^{2^k}) < tr(A^{2^k}B^{2^k})$. Hence by the inequality (3) we have, if $tr((AB)^{2^k}) = tr(A^{2^k}B^{2^k})$ then $tr((AB)^2) = tr(A^2B^2)$ which implies $AB = BA$.

Next we will give an equality condition for the inequality (3) in case *k <* 0. First we will consider *k* = *−*1, after which any $k \leq 1$ can be considered. To be able to find the square root of any matrix, we need to consider positive semidefin[ite](#page-1-1) Hermitian matrices.

Lemma 4 Let *A* be a positive semidefinite diagonal m[at](#page-1-1)rix and $B \in M_n(\mathbb{C})$ a positive semidefinite matrix. If $tr((AB)^{1/2}) = tr(A^{1/2}B^{1/2})$, then $AB = BA$.

Proof. Since *B* is positive semidefinite, $B = UDU^*$ where *U* is a unitary matrix and *D* is a diagonal matrix whose diagonal entries are non-negative eignevalues of *B*. Then

$$
tr((AB)^{1/2}) = tr(A^{1/2}B^{1/2}) = tr(A'B'), \qquad (14)
$$

where $A' = U^* A^{1/2} U$ and $B' = D^{1/2}$. We also have that

$$
tr((A'^{2}B'^{2})^{1/2}) = \sum_{i=1}^{n} \lambda_{i}^{1/2} (A'^{2}B'^{2})
$$

$$
= \sum_{i=1}^{n} \lambda_{i}^{1/2} (U^{*}AUD)
$$

$$
= \sum_{i=1}^{n} \lambda_{i}^{1/2} (AUDU^{*})
$$

$$
= tr((AB)^{1/2}).
$$
 (15)

From equation (14) and (15) we have that $tr(A'B') = tr((A'^2B'^2)^{1/2})$. But

$$
\text{tr}((A'^2B'^2)^{1/2}) = \sum_{i=1}^n \lambda_i^{1/2} (A'^2B'^2) = \sum_{i=1}^n \lambda_i^{1/2} ((A'B')(A'B')^*) = \sum_{i=1}^n \sigma_i(A'B').
$$

Thus $\sum_{i=1}^{n} \lambda_i(A'B') = \text{tr}(A'B') = \text{tr}((A'^2B'^2)^{1/2}) = \sum_{i=1}^{n} \sigma_i(A'B').$ We know that

$$
\Big|\sum_{i=1}^n \lambda_i(A'B')\Big|\leq \sum_{i=1}^n \Big|\lambda_i(A'B')\Big|\leq \sum_{i=1}^n \lambda_i(|A'B'|)=\sum_{i=1}^n \sigma_i(A'B')
$$

Contemporary Mathematics **3284 | Areerak Chaiworn**

so $\sum_{i=1}^{n} \lambda_i (A'B') = \sum_{i=1}^{n}$ $\left| \lambda_i(A'B') \right| = \sum_{i=1}^n \sigma_i(A'B').$

Therefore, we can conclude that $\lambda_i(A'B')$ is non-negative for all $i = 1, 2, ..., n$. Since the arrangement of eigenvalues and singular values, $\lambda_i(A'B') = \sigma_i(A'B')$ for all $i = 1, 2, ..., n$ which implies $A'B'$ is a positive semidefinite matrix. Then we have,

$$
\sum_{i=1}^{n} \lambda_i ((A'B')^2) = \sum_{i=1}^{n} \lambda_i ((A'B')(A'B')^*)
$$

=
$$
\sum_{i=1}^{n} \lambda_i (A'B'B'A')
$$

=
$$
\sum_{i=1}^{n} \lambda_i (A'^2B'^2).
$$

Thus by Lemma 1, $A'B' = B'A'$. Hence A' and B' are simultaneously unitarily diagonalizable and commute. Therefore we can conclude that $AB = BA$. \Box

Theorem 1 Let *A* and *B* be positive semidefinite matrices. Then $AB = BA$ if and only if $tr((AB)^{1/2}) = tr(A^{1/2}B^{1/2})$. **Proof.** Since *A* and *B* are positive semidefinite matrices, *A* and *B* are simultaneously unitary diagonalizable. If $AB = BA$, then $(AB)^{1/2} = A^{1/2}B^{1/2}$. Thus $tr((AB)^{1/2}) = tr(A^{1/2}B^{1/2})$. Next assume that $tr((AB)^{1/2}) = tr(A^{1/2}B^{1/2})$.

