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Abstract: The aim of this paper is to create a new semigroup by defining a special idealization operation on 
semigroups. Additionally, by considering amalgamation, we will present novel distinguishing results on idealization 
over semigroups. Initially, we will combine the definitions of idealization and the Bruck-Reilly extension. Consequently, 
by integrating these two structures, we will provide a significant result on idealization in semigroups that will be crucial 
for future studies. Finally, we will conclude by discussing the ideal extension for the new semigroup structure, namely 
idealization.
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1. Introduction and preliminaries
One of the notable advantages of considering a new and more general construction is the unification of existing

results under a novel structure. Moreover, it offers a concise specification, facilitates the derivation of new designs, 
and provides an economical approach to proving the correctness of certain properties. Additionally, when we view 
extensions as a means of combining known structures to create a new structure, this approach yields similar benefits in a 
distinct and effective manner. As an illustrative example, in [1-3], the authors introduced a new semigroup called   and 
characterized it by extensively studying its properties.

One of the most important constructions, as indicated in the above paragraph, is idealization (trivial extension or 
ringification), which is built on a ring with two operations and has been used to produce some interesting results. For a 
commutative ring R with the identity and an R-module M, the idealization R(+)M of M was first introduced by Nagata in 
[4] via additive 1 1 2 2 1 2 1 2( , ) ( , ) ( , )r m r m r r m m+ = + +  and multiplicative operations,

1 1 2 2 1 2 1 2( , ) ( , ) ( , )r m r m r r m m+ = + + (1)

for all 1 2,r r R∈  and 1 2, .m m M∈  Idealization is the process of enclosing M in a commutative ring A so that its 
structure as a R-module is almost identical to its structure as an A-module, or as an ideal of A. Hence, it is helpful 
for generalizing results from rings to modules, reducing results about submodules to the ideal case, and creating 
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examples of commutative rings with zero divisors. Although there are so many important studies about idealization 
in the literature (see, for instance, in [5-8]), different versions of this subject are still of interest. For instance, 
for a ring R, an ideal I, and an R-module M, the authors (in [9]) defined the so-called amalgamated duplication 

{ }( , ): , ,R I r r i r R i I R R= + ∈ ∈ ⊂ ×  which produces a new ring as well as satisfying many properties coinciding 
with the idealization if M = I. Meanwhile, in [10], it has been proposed that another possible generalization of the 
duplication is as follows: Let R and U be commutative rings with unity; let J be an ideal of U; and let f: R → U be a 
ring homomorphism. In this setting, there exists a subring { }( , ( ) ): ,fR J r f r j r R j J= + ∈ ∈  of R × U, which is 
called the amalgamation of R with U along J with respect to f. This construction is a generalization of the amalgamated 
duplication, and so it contains the idealization as well.

In addition to the above studies, a survey was presented in [11] on some ring constructions and showed how 
one might produce some analogous semigroup constructions. In light of the idea, the main purpose of this paper is to 
introduce another approach to construct the idealization for semigroups by using the (single) semigroup operation. 
However, the biggest challenge when doing this is reducing binary operations on rings to a single operation on 
semigroups. To solve it, we will use the operation defined on Bruck-Reilly extensions in our construction (see Theorem 
2.1 below).

Hence, let us remind ourselves of the Bruck-Reilly monoid that will definitely be needed in this paper. Assume 
that A is a monoid and θ is an endomorphism such that Aθ is in the  -class (this class is a binary relation defined on 
the elements of a semigroup, where two elements are related if and only if they generate the same principal right ideals. 
See [12] Chapter 2 of the identity 1A of A. Thus, for the set of all non-negative integers 0 ,  the set 0 0A× ×   with the 
multiplication

