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Abstract: This study introduces a novel family of continuous probability distributions using Alzaatreh's technique to 
explore the Generalized Odd Maxwell-Generated (GOM-G) distribution family. Within the Generalized Odd Maxwell 
family, the GOM-Kumaraswamy distribution is presented as extended form of the Kumaraswamy distribution. The 
investigation thoroughly examines the cumulative distribution function, probability density function, hazard, and 
survival functions, as well as mixture representations of the Generalized Odd Maxwell-Kumaraswamy distribution. The 
suggested distribution's structural properties, including moments, skewness, kurtosis, probability-weighted moments, 
entropies, stress-strength models, and order statistics, are derived. Model parameters are estimated through the maximum 
likelihood method, and simulation studies evaluate the performance of maximum likelihood estimations using the 
quantile function. Employing two real-life datasets, goodness-of-fit measures such as Akaike Information Criterion (AIC), 
Corrected Akaike Information Criterion, Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion 
(HQIC), and chi-square goodness-of-fit tests demonstrate the adaptability and flexibility of the GOM-Kumaraswamy 
distribution against competing distributions, including Kumaraswamy-Kumaraswamy and Kumaraswamy-Burr III. The 
results reveal that the GOM-Kumaraswamy distribution exhibits the lowest AIC, CAIC, BIC, and HQIC values and the 
highest goodness-of-fit values compared to other models, suggesting its superiority as the preferred fit for both dataset 
forms. This proposed distribution contributes to practical applications, unveiling its potential significance in modeling 
real-world phenomena within the domains of hydrology and engineering.

Keywords: generalized odd Maxwell-generated class, generalized odd Maxwell-Kumaraswamy, kurtosis, moments, 
skewness
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1. Introduction
The choice of a statistical distribution to describe a given dataset significantly influences the course of statistical 
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analysis. In response to the increasing complexity and diversity of datasets, researchers are developing more robust 
statistical models that provide accurate and reliable predictions of underlying processes [1]. To enhance the versatility 
of the distribution in various real-world applications, researchers in distribution theory frequently introduce additional 
parameters to the underlying distribution for data modeling [2]. This addition of parameters is crucial as it improves the 
model's adaptability, enabling it to better capture the complexity of real-world phenomena across diverse applications.

Kumaraswamy [3] observed that classical distributions like Beta, Lognormal, and Gaussian do not effectively 
model datasets related to hydrological and other constrained random processes. These processes, characterized by limits 
at both lower and upper ends, pose challenges in determining key statistical features such as mean, standard deviation, 
skewness, and kurtosis using simulated data. In response, [4] introduced an expanded set of variables that accommodate 
hydrological data features, derived from simulations presented in [5]. This extension of variables, initially discussed in [6] 
and termed Kumaraswamy's distribution, provides a framework for handling data bounded between 0 and 1. The first 
four moments of this distribution were obtained through simulated data, with applications in hydrological scenarios. As 
defined in [6], the cumulative distribution function (cdf) and probability density function (pdf) are expressed as follows:

g(x; a, b) = abxa − 1(1 − xa)b − 1,  a, b > 0; 0 < x <1

and

G(x; a, b) = 1 − (1 − xa)b,  a, b > 0; 0 < x <1

where a and b are shape parameters.
This distribution has found application in various fields, with authors utilizing it for different purposes. Employing 

the expectation approach, [7] utilized the Kumaraswamy distribution for estimating annual reservoir storage capacity 
data. Jones [8] observed that the Kumaraswamy distribution demonstrates constant, increasing, decreasing, and 
unimodal density shapes based on parameter values, akin resembling the Beta random variable. While the distribution 
and quantile function of the Kumaraswamy random variable do not involve any special cases, the distribution and 
quantile function of the Beta random variable are presented in a closed-form expression, as elucidated by the author 
in discussing distinctions between Kumaraswamy and Beta random variables. Lemonte [9] scrutinized biases and 
maximum likelihood estimators of the Kumaraswamy distribution, varying its parameters for different sample sizes. An 
extension of the Kumaraswamy distribution was proposed by [10] to study the Generalized Transmuted-Kumaraswamy 
distribution, defining various properties in the literature. Numerous other extensions of the Kumaraswamy distribution 
are notable, including Kumaraswamy-Kumaraswamy by [11], Exp-Kumaraswamy by [12], Marshall-Olkin-extended 
inverted Kumaraswamy by [13], Generalized Modification of the Kumaraswamy by [14], Log-Kumaraswamy 
distributions by [15], and many more.

The Maxwell distribution, commonly referred to as the Maxwell-Boltzmann distribution, was first introduced in 
the fields of statistical mechanics and the kinetic theory of gases, as outlined in [16-17]. This distribution has found 
application in various domains, notably in reliability studies, owing to its appropriateness for modeling right-skewed 
datasets characterized by increasing failure rates. The detailed description of the Maxwell distribution, including its pdf 
and cdf, is expounded upon in the works of [16-17], are respectively given as follows:
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Many researchers have considered the Maxwell distribution as a suitable lifetime model and have applied it in 
various applications. For example, [18] obtained the reliability, Bayesian, and minimum variance unbiased estimators 
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of the Maxwell distribution. The classical and Bayesian estimators of the generalized Maxwell distribution were 
discussed by [19]. Bayes estimators of the Maxwell model were studied in [20-21] respectively. Hossain and Huerta 
[22] determined the parameters of the Maxwell distribution using different estimation methods, including Bayes, 
maximum likelihood, survival, and hazard estimators under type II censored data. A study conducted by [23] introduced 
an extension of the Weibull distribution using the Maxwell-X approach, and various properties of this distribution were 
studied in [23], and this distribution stands out among existing ones. Furthermore, [24] generalized the Maxwell model 
to the Weighted Maxwell distribution by introducing an additional parameter to improve the flexibility of the traditional 
Maxwell model. The physical properties of this distribution were derived, showing that the proposed distribution could 
be considered compared to other Weighted models. Singh and Sharma [25] added an extra parameter to the Maxwell 
distribution and defined the Location-scale family of generalized Maxwell distributions. The failure rate of this 
distribution could be increasing, and bathtub shaped. Annual rainfall data were used to illustrate the performance of the 
new model, and it was found that the proposed model fitted this dataset. 

In recent years, there has been a notable surge in interest in enhancing conventional distribution models to better 
accommodate real-life data through the utilization of a generalized class of distributions. This includes the extended 
Gumbel-Weibull distribution introduced by [26], the novel flexible exponentiated Weibull distribution proposed by 
[27], the generalized odd beta prime family of distributions presented by [28], the extended Topp-Leone exponential 
distribution innovated by [29], the log-Topp-Leone distribution introduced by [30], the Marshall-Olkin extended 
Gumbel type-II distribution outlined by [31], the exponentiated odd Lomax exponential distribution suggested by [32], 
and various others. Notably, [33] has recently introduced a novel family of distributions known as the odd beta prime-G 
(OBP-G) family. The OBP-G class has been instrumental in extending several baseline distributions, resulting in the 
creation of new compound distributions with diverse properties and applications. For instance, [34] proposed the OBP-
logistic distribution, the OBP-Fréchet distribution by [35], the OBP-Burr X distribution by [36], and OBP-Inverted 
Kumaraswamy distribution by [37].