$$
f_{\rm{max}}(x)=\frac{1}{2}x^2+\frac{1}{2}x^
$$

By the unitary invariance of eigenvalues we have that

Assume that $A = UDU^*$ is the spectral decomposition of *A*. Thus

$$
tr((AB)^{1/2}) = tr((UDU^*B)^{1/2}) = tr((DU^*BU)^{1/2}).
$$
\n(17)

 $tr(A^{1/2}B^{1/2}) = tr(UD^{1/2}U^*B^{1/2}) = tr(D^{1/2}U^*B^{1/2}U).$ (16)

By Lemma 2 and the equations (16) and (17), we have that $DU^*BU = U^*BUD$, which implies that $AB = BA$. \Box **Theorem 6** Let *A* and *B* be positive semidefinite matrices and *k* a positive integer. Then $AB = BA$ if and only if $tr((AB)^{1/2^k}) = tr(A^{1/2^k}B^{1/2^k}).$

Proof. Necessity is obvious because *A* and *B* are normal and commute, so they are simultaneously unitary diagonalizable. Next we will prov[e th](#page-5-0)e suf[fici](#page-5-1)ency case. In [6] Wang and Gong proved the weak majorization $\lambda(A^{\alpha}B^{\alpha}) \prec_{w} \lambda^{\alpha}(AB)$ for $|\alpha| \leq 1$, so we have that

$$
\text{tr}(A^{1/2^k}B^{1/2^k}) \leq \text{tr}(AB)^{1/2^k}.
$$

We will show that $tr(A^{1/2^k}B^{1/2^k}) = tr(AB)^{1/2^k}$ implies $tr(A^{1/2}B^{1/2}) = tr(AB)^{1/2}$. If $tr(A^{1/2}B^{1/2}) \neq tr(AB)^{1/2}$, then $\sum_{i=1}^n \lambda_i (A^{1/2} B^{1/2}) < \sum_{i=1}^n \lambda_i^{1/2}$ $i_i^{1/2}(AB)$. We apply (8) and get

Volume 5 Issue 2|2024| 3285 *Contemporary Mathematics*

$$
\operatorname{tr}(A^{1/2^{k}} B^{1/2^{k}}) = \sum_{i=1}^{n} \lambda_{i} (A^{1/2^{k}} B^{1/2^{k}})
$$

$$
\leq \sum_{i=1}^{n} \lambda_{i}^{\frac{1/2^{k}}{1/2}} (A^{1/2} B^{1/2})
$$

$$
< \sum_{i=1}^{n} \lambda_{i}^{1/2^{k}} (AB)
$$

$$
= \operatorname{tr}(AB)^{1/2^{k}}
$$

a contradiction. Thus $\lambda(A^{1/2}B^{1/2}) = \lambda^{1/2}(AB)$, by Theorem 3 we have that $AB = BA$.

Conflict of interest

Author declares there is no conflict of interest at any point with reference to research findings.

References

- [1] Lieb EH, Thirring W. Inequalities for the moments of the eigenvalues of the schrodinger hamiltonian and their relation to sobolev inequalities. In: *Studies in Mathematical Physics, Essays in Honor of Valentime*. Bartman, Princeton, N.J; 1976. p.269-303.
- [2] Marcus M. An eigenvalue inequality for the product of normal matrices.*The American Mathematical Monthly*. 1956; 63: 173-174.
- [3] Le Couteur KJ. Representation of the function Tr(exp(A-AB)) as a Lapalace transform with positive weight and some matrix inequalities. *Journal of Physics A: Mathematical and Theoretical*. 1980; 13: 3147-3159.
- [4] Bushell PJ, Trustrum GB. Trace inequalities for positive definite matrix power products. *Linear Algebra and Its Applications*. 1990; 132: 173-178. Available from: doi:10.1016/0024-3795(90)90062-H.
- [5] Chang D. A matrix trace inequality for products of Hermitian matrices. *Journal of Mathematical Analysis and Applications*. 1999; 237(2): 721-725.
- [6] Wang BY, Gong MP. Some eigenvalue inequalities for positive semidefinite matrix power products. *Linear Algebra and Its Applications*. 1993; 184: 249-260. Available from: doi:10.1016/0024-3795(93)90382-X.

 \Box