                                             ( )( , , ) ( , , ) , ( ( ))( ( )), ,t n t mm a n m a n m n t a a n m tθ θ− − ′′ ′ ′ ′ ′ ′= − + − +                                         (2)

where max( , )t n m′=  and θ0 is the identity map on A, forms a monoid with the identity (0,1 ,0).A  Then this monoid 
is called the Bruck-Reilly extension of A, determined by θ and denoted by ( , )BR A θ  (cf. [13-15]). The Bruck-Reilly 
extension is considered one of the fundamental constructions depending on the isomorphism and is presented as a 
characterization for the theory of semigroups. For example, between any bisimple regular w-semigroup and the Bruck-
Reilly extension of a group or between any simple regular w-semigroup and the Bruck-Reilly extension of a finite 
chain of groups, there exist isomorphisms (see [14, 16]). We may suggest [15, 17, 18] for some other examples of 
characterizations via Bruck-Reilly extensions to the reader.

2. A new semigroup via Bruck-Reilly operation
As stated in the previous section, our goal is to use the Bruck-Reilly operation to build a new structure based on 

the idealization of a semigroup. To do that, we will combine the operations presented in (1) and (2), and hence we 
will capture the infrastructure relationship between semigroups and (sub-Bruck-Reilly) monoids similarly as in the 
idealization between modules and rings.

For any two submonoids SM1 and SM2 of the monoid M, let us assume that the Bruck-Reilly extension 
( , )B BR M θ=  is defined on the set 0 0( , )M× ⋅ ×   while each of the sub-Bruck-Reilly extensions ( , )i iSB BR SM θ=  

is defined on the set 0 0( , ) ,iSM× ⋅ ×   where i = 1, 2. Throughout this paper, we will assume there exists an ideal 
relationship among our monoids, 2 1 ,SM SM M⊂ ⊂  and especially we will take 2 1 ,MSM =  which can be thought of 
as the minimal submonoid. Now, for arbitrary elements , ( 1, 2)ia c SB i∈ =  and , ,b d B∈  let us consider the mapping 
( ) ( ) ( )i i iSB B SB B SB B× × × → ×  with the binary operation   as

                                                       ( , ), ( , ) ( , ) ( , ) , ( ) ( )( ) ( )a b c d a b c d a c a d c b=                                                      (3)

such that, for arbitrary elements, ik SB∈  and ,t B∈  the notation k t  in (3) denotes the Bruck-Reilly operation given 
in (2). With this approach, a connection will be established between idealization and this new semigroup since the 
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operation given in (2) and used in (3) has the same meaning as (1) in the definition of idealization. This approach 
certainly fits with the way defined in [11] to show how it may produce some analogies on a semigroup construction.

On the other hand, when a monoid is trivial, its Bruck-Reilly extension is isomorphic to the bicyclic monoid. This 
is very valuable in that the semigroup formed by the trivial monoid belongs to an important type of semigroup.

Thus, we have the following first pre-result of this paper:
Proposition 2.1. The set iSB B×  with the operation given in (3) defines a semigroup which will be denoted by 

( ) .iSB B
Proof. It suffices to prove the well-defined and associative properties of (3).
Suppose that 1 1 1 2 2 2( , , ), ( ,, , ) ia x y z c x y z SB= = ∈  and 1 1 1 2 2 2( , , ), ( , , ) .b x y z d x y z B′ ′ ′ ′ ′ ′= = ∈  Now, by taking into 

account (2), let us calculate ac, ad and cb separately. Firstly, we have

                                        1 2
1 1 1 2 2 2 1 1 1 2 2 2( , , ) ( , , ) ( , ( ) ( ), ),t z t xa c x y z x y z x z t y y z x tθ θ− −= = − + − +                                    (4)

where 1 2max( , )t z x=  and θ is a monoid homomorphism (no necessary to know the rule) having one of the possibilities 
1 1 1 2 2 1, ,SM SM SM SM SM SM→ → →  or 2 2 .SM SM→  Actually, one of these homomorphisms must exist in (4) due 