Recently, a study performed by [38] defined the distribution and density functions of the Maxwell-G family, 
studying some properties of the extended model using this family. Parameters were derived using the method of 
maximum likelihood, and simulations using its quantile function showed that this distribution fitted the strengths of 
glass fibers and Nigerian Naira to Japanese Yen exchange rates datasets. In [39], the Maxwell-Dagum distribution was 
introduced, with its density shape being right-skewed and symmetric. The failure rate of the proposed distribution has 
a monotonically decreasing, increasing, and upside-down bathtub shape. The quantile function, moments, moment 
generating function, and order statistics were discussed, demonstrating that the Maxwell-Dagum distribution could be 
chosen apart from Weibull-Dagum, Topp-Leone-Dagum, Odd Log-Logistic-Dagum, and Gamma-Dagum models by 
applying two datasets. Some other generalized Maxwell distributions can be mentioned such as the development of 
Maxwell-Dagum distribution introduced by [40], Maxwell-Exponentiated Exponential distribution discussed in [41], 
Maxwell-Lomax distribution studied by [42], Maxwell-Burr X distribution by [43], among others. 

This study introduces a novel family of distributions termed the Generalized Odd Maxwell-Generated (GOM-G) 
family, employing it to propose a new extension of the Kumaraswamy distribution known as the Generalized Odd 
Maxwell-Kumaraswamy (GOM-Kw) distribution. The GOM-Kw distribution demonstrates enhanced flexibility 
in modeling datasets with prolonged right and left tails when compared to other commonly utilized distributions. 
Consequently, the GOM-Kw proves to be highly effective for long-term reliability estimates, providing accurate 
predictions of extreme values in both the right and left tails of the distribution, outperforming alternative distributions.

The introduction of the Generalized Odd Maxwell-G (GOM-G) family and GOM-Kw distribution is motivated 
by the limitations observed in classical Kumaraswamy distribution. Therefore, the rationale and justification behind 
introducing the GOM-G family and GOM-Kw distribution are outlined as follows:

i. To enhance the overall performance of the classical Kumaraswamy distribution, accommodating both right-
skewed and left-skewed datasets in comparison to other competitive models;

ii. To formulate a model with diverse shapes, including right-skewed and left-skewed characteristics;
iii. To introduce a novel model featuring various hazard functions capable of capturing bathtub and upside-down 

shapes;
iv. To consistently provide superior fit when compared to well-established generated distributions for the same 

baseline distribution.
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For these reasons, we proposed the GOM-G family and GOM-Kw distribution, formed by combining the GOM-G 
family of distributions with the Kumaraswamy distribution.

The research is organized as follows: In Section 2, the cdf anf pdf of the proposed Generalized Odd Maxwell-
Generated family of distributions are defined. Section 3 presents the cdf and pdf of the extended family of distributions, 
considering the Kumaraswamy model as a special case, along with its survival and hazard functions, mixture 
representations, and the statistical table of the density function. Section 4 examines the structural properties of the 
Generalized Odd Maxwell-Kumaraswamy distribution, including moments, skewness, and kurtosis. The estimates of 
the proposed distribution, derived using the maximum likelihood method, are presented in Section 5. Section 6 includes 
two simulation studies utilizing the quantile function. In Section 7, the Generalized Odd Maxwell-Kumaraswamy 
distribution is applied alongside other existing models using two real datasets. Section 8 concludes the research, while 
Section 9 presents future research.

2. The generalized odd maxwell-generated family of distributions
Alzaatreh et al. [44] introduces a technique for formulating novel family of continuous probability distributions 

after noticing that the approach used to develop the Beta-G family of distribution by [45] and the Kumaraswamy-G 
family of distribution by [46] could support the distribution ranging between 0 and 1. Consequently, [44] suggested a 
novel family of continuous probability distributions capable of accommodating all limits of probability distributions. 

Assume X represents a random variable with the cdf G(x) and the corresponding pdf g(x). Let be another random 
variable, with the cdf and pdf given as R(t) and r(t), respectively, defined on the interval [a, b]. The cdf of the novel 
family of distribution discussed in [44] is then provided by
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In this regards, ∆(G(x)) is the function of cdf of the random variable X and r(t) is the pdf of the random variable T, 

for any T ∈ [a, b] and −∞ < a < b < ∞. Therefore, ∆(G(x)) must satisfied the following conditions:
i. ∆(G(x)) ∈ [a, b],
ii. ∆(G(x)) is differentiable and monotonically non-decreasing, and
iii. ∆(G(x)) → a as x → −∞ and ∆(G(x)) → b as x → ∞.
Different versions of ∆(G(x)) might produce a new class of continuous distributions, albeit this is dependent on the 

limits of a random variable T. Many researchers regarded [44] technique to studying diverse families of distributions. 
For instance, [47] introduced Odd F generalized class of distribution. Some properties and real-life applications of the 
novel Odd F-Weibull distribution are provided in [47]. 

Let G(x, ξ) and g(x, ξ) denote the cdf and pdf of the baseline model with vector parameter ψ. Consider the 
pdf defined in (3). The cdf of the proposed family of distribution, referred to as the Generalized Odd Maxwell-
Generated (GOM-G) family of distributions, is derived by replacing the argument ∆(G(x)) in (5) with the link function 
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which is the cdf of the GOM-G family distributions. The corresponding pdf of this family of distributions is obtained by 
differentiating (8) with respect to the function of x as
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Substituting (10) in (9) gives
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which is the pdf of the proposed Generalized Odd Maxwell-G family of distributions, where g(x, ψ) and G(x, ψ) are pdf 
and cdf of the baseline model, α and β are scale and shape parameters. Henceforth, a random variable X with density 
function defined in (11) denoted by X ~ GOM − G(α, β, ψ) reads as X follows Generalized Odd Maxwell-G family with 
parameter α, β and ψ. Thus, we can omit the dependence on vector parameter ψ by simply writing F(x; α, β, ψ) = F(x) 
and f (x; α, β, ψ) = f (x). Moreover, the pdf in (11) is a special case of the Maxwell generalized family of distributions 
given in [38] when parameter β = 1.

3. The generalized odd maxwell-kumaraswamy distribution
The cdf of the Generalized Odd Maxwell-Kumaraswamy distribution is derived by replacing the cdf of the baseline 

model in (8) with the distribution function defined in (2), as follows:
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where α is scale parameter and a, b, β are shape parameters. Its corresponding pdf is obtained by replacing the pdf and 
cdf of baseline model in (11) with (1) and (2) respectively as  
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where 0 < x < 1. However, for a random variable X with apdf given in (13), we denote X ~ GOM − Kw(α, β, a, b), 
indicating that X follows the Generalized Odd Maxwell-Kumaraswamy distribution with parameters α, β, a and b. 
Statistical tables for the proposed distribution with different parameter values are provided in Tables 1-4, respectively, 
by considering GOM-Kumaraswamy distribution as the probability distribution. 

Table 1 presents statistical table for the GOM-Kumaraswamy distribution, where β, a and b are kept constant, and 
the values of α are interchanged from 0.5 to 1.2.