to the definition. Secondly,

                                    1 2
1 1 1 2 2 2 1 1 1 2 2 2( , , ) ( , , ) ( , ( ) ( ), ),z xt' t'a d x y z x y z x z t y y z x tβ β ′− −′ ′ ′ ′ ′ ′ ′ ′= = − + − + 

where 1 2max( , )t z x′ ′=  and β must be a homomorphism with the form either 1: SM Mβ →  or 2: .SM Mβ →  However, 
for an element 2 ,y M′ ∈  we need to observe that 2 1\ .y M SM′ ∉  Thus, by the fact that y2 is an element of both M and 
SM1, we obtain the required homomorphism as 1: .SM Mβ →  Observe that the homomorphism β might have been 
taken as 2: SM Mβ →  (which certainly exists), but since it provides the trivial case, the other option has been chosen 
(see Figure 1).

                                                                     

SM1

SM2 = 1M

y′2

M

y′1

Figure 1. While the scanned area represents M \SM1, bold characters represent the monoid and its submonoids so as not to cause confusion

Finally, again by (2),

                                     2 1
2 2 2 1 1 1 2 2 2 1 1 1( , , ) ( , , ) ( , ( ) ( ), ),z xt'' t''c b x y z x y z x z t y y z x tχ χ ′− −′ ′ ′ ′′ ′ ′ ′ ′′= = − + − + 

where 2 1max( , )t z x′′ ′=  and χ must be a homomorphism either in the form 1SM M→  or 2 .SM M→  For an element 
1 ,y M′ ∈  such that 1 1\ ,y M SM′ ∉  by the same idea as in the previous paragraph, we certainly have a homomorphism 

1: .SM Mβ →  Here, the existence of the homomorphism χ from SM2 to M is obvious (see Figure 1).
Now, the next step is to combine the above elements under the Bruck-Reilly operation  as presented in (3) (and so 

by (2)). Thus,

                                                

1 2

1

1 1 1 2 2 2

2 2 2 2 1 1 1        )            
( ) ( ) ( , ( ) ( ), )

( , ( ) ( ) ,  

z t' xt'

t'' xt''

a d c b x z t y y z x t
x z t z y y z x t

β β
χ χ

′− −

′−

′ ′ ′ ′ ′= − + − +
′′ ′ ′ ′ ′′− + − − +

   

which is equal to the element
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2 2 1 2

*
2 2 2 1

**
1 1 2 2 1 2

*
2 1 1 1 2 2

(
,

, ( ( ) ( ))
( ( ) ( )), )

t z x t' t' z xt'

t x z t'' z xt'' t''
x z z x t y y

y y z x x z t
α β β

α χ χ

′ ′ ′− + − − −

′− + − − −

′ ′ ′− − + +
′ ′ ′− − + +                                                  (5)

where *
2 2 2 2max( , )t z x t x z t′ ′ ′ ′′= − + − +  and α must be a homomorphism from M to M. Since 1 2

1 2( ) ( )t' z xt'y yβ β ′− − ′  and 
2 1

2 1( ) ( )t'' z xt''y yχ χ ′− − ′  are the elements of M, there exists at least one homomorphism with the form : .M Mα →  
At this stage, by considering the elements calculated in (4) and (5), respectively, we must check that the 

element , ( ) ( )( )a c a d c b     belongs to the set .iSB B×  In fact, once we consider ( )a c  given in (4), it is seen that 
1 2

1 2( ) ( )t z t xy y Sθ θ− −  is an element of SM1 or SM2 = 1M. On the other hand, for the element (ad)(cb) in (5), it can be 
observed that the element

                                                
**

2 2 1 2 2 2 2 1
1 2 2 1( ) ( )) ( ) ( )( )z x z x t x z t'' t'' z xt t t' t' t''y y y yα β β α χ χ′ ′ ′ ′− + − − − + − − −− ′ ′

belongs to the M. These two imply that the ordered pair ( , ( ) ( ))a c a d c b S     is an element of the set ,iSB B×  which gives 
the closure property.

Additionally, by taking elements , , ( )ia b c SB B∈   and applying the operation in (2) as in the above calculations, it 
will be seen that the associative property ( ) ( )a b c a b c=     is satisfied.

Hence, the result. 
The following result shows in which cases this new semigroup ( )iSB B  defined in Proposition 2.1 will have the 

form of a monoid.
Theorem 2.2. Suppose all elements 0 ( )in SB B∈   are formed as

                                                                              2(0, ,0), ( , , )( )SM d e f

such that 0,d f ∈  and .e M∈  Then, ( )iSB B  is a monoid with the identity ( )(0,1 ,0), (0,1 ,0) .M M

Proof.  By the assumption, let  ( )0 (0,1 ,0), ( , , ) ( ) .M in d e f SB B= ∈   Also, let  us consider the element 
( )(0,1 ,0), (0,1 ,0) .d M M=  Taking into account the identity of the Bruck-Reilly monoid as (0,1 ,0),M  if we apply the 

operation in (3), then we obtain that 0 dn   is actually equal to

                                          
0

((0,1 ,0) (0,1 ,0)), ((0,1 ,0) (0,1 ,0)) ((0,1 ,0) ( , , ))

(0,1 ,0), ((0,1 ,0) (0 0 , (1 ) ( ), ))

( )
( )

M M M M M

t t d
M M M

d e f

t e f d tα α− −

=

= − + − +

   



where max(0, ) .t d d= =  Replacing t by d, the last equality is equal to

                                                

0

0

(0,1 ,0), ((0,1 ,0) (0 0 , (1 ) ( ), ))

(0,1 ,0), ((0,1 ,0) ( , , ))

(0,1 ,0), ( , , ) .

( )
( )
( )

d
M M M

M M

M

d e f d d

d e f

d e f n

α α= − + − +

=

= =





Applying a similar calculation, we get 0 0 ,d n n=   and so, as a result of Proposition 2.1, we obtain ( )iSB B  is a 
monoid with the identity element ,d  as required. 

Recall that an idempotent element of a semigroup S is defined as a2 = a for any a ∈ S, and if every a ∈ S is an 
idempotent element, S is called the idempotent semigroup or band. Recall that the notation E(S) denotes the set of 
idempotents. The idempotent elements and bands play an important role in semigroup theory. Since our new semigroup 

( )iSB B  is not a band (see Lemma 2.3 below), we give our attention to showing that the set ( ( ) )iE SB B  is a band (and 
a semilattice) under the condition that M is a commutative monoid (see Theorem 2.5 below).

The following lemma gives an explicit description of the idempotent elements of ( )iSB B .
Lemma 2.3. The element ( , , ), ( , , ) ( )( ) ix y z d e f SB B∈   is an idempotent if and only if 2 ,y SM x z d f∈ = = =  
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and ( ).e E M∈  
Proof. The necessity part: Let us assume an idempotent element ( , , ), ( , , )( )n x y z d e f=  of ( )iSB B  exists. Then, 

it is easy to see that n n n=   holds. Now, once we look at the settlement of this algebraic property, it is seen that

                                           

( , , ) ( , , ), (( , , ) ( , , )) (( , , ) ( , , ))

  ( , ( ) ( ), ), ( , ( ) ( ),

      ) ( , ( ) ( ), )

( )
(

)
t z t x t' z t' d

t' z t' d

n x y z x y z x y z d e f x y z d e f

x z t y y z x t x z t y e

f d t x z t y e f d t

θ θ β β

β β

− − − −

− −

=

′= − + − + − +

′ ′ ′− + − + − +

   



where max( , )t z x=  and max( , ).t z d′ =  If we keep going one more step, then we have

                                                

( , ( ) ( ), ),( ,
      ( ( ) ( )) ( ( ) ( )),
      )