As observed from Table 1, the density values of the GOM-Kumaraswamy distribution increases with the increase 
of parameter α.
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Table 1. Statistical table of GOM-Kumaraswamy distribution for β = 0.5, a = 1.15, b = 1.2 and α = 0.5 to 1.2

x α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0 α = 1.1 α = 1.2

0.01 0.2328 0.1353 0.0854 0.0573 0.0403 0.0294 0.0221 0.0170

0.02 0.4455 0.2605 0.1651 0.1110 0.0782 0.0571 0.0430 0.0331

0.03 0.6696 0.3944 0.2511 0.1694 0.1195 0.0874 0.0659 0.0508

0.04 0.9067 0.5387 0.3447 0.2333 0.1650 0.1209 0.0912 0.0704

0.05 1.1563 0.6937 0.4464 0.3033 0.2151 0.1579 0.1192 0.0922

0.06 1.4168 0.8592 0.5566 0.3798 0.2701 0.1987 0.1503 0.1163

0.07 1.6860 1.0349 0.6752 0.4629 0.3303 0.2435 0.1845 0.1430

0.08 1.9613 1.2199 0.8023 0.5529 0.3959 0.2926 0.2221 0.1724

0.09 2.2397 1.4133 0.9377 0.6498 0.4671 0.3462 0.2634 0.2048

0.10 2.5177 1.6141 1.0811 0.7539 0.5442 0.4046 0.3084 0.2402

0.11 2.7916 1.8206 1.2322 0.8650 0.6273 0.4679 0.3576 0.2790

0.12 3.0573 2.0313 1.3903 0.9831 0.7166 0.5364 0.4110 0.3213

0.13 3.3104 2.2442 1.5548 1.1081 0.8120 0.6102 0.4689 0.3674

0.14 3.5466 2.4572 1.7247 1.2398 0.9138 0.6896 0.5315 0.4174

0.15 3.7612 2.6676 1.8991 1.3776 1.0218 0.7746 0.5990 0.4716

0.16 3.9499 2.8729 2.0765 1.5213 1.1360 0.8653 0.6716 0.5302

0.17 4.1082 3.0701 2.2556 1.6701 1.2563 0.9619 0.7494 0.5934

0.18 4.2322 3.2561 2.4347 1.8233 1.3823 1.0643 0.8326 0.6614

0.19 4.3183 3.4278 2.6118 1.9800 1.5137 1.1725 0.9213 0.7343

0.20 4.3637 3.5819 2.7848 2.1391 1.6501 1.2864 1.0156 0.8124

Table 2. Statistical table of GOM-Kumaraswamy distribution for α = 0.5, a = 1.15, b = 1.2 and β = 0.6 to 1.3

x β = 0.6 β = 0.7 β = 0.8 β = 0.9 β = 1.0 β = 1.1 β = 1.2 β = 1.3

0.01 0.0533 0.0124 0.0029 0.0007 0.0002 0.0000 0.0000 0.0000

0.02 0.1250 0.0360 0.0105 0.0031 0.0009 0.0003 0.0001 0.0000

0.03 0.2116 0.0686 0.0227 0.0076 0.0025 0.0009 0.0003 0.0001

0.04 0.3126 0.1103 0.03v97 0.0145 0.0053 0.0020 0.0007 0.0003

0.05 0.4274 0.1610 0.0618 0.0241 0.0095 0.0037 0.0015 0.0006

0.06 0.5560 0.2212 0.0896 0.0368 0.0153 0.0064 0.0027 0.0011

0.07 0.6981 0.2912 0.1233 0.0530 0.0230 0.0101 0.0045 0.0020

0.08 0.8534 0.3713 0.1636 0.0731 0.0331 0.0151 0.0069 0.0032

0.09 1.0213 0.4619 0.2109 0.0975 0.0456 0.0216 0.0102 0.0049

0.10 1.2011 0.5632 0.2656 0.1267 0.0611 0.0298 0.0146 0.0072

0.11 1.3920 0.6755 0.3283 0.1611 0.0799 0.0400 0.0202 0.0102

0.12 1.5926 0.7989 0.3995 0.2013 0.1024 0.0526 0.0272 0.0142

0.13 1.8015 0.9334 0.4795 0.2476 0.1290 0.0678 0.0359 0.0191

0.14 2.0170 1.0788 0.5689 0.3007 0.1601 0.0860 0.0465 0.0254

0.15 2.2369 1.2349 0.6680 0.3611 0.1963 0.1076 0.0594 0.0330

0.16 2.4589 1.4011 0.7771 0.4292 0.2381 0.1330 0.0748 0.0423

0.17 2.6801 1.5768 0.8964 0.5056 0.2858 0.1625 0.0931 0.0536

0.18 2.8976 1.7609 1.0260 0.5907 0.3402 0.1968 0.1146 0.0671

0.19 3.1080 1.9522 1.1660 0.6851 0.4017 0.2363 0.1398 0.0832

0.20 3.3077 2.1493 1.3161 0.7891 0.4708 0.2815 0.1691 0.1021
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Observations from Table 2 indicate that the density values of the GOM-Kumaraswamy distribution also increase 
with an increase in the parameter β.

Table 2 displays results from the statistical table of the proposed distribution, with β ranging from 0.6 to 1.3 while 
keeping α, a and β constant.

Similarly, Table 3 presents results for the GOM-Kumaraswamy distribution with varying values of a from 1.20 to 
1.55, while keeping α, β and b as constant parameters.

Table 3. Statistical table of GOM-Kumaraswamy distribution for α = 0.5, β = 0.5, b = 1.2 and a = 1.20 to 1.55

x a = 1.20 a = 1.25 a = 1.30 a = 1.35 a = 1.40 a = 1.45 a = 1.50 a = 1.55

0.01 0.1664 0.1191 0.0854 0.0613 0.0441 0.0317 0.0228 0.0165

0.02 0.3327 0.2489 0.1865 0.1400 0.1052 0.0792 0.0597 0.0450

0.03 0.5133 0.3941 0.3030 0.2334 0.1800 0.1390 0.1074 0.0832

0.04 0.7087 0.5545 0.4344 0.3408 0.2676 0.2105 0.1657 0.1306

0.05 0.9183 0.7297 0.5803 0.4619 0.3681 0.2937 0.2345 0.1875

0.06 1.1410 0.9189 0.7402 0.5966 0.4813 0.3886 0.3140 0.2540

0.07 1.3753 1.1210 0.9135 0.7445 0.6070 0.4953 0.4044 0.3304

0.08 1.6193 1.3348 1.0994 0.9051 0.7452 0.6138 0.5057 0.4170

0.09 1.8707 1.5587 1.2968 1.0779 0.8956 0.7441 0.6183 0.5140

0.10 2.1269 1.7908 1.5045 1.2620 1.0577 0.8860 0.7421 0.6216

0.11 2.3851 2.0290 1.7209 1.4564 1.2308 1.0392 0.8770 0.7400

0.12 2.6418 2.2708 1.9442 1.6599 1.4142 1.2033 1.0229 0.8691

0.13 2.8936 2.5131 2.1721 1.8707 1.6068 1.3775 1.1794 1.0088

0.14 3.1366 2.7530 2.4023 2.0871 1.8072 1.5610 1.3459 1.1589

0.15 3.3667 2.9869 2.6318 2.3068 2.0138 1.7525 1.5217 1.3190

0.16 3.5796 3.2111 2.8577 2.5274 2.2246 1.9508 1.7058 1.4883

0.17 3.7712 3.4217 3.0764 2.7461 2.4374 2.1540 1.8969 1.6661

0.18 3.9371 3.6147 3.2844 2.9597 2.6498 2.3601 2.0936 1.8513

0.19 4.0735 3.7861 3.4778 3.1650 2.8588 2.5670 2.2940 2.0424

0.20 4.1764 3.9317 3.6529 3.3583 3.0614 2.7718 2.4960 2.2378

Table 3 displays the results of the density values of the GOM-Kumaraswamy distribution while keeping α, β and c 
as constant parameters. 