(

)

t z t x

t'' f d t' t' z t' t'' x z t' t' t' d

n x z t y y z x t x z f d t
y d e z y e

f d x z t

θ θ
λ β β λ β β

− −

− + − − − + − −

′′= − + − + − − + +
− −

′′− − + +

such that max( , ).t z x t x z t′′ ′= − + − +  By the truthfulness of ,n n n=   the equalities in the following two cases are 
definitely satisfied:

Case I:  , ( ) ( ), ( , , ),( )t z t xx z t y y z x t x y zθ θ− −− + − + =

Case II: , ( ( ) ( )) ( ( ) ( )), ( , , ).( )t'' f d t' t' z t' d t'' x z t' t' z t' dx z f d t y e y e f d x z t d e fλ β β λ β β− + − − − − + − − −′′ ′′− − + + − − + + =
For Case I, there further exist the following three subcases:
(i) For the first component, we already have x – z + t = x, which implies the equality t = x = z.
(ii) For the second component, we have ( ) ( ) .t z t xy y yθ θ− − =  But, by (i), since t = x = z, and since θ0 is the identity 

homomorphism, we get

                                                                          0 0( ) ( ) .y y y yy yθ θ = ⇒ =

We know that iy SM∈  for i = 1, 2. However, if 1,y SM∈  then yy = y implies 1( ).y E SM∈  
The trivial case 2 1My SM∈ =  is clear.

(iii) For the third component, we have z − x + t = z, which yields x = z, as in (i). 
Similarly, for Case I, we have the following three subcases for Case II:
(i)′  For the first components, we have x – z – f + d + t'' and this implies the equality x = z = d = f.
(ii)′ For the second components, we have

                                                    ( ( ) ( )) ( ( ) ( )) .t'' f d t' t' z t' d t'' x z t' t' z t' dy e y e eλ β β λ β β− + − − − − + − − − =

By (i)′, since x = z = d = f, we have t′ = z = d, and so

                                                      0 0 0 0 0 0( ( ) ( )) ( ( ) ( )) ( )( ) .y e y e e ye ye eλ β β λ β β = ⇒ =

The only option to achieve the final equality is y ∈ SM2 = 1M, which clearly implies e ∈ E(M).
(iii)′ For the third components, we have f – d – x + z + t′′ = f, which gives the equality x = z = d = f as in (i)′.
The sufficiency part: Conversely, let us assume that conditions 2 ,y SM x z d f∈ = = =  and e ∈ E(M) are all held. 

Thus, we observe all elements of ( )iSB B  are formed as ( , 1 , ), ( , , ) .( )Ms x y x x e x= =  By a simple calculation, we 
clearly obtain ,s s s=  as required. 

By Lemma 2.3, we basically say that the set of idempotent elements of the semigroup ( )iSB B  is defined by

                                                        ( ( ) ) ( ,1 , ), ( , , ) : ( ) .{( ) }i ME SB B x x x e x e E M= ∈                                                     (6)

In the same way as in the proof of Proposition 2.1, we can show that ( ( ) )iE SB B  is a semigroup under the 
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operation defined in (3). Furthermore, as a consequence of Theorem 2.2, the elements in the set (6) cannot define a 
monoid unless they are formed as 2(0, ,0),( )SM b  such that b is an element of B. Hence, we obtain the following 
proposition.

Proposition 2.4. The set ( ( ) )iE SB B  in (6) defines a semigroup. Moreover, it defines a monoid if we choose x = 0.
Nevertheless, since a commutative idempotent semigroup is called a semilattice (cf. [12]), we then have the 

following theorem as a next step to Proposition 2.4.
Theorem 2.5. Let M be a commutative monoid. Then, ( ( ) )iE SB B  is not only a band but also a semilattice.
Proof. We know that ( ( ) )iE SB B  is a semigroup (by Proposition 2.4) and a band (by Lemma 2.3). Now, assume 

that M is a commutative monoid. Therefore, for arbitrary elements

                                           1 2( ,1 , ), ( , , ) , ( ,1 , ), ( , , ) ( ( ) ),( ) ( )M M ia x x x e x a x' x' x' d x' E SB B= = ∈ 

we will show that 1 2 2 1,a a a a=   and so, it will imply ( ( ) )iE SB B  is commutative for all, such as these elements. 
We have

                                

1 2 ( ,1 , ), ( , , ) ( ,1 , ), ( , , )

          (( ,1 , ) ( ,1 , )), (( ,1 , ) ( , , )) (( ,1 , ) ( , , ))

          ( , (1 ) (1 ), ), ( , (1 ) ( ), ) ( , (1 ) (

( ) ( )
( )
(

M M

M M M M

t x t x t x t x t x t x
M M M M

a a x x x e x x x x d x

x x x x x x x d x x x x e x

t t t d t t eθ θ θ θ θ θ′ ′ ′− − − − − −

′ ′ ′ ′=

′ ′ ′ ′ ′ ′=

=

   



 

0 0

), )

          ( , (1 ) (1 ), ), ( , ( (1 ) ( )) ( (1 ) ( )), )

          ( , (1 ) (1 ), ), ( , ( ) ( ), ) .

)
( )
( )

t x t x t x t x t x t x
M M M M

t x t x t x t x
M M

t

t t t d e t

t t t d e t

θ θ β θ θ β θ θ

θ θ θ θ

′ ′ ′− − − − − −

′ ′− − − −

=

=                             (7)

On the other hand, we have

                                 

2 1 ( ,1 , ), ( , , ) ( ,1 , ), ( , , )

          (( ,1 , ) ( ,1 , )), (( ,1 , ) ( , , )) (( ,1 , ) ( , , ))

          ( , (1 ) (1 ), ), ( , (1 ) ( ), ) ( , (1 ) (

( ) ( )
( )
(

M M

M M M M

t x t x t x t x t x t x
M M M M

a a x x x d x x x x e x

x x x x x x x e x x x x d x

t t t e t t dθ θ θ θ θ θ′ ′ ′− − − − − −

′ ′ ′ ′=

′ ′ ′ ′ ′ ′=

=

   



 

0 0

), )

          ( , (1 ) (1 ), ), ( , ( (1 ) ( )) ( (1 ) ( )), )

          ( , (1 ) (1 ), ), ( , ( ) ( ), ) ,

)
( )
( )

t x t x t x t x t x t x
M M M M

t x t x t x t x
M M

t

t t t e d t

t t t e d t

θ θ β θ θ β θ θ

θ θ θ θ

′ ′ ′− − − − − −

′ ′− − − −

=

=                            (8)

where max( , )t x x′=  and both θ and β are any two monoid homomorphisms (such that no need to know the rules of 
these homomorphisms for our calculations).

Since M is commutative, the expressions in (7) and (8) are equal to each other, which yields ( ( ) )iE SB B  is a 
commutative semigroup and so a semilattice, as required. 

3. An ideal extension for ( )iSB B
In this section, we will focus on a special extension of the semigroup ( )iSB B  defined in Proposition 2.1. 

Extensions were first systematically studied by Clifford [19], who gave the first general structure theorem in the case 
when S is weakly reductive (see [20] Theorem 4.21). Later on, this result was extended to arbitrary semigroups by 
Yoshida [21].

Let K and T be disjoint semigroups such that K has an identity and T has a zero element. A semigroup  is called an 
(ideal) extension of K by T if it contains K as an ideal and if / .K T≅  Special types of ideal extensions, namely strict 



Contemporary Mathematics 1290 | Suha Wazzan, et al.

and pure, have also been introduced in the literature. We may refer, for instance, to [22, 23] for a detailed introduction to 
ideal extensions and examples illustrating the strict or pure types.