Finally, Table 4 presents the results of the GOM-Kumaraswamy distribution for different parameter values of α, β 
and a when b is set to 1.21 and 1.28.

The pdf values of the GOM-Kumaraswamy distribution increase as the parameter c increases, corresponding to the 
increase in the value of x, as presented in Table 4.

The plots of density function of the GOM-Kumaraswamy distribution are provided in Figure 1.
As presented in Figure 1, the proposed density function of the GOM-Kumaraswamy distribution is (a) right-

skewed, and (b) left and symmetric.
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Table 4. Statistical table of GOM-Kumaraswamy distribution for α = 0.5, β = 0.5, a = 1.15 and b = 1.21 to 1.28

x b = 1.21 b = 1.22 b = 1.23 b = 1.24 b = 1.25 b = 1.26 b = 1.27 b = 1.28

0.01 0.2360 0.2392 0.2425 0.2457 0.2490 0.2523 0.2556 0.2589

0.02 0.4518 0.4582 0.4646 0.4711 0.4776 0.4842 0.4907 0.4974

0.03 0.6793 0.6891 0.6990 0.7090 0.7190 0.7291 0.7392 0.7494

0.04 0.9201 0.9336 0.9472 0.9609 0.9747 0.9885 1.0025 1.0165

0.05 1.1736 1.1909 1.2084 1.2260 1.2437 1.2615 1.2795 1.2975

0.06 1.4380 1.4593 1.4808 1.5024 1.5242 1.5460 1.5681 1.5902

0.07 1.7112 1.7365 1.7620 1.7876 1.8134 1.8394 1.8655 1.8917

0.08 1.9904 2.0196 2.0490 2.0786 2.1083 2.1383 2.1683 2.1986

0.09 2.2725 2.3054 2.3386 2.3719 2.4053 2.4390 2.4728 2.5067

0.10 2.5539 2.5903 2.6268 2.6635 2.7003 2.7373 2.7745 2.8118

0.11 2.8308 2.8701 2.9096 2.9492 2.9889 3.0288 3.0687 3.1088

0.12 3.0989 3.1406 3.1825 3.2244 3.2664 3.3084 3.3506 3.3928

0.13 3.3538 3.3972 3.4407 3.4842 3.5277 3.5712 3.6147 3.6582

0.14 3.5909 3.6352 3.6795 3.7237 3.7678 3.8119 3.8558 3.8997

0.15 3.8056 3.8499 3.8940 3.9379 3.9817 4.0252 4.0686 4.1118

0.16 3.9933 4.0364 4.0793 4.1219 4.1643 4.2063 4.2480 4.2894

0.17 4.1496 4.1905 4.2311 4.2713 4.3110 4.3503 4.3892 4.4275

0.18 4.2704 4.3081 4.3452 4.3818 4.4177 4.4531 4.4879 4.5221

0.19 4.3523 4.3855 4.4181 4.4499 4.4810 4.5113 4.5409 4.5698

0.20 4.3923 4.4200 4.4469 4.4730 4.4981 4.5223 4.5457 4.5681

Figure 1. Density plots of GOM-Kumaraswamy at various parameter values
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3.1 Survival and Hazard functions of the GOM-Kumaraswamy distribution

In this section, the survival and hazard functions of the GOM-Kumaraswamy distribution are provided.

3.1.1 Survival function

The survival function of the GOM-Kumaraswamy distribution is given by
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where α is scale parameter and a, b, β are shape parameters. 

3.1.2 Hazard function

The hazard function of the proposed distribution is given by
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Figure 2. Hazard plots of GOM-Kumaraswamy at various parameter values
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Suitable plots of hazard function of the proposed are provided in Figure 2.
The GOM-Kumaraswamy distribution has bath-tub, upside down bath-tub as displayed in Figure 2a and increasing 

failure rates (see, Figure 2b).

3.1.3 Mixture representations for the cdf and pdf of GOM-Kumaraswamy distribution

As defined in [48] Section 8.354, the expansion of incomplete gamma function can be given as 
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Applying this expansion for the distribution function defined in (12) we get
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It is well known that for real non integer s > 0 and |x| < 1, the generalized binomial expansion of this can be given 
by 
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Applying (18) to the last term of the denominator in (17) gives

( )
( )( )

( )

(3 2 )

3 2
, 0

( 1) (3 2 ) 1 12 .
! !2 3 2 (3 2 )

i jbi a

i i
i j

i j x
F x

i j i i

β β

απ

+ +

∞

+
=

− Γ + + − −
=

+ Γ +∑

For real number u > 0 and |x| < 1, the binomial expansion of this becomes
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Thus, the cdf in (19) can be presented in (21) by applying (20) 
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which is the cdf of GOM-Kumaraswamy distribution expressed as a mixture of exponentiated-G density by [49], where
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The expansion for the density function of the proposed distribution can be obtained as follows: 
Let us consider the exponential series expansion defined as
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By applying this expansion to the pdf defined in (13) we can have
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Using (18), (23) can be written as
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Applying (20), the pdf in (24) can further be written as
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4. Structural properties of the GOM-Kumaraswamy distribution
The structural properties of the GOM-Kumaraswamy distribution, as provided in this section, include moments, 

incomplete moments, probability weighted moments, entropies, stress-strength, and order statistics.

4.1 Moments

Suppose X ~ GOM − Kw(α, β, a, b) with the density function f (x) as defined in (24), then the rth non-central 
moments of the random variable X are given by:
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Substituting (27) in the integral part (26) we can obtain 
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Inserting (28) into (26) gives the rth non-central moments of the GOM-Kumaraswamy distribution given in (29)
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becomes the first, second, third and fourth moments of the GOM-Kumaraswamy distribution given in (30)-(33) 
respectively as 
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From the relations in (30) and (31), the variance of the GOM-Kumaraswamy distribution is given by
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and the standard deviation (σ) of this is the square-root of (34).

4.1.1 Skewness and Kurtosis of the GOM-Kumaraswamy distribution

The skewness and kurtosis of the GOM-Kumaraswamy distribution are presented in (35) and (36) respectively as 
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Sk = σ−3(E(X 3) − 3E(X )E(X 2) + 2(E(X ))3),

and

Kt = σ−4(E(X 4) − 4E(X )E(X 3) + 6(E(X ))2E(X 2) − 3(E(X ))4),

where σ is standard deviation, E(X ), E(X 2), E(X 3) and E(X 4) are defined in (30)-(31). 