Let us suppose that 11 .M SM∈  Then, we certainly have an ideal   of ( )iSB B  since the closure of the every 
element ( )(0,1 ,0), ( , , )M d e f  with 1e SM∈  holds. Thus, we can consider the quotient monoid ( ) / .[ ]iSB B   In fact, 
the coming theorem will use this monoid and will be a fundamental structure to obtain an ideal extension for our new 
semigroup.

Before presenting the following result, it should be noted that the index sets I and J in these Rees matrix 
semigroups are considered the non-negative integer set 0

  in this theorem.
Theorem 3.1. Suppose that RM1 and R are two Rees matrix semigroups, which are defined on the sets 

0 0
1SM× ×   and 0 0 ,M× ×   respectively. Then, we have

                                                              1 1 2( ) / ( , ) ( / , ).[ ]iSB B RM R SB SB B≅  

Proof. For simplicity, let us denote 1 1 2( , ) ( / , )RM R SB SB B  by  . Also, for a fixed a ∈ SB1 ⊂ B, suppose that the 
element a satisfies the property

                                                                    (( ) ( )) ( ( )) ( ( )).i j i ja n n a n a n=    

By Theorem 2.2, since ( )iSB B  is a monoid, all elements of ( )iSB B  will be the form of (0,1 ,0), ,( )M b  where b ∈ B. 
Now, let us consider the map : ( )if SB B →   defined by

                                             ( ) ( ) ( )(0,1 ,0), (0,1 ,0), (0,1 ,0), (0,1 ,0), .( )M M M Mb b a a b= 

For arbitrary elements, the equality (0,1 ,0), (0,1 ,0),( ) ( )M i M jb b=  certainly implies

                                               ( ) ( ) ( ) ( )(0,1 ,0), (0,1 ,0), (0,1 ,0), (0,1 ,0), ,M i M M j Mb a b a= 

and so, the map f is well defined. By the assumption on the element a, we have

                              

( )

( )

((0,1 ,0), ) ((0,1 ,0), ) ((0,1 ,0), ) ((0,1 ,0), ) (0,1 ,0),

        

 

                                     

 

       (0,1 ,0)

                                    

, (0,1

         

0

  

, ),

( ) ( )
( )

M i M j M i M j M

M j i M

f b b b b a

b b a

=

= 

  



(0,1 ,0), ( ) .   ( )M j ia b b=  

On the other hand,

                                                ((0,1 ,0), ) ((0,1 ,0), ) ((0,1 ,0), ( ) ( )),M i M j M j if b f b a b a b=   

and hence, by the associativity of ,  we obtain f is a homomorphism. Furthermore, since for all ( )(0,1 ,0), ,M a b ∈   
there always exists an element of the form (0,1 ,0), ( ) ,( )M ib SB B∈   in other words Im ,f =   which implies that f is an 
epimorphism. Finally, let us consider the monoid ( )iSB B  as a semigroup. Then, for the elements as the form

                                                  ((0,1 ,0), ), ((0,1 ,0), ) ( ) ( ) ,( )M i M j i iX b b SB B SB B= ∈ × 

since
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{ }
{ }
{ }
{ }

Ker : ((0,1 ,0), ) ((0,1 ,0), )
        : ((0,1 ,0), ) ((0,1 ,0), ) ((0,1 ,0), ) (0,1 ,0), )
        : ((0,1 ,0), ) ((0,1 ,0), )
        : ,

M i M j

M i M M j M

M i M j

i j

f X f b f b
X b a b a
X a b a b
X b b

= =
= =
= =
= =

 

 

we get the equality Ker ((0,1 ,0), ): ( ) .{ }M if b b SB B= ∈ =   Thus, the required isomorphism is obtained. 
Since an extension V of S is strict if and only if, for every a ∈ V, there exists c ∈ S such that ax = cx and xa = xc for 

all x ∈ S. Strict extensions are closely related to extensions determined by partial homomorphisms. The following lemma 
(see [22], Proposition 2.4) offers a practical way to show the existence of strict extensions, which will be used to classify 
the type of extension over ( )iSB B .