4.2 Incomplete moments

Let X ~ GOM − Kw(α, β, a, b) with pdf defined in (25), then the rth incomplete moments of X is given by
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which is the proposed rth incomplete moments of GOM-Kumaraswamy distribution, where βx(c, d) = 1

0

x ct −∫ (1 − t)d − 1 is 
an incomplete beta function of first kind.

4.3 Probability weighted moments

For real numbers p, q and t = 0 [50], defined probability weighted moments of random variable X as
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where F(x) and f (x) are distribution and density functions defined in (12) and (13) respectively. The term f (x)(F(x))q in (40) 
can be expanded as

( ) ( )( )
( )( )

( )( )
( )( )

( )

23 111

14 2
3

2 1 1 1 1 11( )( ( )) exp ,  ,
2 1 1 12 1 1 1

b b ba a a a

qq

bb aa

abx x x x
f x F X c z

xx

β β

ββ

β
γ

α
α π

−−−
  − − − − −  
 = −  
    − − − − − −       

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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where γ1(c, z) = γ(c, z)/Γ(c) is the ratio of incomplete gamma function with c = 3/2 and

( )( )
( )( )

2

2

1 11
2 1 1 1

ba

ba

x
z

x

β

βα

 − − 
=  

 − − − 
 

.

Applying exponential expansion defined in (22), (41) becomes

( )
( ) ( )( )

( )( )
( )

3 2 111

14 220 3

2 1 1 1( 1)( )( ( )) ,  .
! 2 2 1 1 1

lb ba a a
l

qq
l l

bl a

abx x x
f x F X c z

l x

β β

β

β
γ

α α π

+ −−−
∞

+
=

− − −−
=

 − − − 
 

∑

The incomplete gamma function in (42) can be simplified as 

( ) ( )( )1 1,  1 1 ,  .
qq

c z c zγ γ = − −    

Applying (20) into (43) we can have

( )1
0 0

( 1) ( 1) ( 1) ,  .
! ! ( 1) ( 1)

i ji
j

i j

q i c z
i j q i i j

γ
+∞

= =

− Γ + Γ +
=

Γ − + Γ − +∑∑

( ) ( )( )1 1
0

( 1) ( 1),  1 ,  
! ( 1)

i
q i

i

qc z c z
i q i

γ γ
∞

=

− Γ +
= −   Γ − +∑

Substitute for 
0 0

i

i j

∞

= =
∑∑ to 

0j i j

∞∞

= =
∑∑ in (44) gives

( ) ( )1 1
0

( 1) ( 1) ( 1),  ,  
! ! ( 1) ( 1)

i j
q j

j i j

q ic z c z
i j q i i j

γ γ
+∞ ∞

= =

− Γ + Γ +
=   Γ − + Γ − +∑∑

( )1
0

( ) ,  ,j
i

j
C q c zγ

∞

=

= ∑

where ( 1) ( 1) ( 1)( ) .
! ! ( 1) ( 1)

i j

i
i j

q iC q
i j q i i j

+∞

=

− Γ + Γ +
=

Γ − + Γ − +∑  As defined by [48] in Section 0.314, the power series expansion for the ratio 

of incomplete gamma function in (45) can be expressed as 

( )
( )1 , 

0
,

)
,

(
  

cj
j k

j kj
k

zc z z
c

γ
∞

=

=
Γ

∆∑

where ( ) ( )1
, 0 , 

1
1= ,  

k

j k h j k h
h

kz jh k h z k−
−

=

∆−∆ + ≥∑  with ( 1) / !( )h
hz h c h= − + . Substituting this into (45) gives

(42)

(43)

(44)

(45)

(46)
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( )
( )1 , 

0 0

( )
,  

( )
 

cj
q ki

j kj
j k

C q z
c z z

c
γ

∞ ∞

= =

=   Γ
∆∑ ∑

( )

( )( )
( )( )

3 2

, 

3 2
, 0 2 2

1 1( )
.

3 1 1 12
2

 
j k

ba

i j k
j j k baj k

xC q

x

β

β

α

+

∞

+
=

 − − 
=  

     − − − Γ     

∆



∑

Inserting (47) into (42) we get

( ) ( )( )
( ) ( )( ) ( )

( )( )
( )( )

3 23 2 111

, 
4 2 3 2

0 , 02 3 2 2

( 1) 2 1 1 1 1 1( )
( )( ( ))

3 1 1 1! 2 2 1
2

 

1 1 2

j klb b bl a a a a

i j kq
l j j k bl b al j ka

abx x x xC q
f x F X

xl x

β β β

ββ

β

α α π α

++ −−−
∞ ∞

+ +
= =

 − − − − − − 
=  

       −

∆

− − − − − Γ          

∑ ∑

( ) ( )( )
( )( )

3 2 (3 2 ) 111
, ,  

4 2 3 2
, ,  0

1 1 1
,

1 1 1

l j k mb ba a a
l j k

l j k
bl j k a

abx x x

x

β β β β

β

+ + + + −−−
∞

+ + +
=

Ψ − − −
=

 − − − 
 

∑

where 

( ) ( )
,  

,  ,  3 2
2 2 32

2( 1) ( )
.

3! 2 2 2

 

2

l
i j k

l j k j j kl

C q

l

β

α α α π
+

−
Ψ =

  Γ    

∆
 Using (18), (48) becomes

( ) ( )( )3 2 (3 2 ) 111
, ,  

,  ,  ,  0

(4 2 3 2 )( )( ( )) 1 1 1 .
! (4 2 3 2 )

l j k mb bq a a a
l j k

l j k m

l j k mf x F X abx x x
m l j k

β β β β∞ + + + + −−−

=

Γ + + + +
= Ψ − − −

Γ + + +∑

Applying binomial expansion defined in (20), (49) can be written as

( ) ( )( )
( )( )

(1 ) 11
, ,  

,  ,  ,  0 0

( 1) (3 2 )(4 2 3 2 )( )( ( )) 1
! (4 2 3 2 ) ! (3 2 )

n
b nq a a

l j k
l j k m n

l j k ml j k mf x F X abx x
m l j k n l j k m n

β

β

∞ ∞+ −−

= =

− Γ + + + +Γ + + + +
= Ψ −

Γ + + + Γ + + + + −∑ ∑

( ) (1 ) 11
, ,  ,  ,  

,  ,  ,  ,  0
1 ,

b na a
l j k m n

l j k m n
ab T x x

∞ + −−

=

= −∑

where

( )( )
( )( ),  ,  ,  ,  ,  ,  

( 1) (4 2 3 2 ) (3 2 )
.

! ! (4 2 3 2 ) (3 2 )

n

l j k m n l j k

l j k m l j k m
T

m n l j k l j k m n
β

β

− Γ + + + + Γ + + + +
= Ψ

Γ + + + Γ + + + + −

Inserting (50) into (40) we can easily get

( )1 (1 ) 11
, ,  0 , ,  ,  ,  0

, ,  ,  ,  0
1 .

b np a a
p q t l j k m n

l j k m n
ab T x x dx

∞ + −+ −
=

=

= −∑ ∫

From the definition of integral part of (53) in (28), we have

(47)

(48)

(49)

(51)

(50)

(52)

(53)
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( )
1 (1 ) 1

, ,  0 , ,  ,  ,  0
, ,  ,  ,  0

1 b np
p q t l j k m n

l j k m n
b T x A dA

∞
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=
=
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1 11 (1 ) 1

, ,  ,  ,  0
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1
p

b na
l j k m n

l j k m n
b T A A dA
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=
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,  ,  ,  ,  
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1 ,  (1 ) ,l j k m n
l j k m n

pb T b n
a

β
∞

=

 = + + 
 

∑

( )
1 (1 ) 1

, ,  ,  ,  0
, ,  ,  ,  0

1
p

b na
l j k m n

l j k m n
b T A A dA

∞
+ −

=

= −∑ ∫

which is the probability weighted moments of GOM-Kumaraswamy distribution, where ( ) ( )
1 11

0
,  1 dcc d t t dtβ −−= −∫  is a 

beta function of first kind.

4.4 Entropies

The two entropies such as Rényi and q-entropies of the GOM-Kumaraswamy distribution are discussed in this 
section.

4.4.1 Rényi entropy

By definition, the Rényi entropy of a random variable X with density function f (x) defined in (13) is given by 

1( ) ( ) ,  0. 1;  .
1

R x f x dx xρ
ρ ρ ρ

ρ
∞

−∞

 = > ≠ ∈ℜ  − ∫

The term f (x)ρ in (55) can be expressed as

( ) ( )( )
( )( )

( )

( )

2

2

1 1
(3 1)( 1)( 1) 2

1 1 1

43

1 1 12( ) .
2

1 1
=

1
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x
b ba a a

x

ba
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ρρ βρρ αρ

ρ
ρβ

β
α π

     − −    − − −  −    − − −       
− − − 

 
   − − − 

 

Using (23), then (56) becomes
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(3 1) 2

( 1)( 1)
2 4 23
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1 1( 1) ( ) 2( ) 1 .
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i i
bi a

xabf x x x
i

x
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∞ −−
+

=

− −−  
− 
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 

∑

Applying (18) to the last term of the denominator in (57) becomes

( ) ( )( ) (3 1) 2( 1)( 1)
2 3

, 0

( 1) ( ) (4 2 ) 2( ) 1 1 1 ,
! !(2 ) (4 2 ) 2

i i i jb ba a a
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i j abf x x x x
i j i

ρ ρ β β βρρ ρρ ρ β
α ρ α π
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=

− Γ + +  
= − − − Γ +  
∑

and this can be written as 

(54)

(55)

(56)

(57)

(58)
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( ) ( 1)( 1)
2 3
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i k i b bka a
i

i j k
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ρ
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=
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x x
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=
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where , , 2 3
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. 

By substituting (59) into (55), the integral part of (55) can be simplified as

( )1 1 ( 1)( 1)
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( ) 1 ,
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which can be expressed as
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1
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i j k
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a
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=
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=
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∑

The Rényi entropy of the GOM-Kumaraswamy distribution is thus obtained by inserting (61) into (55) as

, , 

,  ,  0

1 ( 1) 1( ) ,  ( 1) ,  0. 1;  0 1.
1

i j k

i j k

aR x b bk x
a aρ

ρβ ρ ρ ρ
ρ

∞

=

Φ − + = − + > ≠ < <  −   
∑

4.4.2 Q-entropy

The q-entropy of a random variable X with density function f (x) is given by 

1( ) 1 ( ) ,  1;  
1

Q x f x dx xη
η η

η
∞

−∞

 = − ≠ ∈ℜ  − ∫

where f (x) is as defined in (13). The integral part of (63) has been defined in (61) for ρ = η. Therefore, the proposed 
q-entropy of the GOM-Kumaraswamy distribution is obtained by inserting (61) into (63) as

, , 
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1 ( 1) 1( ) 1 ,  ( 1) ,  1; 1
1

 0i j k
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α ρ ρ β β β α π
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Φ =  Γ + Γ − + + − +  

4.5 Stress-strength model

The stress-strength model is usually called Reliability denoted by R, where R = P(X2 < X1). Suppose X1 and X2 are 
two independent random variables having density functions f (x1; α, β, a, b = b1) and f (x2; α, β, a, b = b2) defined in (13). 

(59)

(60)

(61)

(62)

(63)

(64)
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The reliability R can be presented by

1 1 2 2 1( ;  ,  ,  ,  ) ( ;  ,  ,  ,   ) . .f x a b b F x a b b dx xα β α β
∞

−∞
= = = ∈ℜ∫R

Since f (x1; α, β, a, b = b1) and F(x2; α, β, a, b = b2) are presented as a mixture of exponentiated-G density defined 
respectively in (21) and (25). By taking the products of these functions we can have
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Inserting (27) into (66) gives 
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∞
+ + −

=
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If we let 

1 ,  ,Z A dA dZ= − ⇒ = −

then substituting this into (67) gives the stress-strength of the GOM-Kumaraswamy distribution given in (69)

1 2
1 , ,  ,  ,  1(1 ) 1

, ,  ,  ,  1 0
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∞ ∞
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= =

Ω
= Ω =
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4.6 Order statistics

Suppose X1, X2, X3, X4, ..., Xn are independent random samples of size n with density and distribution functions 
given by f (x) and F(x) respectively. Let X1:n, X2:n, X3:n, ..., Xn:n denoted the order statistics of the corresponding X1, X2, X3, ..., 
Xn derived from this samples. By definition, the pth order statistics is defined as

[ ]1
:

( 1) ( )( ) ( ) 1 ( ) .
( ) ( 1)

n pp
p n

n f xf x F x F x
p n p

−−Γ +
= −
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Using binomial expansion defined in (20), the pth order statistics is

1
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( 1) ( 1) ( 1)( ) ( ) ( ) .
( ) ( 1) ! ( 1)

s
p s
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n n pf x f x F x
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∞
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=
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To obtain pth order statistics of the proposed GOM-Kumaraswamy distribution, the term f (x)F(x)p + s − 1 in (71) can 
be replaced by (50) for q = p + s − 1. By substituting this we get

( ) (1 ) 11
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0
( ) 1 ,
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n
f x ab x x

∞ + −−

=

= Π −∑

(65)

(66)

(67)
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(70)

(71)

(72)
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where
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= − +∆ ∆∑  for k ≥ 1and zh = (−1)h / h!(a + h).

4.6.1 Moments of order statistics

Suppose X is a random variable with density function defined (27). The moments of pth order statistics is defined as 

: ,  ( ) ( ) .r r
p n p nE X x f x dx

∞

−∞
= ∫

Inserting (72) into (74) we can have 
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where Πn is defined in (73). Applying (27) into (75) gives
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∞
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5. Parameter estimation
The estimates of the parameters of the GOM-Kumaraswamy distribution are derived in this section.
Suppose X1, X2, X3, ..., Xn are random samples of size n drawn from the GOM-Kumaraswamy distribution with 

parameters expressed in vector form given by ξ = (a, b, α, β)T. To derive the estimates of ξ parameter, the likelihood 
function (13) is given by

(73)

(74)

(75)

(76)
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where Ai(x) = Ai = 1 − (1 − xi
a)b. The maximum likelihood estimates ξ̂  of the parameters ξ will be derived by 

differentiating (78) partially with respect to parameter α, β, a and b respectively, and setting all results to zero as
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Consequently, (79)-(82) are nonlinear functions and cannot be derived analytically. Consequently, one might use 
statistical software like Matlab, R-package, and many others to get an estimate of its parameters. Therefore, R-package 
can be utilized in this context to estimate the model parameters.