Lemma 3.2 ([22]). Every extension of a semigroup S is strict if and only if it has an identity.
The remaining goal of this section is to classify the ideal extension obtained in Theorem 3.1. Thus, we present the 

next main theorem of this paper.
Theorem 3.3. ( )iSB B  is a strict ideal extension of   by .
Proof. The idea of the proof will be constructed over the definition of an ideal extension given at the beginning of 

this section. Hence, we need to prove the truthfulness of the following conditions: 
(i)  and   must be disjoint semigroups:
We know that  is an ideal of ( )iSB B  and each SMi is an ideal of M. So, we can consider the quotient M/SMi. We 

need to examine the structure of   or in other words, the structure of 1 1 2( , ) ( / , ).RM R SB SB B  Now, by Theorem 3.1, 
it is easy to observe that RM1 and R have the same forms as Rees matrix semigroups, and also SB1, SB2, and B have the 
same production as Bruck-Reilly monoids. Therefore, these structures are totally disjoint under the operation in (3).

(ii)  must have the identity:
For simplicity, let   denotes the identity element

                                                            (0,1 ,0), (0,1 ,0) , (0,1 ,0), (0,1 ,0)[( ) ( )]M M M M

of the monoid ( ) ( ) .i iSB B SB B×   By the proof of Theorem 3.1, we know that Ker .f=  Then, the set of elements of 
Kerf is defined by

                                          

1 1 2 2

3 3

, ((0,1 ,0), ), ((0,1 ,0), ) , ((0,1 ,0), ), ((0,1 ,0), ) ,

((0,1 ,0), ), ((0,1 ,0), ) , , ((0,1 ,0), ), ((0,1 ,0), ) ,

{ [ ] [ ]
[ ] [ ]}

M M M M

M M M k M k

n n n n

n n n n…



where 1 2, , , ( ) .k in n n SB B… ∈   So,  consists of the identity element   of ( )iSB B .
(iii)   must have the zero element, since if the semigroup   consists of Bruck-Reilly monoids and the Rees 

matrix semigroups inside of it have zero elements, then the zero element is clearly in  .
Since these above conditions are satisfied, ( )iSB B  is an ideal extension. Additionally, by considering Lemma 3.2, 

it is a strict ideal extension.
Hence, the result. 

4. Future problems
In this paper, by using an operation given in (3), we mainly introduce and then classify a new semigroup (or, in a 

special case, a monoid). However, it still needs to be investigated whether this new structure satisfies the homological 
conditions for semigroup extensions.

On the other hand, as indicated in [11], there exists a close relationship between rings and semigroups in some 
cases, and so people transfer special results from rings to semigroups (see, for instance, [24, 25]). In ring theory, we also 
know that the idealization can be generalized to what is called a semi-trivial extension. We can briefly remind you of it 
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as follows: For a commutative ring R, an R-module M, and an R-module homomorphism : RM M Rϑ ⊗ →  satisfying

                                                 ( ) ( )  and ( ) ( ),m m m m m m m m m mϑ ϑ ϑ ϑ′ ′ ′ ′′ ′ ′′⊗ = ⊗ ⊗ = ⊗

if we obtain a commutative ring according to the operation ( , )( , ) ( ( ), ),r m r m rr m m rm r mϑ′ ′ ′ ′ ′ ′= + ⊗ +  then this ring 
is called a semi-trivial extension of R by M. Here, the case 0ϑ =  coincides with the idealization mentioned in the 
beginning. (We may refer to [26, 27] for the details of semi-trivial extensions). As a result, one may study the semi-
trivial extensions of semigroups via the operation defined in (3).

One can also transform the studies in Lemma 3.2 and Theorem 3.3 to arbitrary semigroups without assuming 
( )iSB B  as a monoid.
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