6. Simulation study
To assess the consistency of maximum likelihood estimators (MLEs) within the context of the GOM-

Kumaraswamy distribution, two comprehensive simulation studies are conducted in this section using the R package, 
based on the quantile function.

6.1 Quantile function

The Quantile function (Q(u)) of the GOM-Kumaraswamy distribution can be obtained by inverting the cdf in (12) 
as applied by [51] given (83) as

(77)

(78)

(79)

(80)

(81)

(82)
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where u is uniform random variable defined on interval (0, 1). Setting u = 0.5, (87) becomes the median (second 
quartile) of the Generalized Odd Maxwell-Kumaraswamy distribution. Similarly, for u = 0.25 and 0.75, we can obtain 
the first and third quartiles of Q(u) respectively. Hereafter, the skewness, and kurtosis of the proposed distribution can be 
obtained using the quantile function defined in (87). Table 5 presents the coefficients in Q(u), the skewness, and kurtosis 

(83)

(84)

(85)

(86)

(87)
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of the proposed distribution using the first and second data sets.

Table 5. Coefficients of quantile function of the GOM-Kumaraswamy distribution for data sets

Q(u) First Data Second Data

Q(0.25) 0.3157 0.0929

Q(0.5) 0.4332 0.1478

Q(0.75) 0.5418 0.2043

Q(0.125) 0.2344 0.0590

Q(0.375) 0.3781 0.1212

Q(0.625) 0.4862 0.1746

Q(0.875) 0.6092 0.2427

skewness -0.0395 0.0146

kurtosis 1.1795 1.1692

Based on (87), two simulations were conducted for various sample sizes (n) at different parameter values, defined 
as follows:

1. For the first simulation study, data were generated for sample sizes starting from 500, 1,000, 1,500, 2,000, and 
2,500, with true parameter values α = 0.5, β = 1, a = 1.5, and b = 2.5.

2. The second simulation data were generated for sample sizes of 250, 500, 750, 1,000, and 1,250, with true 
parameter values α = 1, β = 2, a = 3, and b = 5.

The simulation was repeated 1,000 times, and the mean, bias, variance, and mean squared errors (MSE) were 
computed. The numerical results of these simulations are presented in Tables 6 and 7.

Table 6. Simulation results of GOM-Kumaraswamy distribution for α = 0.5, β = 1, a = 1.5, and b = 2.5

Parameter Sizes (n) mean bias variance MSE

α

500 0.6844 0.1844 0.9115 0.9455

1,000 0.6059 0.1059 0.1470 0.1582

1,500 0.5642 0.0642 0.0712 0.0753

2,000 0.5569 0.0569 0.0476 0.0508

2,500 0.5396 0.0396 0.0293 0.0308

β

500 1.8767 0.8767 3.1529 3.9215

1,000 1.6332 0.6332 1.9465 2.3474

1,500 1.4863 0.4863 1.3381 1.5746

2,000 1.4005 0.4005 1.0220 1.1824

2,500 1.3182 0.3182 0.8006 0.9018

a

500 1.7018 0.2018 2.1610 2.2017

1,000 1.5177 0.0177 1.0404 1.0407

1,500 1.4479 -0.0521 0.5424 0.5451

2,000 1.4412 -0.0588 0.4461 0.4495

2,500 1.4553 -0.0447 0.3441 0.3461

b

500 3.0586 0.5586 6.1695 6.4815

1,000 2.6821 0.1821 1.7147 1.7478

1,500 2.5395 0.0395 0.6604 0.6620

2,000 2.5326 0.0326 0.5789 0.5800

2,500 2.5106 0.0106 0.3154 0.3156
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It is observed from Table 6 that the mean of the estimates decreases and approaches the true parameter values at 
α = 0.5, β = 1, a = 1.5, and b = 2.5 as the sample size increases from 500 to 2,500. Additionally, the bias, variance, and 
MSE of each estimate decrease as the sample size (n) increases.

Table 7. Simulation results of GOM-Kumaraswamy distribution for α = 0.5, β = 2, a = 3, and b = 5

Parameter Sizes (n) mean bias variance MSE

α

250 1.3085 0.3085 3.7579 3.8530
500 1.1861 0.1861 1.4225 1.4571
750 1.1964 0.1964 1.3364 1.3749

1,000 1.1260 0.1260 0.5380 0.5538
1,250 1.0817 0.0817 0.2832 0.2898

β

250 2.4867 0.4867 3.9616 4.1985
500 2.3098 0.3098 2.1324 2.2284
750 2.2203 0.2203 1.2948 1.3433

1,000 2.1703 0.1703 1.0593 1.0883
1,250 2.1290 0.1290 0.6247 0.6413

a

250 3.8668 0.8668 7.6580 8.4094
500 3.3990 0.3990 3.4099 3.5691
750 3.1990 0.1990 1.8843 1.9239

1,000 3.1230 0.1230 1.0021 1.0173
1,250 3.0638 0.0638 0.5580 0.5621

b

250 7.5140 2.5140 80.5697 86.8897
500 5.8919 0.8919 22.2885 23.0839
750 5.4614 0.4614 11.8116 12.0245

1,000 5.2128 0.2128 3.3963 3.4416
1,250 5.0927 0.0927 1.2863 1.2949

Similarly, the mean of the estimates in Table 7 approaches the true parameter values for α = 1, β = 2, a = 3, and b = 
5 as the sample size (n) increases from 250 to 1,250. The bias, variance, and MSE of each estimate also decrease as the 
sample size (n) increases gradually.

7. Application
This section illustrates thorough applications of the GOM-Kumaraswamy distribution using two real-world 

datasets, which may be accomplished using statistical software (R-Package).

7.1 Model comparison

The proposed GOM-Kumaraswamy distribution is compared with the Kumaraswamy-Kumaraswamy (Kw-Kw) 
model by [11] and the Kumaraswamy-BurrIII (Kw-BIII) model by [52], respectively. 

7.2 Data sets

We analyze two lifetime datasets to compare the flexibility of the GOM-Kumaraswamy model against its 
competing models. The first data set pertains to a flood data set consisting of 20 observations, as applied in [53] and [54], 
respectively. The second data set comprises 50 observations for the length of hole diameter and its sheet thickness of 9 
mm and 2 mm, studied in [55]. The data sets are presented in Table 8.
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Table 8. Data sets

0.265 0.269 0.297 0.315 0.3235 0.338 0.379 0.379

First Data 0.392 0.402 0.412 0.416 0.418 0.423 0.449 0.484

0.494 0.613 0.654 0.740 - - - -

0.06 0.12 0.14 0.04 0.14 0.16 0.08 0.26

0.32 0.22 0.16 0.12 0.24 0.06 0.02 0.18

0.22 0.14 0.22 0.16 0.12 0.24 0.06 0.02

Second Data 0.18 0.22 0.14 0.02 0.18 0.22 0.14 0.06

0.04 0.14 0.22 0.14 0.06 0.04 0.16 0.24

0.16 0.32 0.18 0.24 0.22 0.04 0.14 0.26

0.18 0.16 - - - - - -

The density (empirical and theoretical pdf), quantile (Q-Q plot), distribution (empirical and theoretical cdf), and 
probability (P-P) plots of the proposed distribution and its competing models are presented in Figures 3 and 4. 
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Figure 3. Density and Q-Q plots of (a) GOM-Kumaraswamy, (b) Kw-Kumaraswamy, (c) Kw-BurrIII for flood data
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Figure 4. Density and Q-Q plots of (a) GOM-Kumaraswamy, (b) Kw-Kumaraswamy, (c) Kw-BurrIII for length of hole diameter data

It is observed that the proposed distribution appears to be suitable for all the datasets, as its density shape exhibits 
symmetry compared to other competing models. Additionally, the dot points in Q-Q plots, empirical cumulative 
distribution function, and P-P plots of the proposed distribution lie almost surrounding the lines compared to existing 
models. This indicates that the proposed distribution fits all the datasets. 

Information criteria and goodness-of-fit measures will be used to assess the flexibility of the proposed GOM-
Kumaraswamy against its competing models. The information criteria used in this research include the Akaike 
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), 
and Hannan-Quinn Information Criterion (HQIC). The model with the least value of information criteria will be selected 
as the best-fitting model for the datasets. The estimates and the AIC, CAIC, BIC, and HQIC values of the proposed 
GOM-Kumaraswamy against its competing models, including Kw-Kumaraswamy and Kw-BurrIII distribution for the 
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first and second datasets, are presented in Tables 9 and 10.

Table 9. Estimated values and Information criteria for the proposed and competing models using first data

Model Estimates AIC CAIC BIC HQIC

GOM-Kw

α = 0.2567 -15.0609 -12.3492 -11.0780 -14.2834

β = 0.5212 - - - -

a = 1.3439 - - - -

b = 0.2367 - - - -

Kw-Kw

μ = 0.5199 -12.8612 -10.1945  -8.8783 -12.0837

γ = 1.9019 - - - -

a = 1.5344 - - - -

b = 1.9291 - - - -

KwBIII

θ = 1.9075 6.5469 9.2134 10.5299 7.3244

λ = 0.9524 - - - -

a = 0.8452 - - - -

b = 1.9813 - - - -

As shown in Table 9, the estimates of each parameter for the proposed distribution and other competing models 
are presented in column 2, while the information criteria are also provided in columns 3-6. The GOM-Kumaraswamy 
distribution has the least value of AIC, CAIC, BIC, and HQIC compared to Kw-Kumaraswamy and Kw-BurrIII models.

Table 10. Estimated values and Information criteria for the proposed and competing models using first data

Model Estimates AIC CAIC BIC HQIC

GOM-Kw

α = 1.2878 -110.0699 -109.1810 -102.4218 -107.1574

β = 0.6968 - - - -

a = 0.4334 - - - -

b = 1.4160 - - - -

Kw-Kw

μ = 1.3848 -74.5393 -73.6504 -66.8912 -71.6268

γ = 1.7021 - - - -

a = 0.6773 - - - -

b = 1.7937 - - - -

KwBIII

θ = 1.5861 -47.8141 -46.9252 -40.1660 -44.9017

λ = 0.5149 - - - -

a = 0.9113 - - - -

b = 1.9070 - - - -

Similarly, it is observed from Table 10 that the GOM-Kumaraswamy distribution has the least value of these 
criteria against its competing models. This indicates that the GOM-Kumaraswamy could be considered as the best 
model that fits the flood and length of a hole diameter data sets against its Kw-Kumaraswamy and Kw-BurrIII models.

However, Tables 11 and 12 display the goodness-of-fits of the GOM-Kumaraswamy distribution and its competing 
models using the first and second data sets, respectively. In these tables, the intervals of the data and corresponding 
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observed values are presented in columns 1 and 2. Columns 3 and 4 present the expected values of the competing 
models, and finally, column 5 is for the proposed model. The log-likelihood and goodness-of-fit values for all models 
are provided beneath the intervals and expected values. The model with the highest log-likelihood and least chi-square 
values could be considered as the best fit for the data sets.

Table 11. Goodness of fits for the proposed and competing models using first data

Intervals Observed Kw-BIII Kw-Kw GOM-Kw

0.0000-0.3493 6 6.6052 7.1468 6.2919

0.3494-0.4387 8 1.9606 3.4475 3.9625

0.4388-0.5281 3 1.7852 3.2918 4.1465

0.5282-0.6175 1 1.5689 2.7193 3.3381

0.6176-0.7069 1 1.3448 1.8953 1.7755

0.7070-1.0000 1 3.0103 1.4840 0.4683

Log-likelihood - 0.7265 10.4306 11.5305

Goodness-of-fit - 21.1230 7.8895 7.0245

Table 12. Goodness of fits for the proposed and competing models using first data

Intervals Observed Kw-BIII Kw-Kw GOM-Kw

0.00-0.04 7 8.3031 8.4385 3.5203

0.05-0.09 6 4.8245 6.2866 7.0307

0.10-0.14 11 3.7882 5.1051 9.1519

0.15-0.19 11 3.1225 4.2112 9.0810

0.20-0.24 11 2.6279 3.4883 6.7371

0.25-0.29 2 2.2366 2.8861 3.4590

0.30-1.00 2 15.5953 12.8479 1.3678

Log-likelihood - 27.9071 41.2696 59.0349

Goodness-of-fit - 72.6427 43.6164 7.9743

It is observed in Tables 11 and 12 that the proposed GOM-Kumaraswamy distribution has the highest values of 
log-likelihood and the least values of chi-square, respectively, compared to its competing models. This indicates that the 
proposed distribution could be considered as the best model.

8. Conclusion
We studied the Generalized Odd Maxwell-Kumaraswamy distribution within the class of Generalized Odd 

Maxwell generated distributions defined in Section 2. Its density shape exhibits right-skewed, left-skewed, and 
symmetric natures. The proposed distribution has increasing, bathtub, and upside-down bathtub failure rates. The 
mixture representations and structural properties of the GOM-Kumaraswamy distribution were derived. The skewness 
and kurtosis values of the proposed distribution were obtained using moments and the quantile function, respectively. 



Contemporary Mathematics                  740 | Aliyu Ismail Ishaq, et al.

The parameters were estimated using simulation and the maximum likelihood method. Two data sets were used to assess 
the potential of the new model. As presented in Section 7, the new model fitted both data sets using Information criteria 
and goodness-of-fit measures compared to the Kumaraswamy-Kumaraswamy and Kumaraswamy-BurrIII models.

9. Further ctudy
The further study focuses mainly on the following:
i. Estimating the parameters of the GOM-Kumaraswamy distribution using various alternative approaches, such as 

maximum product of spacings, least squares, weighted least squares, Bayesian, etc.
ii. Introducing bivariate probability distributions by considering the GOM-Kumaraswamy distribution as the 

univariate probability distribution.
iii. Developing a new Maxwell generated class of distributions by employing some other method of generating 

probability distribution and evaluating how well they can work.

Contribution to knowledge
The novel GOM-G family of probability distribution developed in this study would be served as an additional 

family to extend any traditional continuous probability distributions. The Kumaraswamy distribution is the conventional 
distribution that has been modified in accordance with the GOM-G family. Some properties of the suggested distribution 
that did not previously exist are studied.
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