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Abstract: The present simulation, a numerical investigation of natural convection of Casson viscoelastic fluid in a 
porous square enclosure has been reported. Darcy-Boussinesq approximation mathematical model has been considered. 
The enclosure has been uniformly heated from the left wall and uniformly cooled from right side wall. The developed 
partial differential equations of the present computational domain are employed by using stream function approach 
along with finite difference scheme. The house-computational numerical algorithm has been validated against with the 
previous work and the computational results have been registered a good correlation. All the important results as shown 
by streamlines, isotherms, and local Nusselt numbers, the impact of Casson fluid parameter (β), Rayleigh number (Ra) 
is examined. It has been observed that with the increase in Casson fluid parameter (β), the buoyancy induced fluid 
circulation and convection effect decreases inside the enclosure. For each Rayleigh number, there correspond a critical 
Casson fluid parameter (β), for which the heat transfer inside the enclosure takes place solely by conduction mode. It has 
been also observed that at high Casson viscoelastic fluid the effect of increase in Rayleigh number on average Nusselt 
number is lesser compared to the effect of increasing Rayleigh number at low Casson viscoelastic fluid.

Keywords: square cavity, laminar flow, non-newtonian (casson) fluid, finite difference method, convective flow, porous 
medium
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Nomenclature
g			   Gravitational acceleration (m/s2)
L			   Length of the square cavity (m)
p			   Dimensional pressure (Pa)
P			   Dimensionless pressure
Ra			   Rayleigh number
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T			   Temperature (K)
θ			   Dimensionless temperature 
u, v 		  Velocity components (m/s)
U, V		  Dimensionless velocity components
x, y 		  Cartesian co-ordinates (m)
X, Y		  Dimensionless Cartesian components

Greek symbols 
ρ			   Density of Casson fluid (kg/m3)
α			   Thermal diffusivity (m2/s)
μ			   Dynamic viscosity (kg/ms)
υ			   Kinematic viscosity 
β			   Casson fluid parameter
γ			   Casson rheological fluid parameter 
τ			   Shear stress (and dimensionless time)
·γ			   Shear rate 
π = eijeij

eij			   (i, j)th component of the deformation rate 
π			   The product of the component of deformation rate 
πc			   Critical value 
μB			   Plastic dynamic viscosity of the non-Newtonian fluid
py			   Yield stress of the fluid

Subscripts
c			   Cold 
h			   Hot/Heat

1. Introduction
Medicine, energy systems, chemical process engineering, and geoscience continue to find extensive applications 

for transport in porous media. Permeable materials receive heat transfer, both convective and fluid, in many applications, 
such as solar absorber collectors, solar collectors [1], foam processing [2], geothermal power [3], borehole heat 
exchangers [4], heat transfer devices [5, 6], biomechanics [7], gastric bio-transport [8], bio-fuel cells [9] and industrial 
filtration [10]. Various modeling approaches and enclosures filled with porous media have been used to study natural 
convection flows by engineers. As a result of yield stress, Viscoplastic fluids exhibit a complex transition between 
solid-like and fluid-like behavior. Insufficient stress, i.e., less than yield stress, causes the material to cease flowing and 
behave as a solid. Above the yield stress, it behaves like shear-thinning fluid flow. Further, the Casson model is often 
used in medicine as a method to simulate blood rheology.

Dogonch et al. [11] considered a concentric circular semi enclosure to study the free convective flow of magnetic 
nanofluid with an influence of Brownian motion and thermal conductivity by control volume method. In spite of study 
on several parameters such as Darcy number, magnetic number number, Rayleigh number and inclined magnetic field a 
direct relationship of convective flow was identified with Darcy number and Rayleigh number, an inverse relationship 
found with an inclination angle and Hartmann number. Sivasankaran et al. [12] adopted non-Darcy porous model 
for the analysis of convective flow and heat expansion of Casson viscoelastic fluid within a porous square enclosure 
with sinusoidal thermal radiation. By Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, 
results states that the high values of non-Newtonian fluid parameter under radiation generates thermal stratification 
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phenomenon. Deterioration of heat transport for the rising thermal radiation values and improvement of heat transfer 
noticed for the increment of Casson parameter. Shayan et al. [13] considered a L-shaped cavity with various baffle 
configurations filled cu-water nanofluid for the analysis of thermal convective flow by Lattice Boltzmann Methods 
(LBM) approach. Enhancement of natural convection irrespective of baffle positions observed for the large values 
of Rayleigh numbers and length of Baffle also shown an impact in this case. Masoud et al. [14] also considered a 
different L-shaped enclosure filled with Al2O3-H2O nanomaterial for the elaborated analysis of free convective heat 
transport using entropy optimization. Based on cost of the nanofluid first time they introduced economic analysis for 
the assessment of performance of the cavity and got good agreement with the existed results. Decrement of entropy 
optimize number observe for the rising values of nanoparticle concentration. Raizah et al. [15] carried out three distinct 
thermal conditions like conducting, hot and cold solid particles within the E-shaped enclosure partially filled with 
porous medium to analyze thermal nanofluid characteristic. From the results it is revealed that the thermal fluid transport 
strengthened within the enclosure for the condition of hot solid particles. Keramata et al. [16] took a H-shaped enclosure 
packed with alumina water nanofluid by installing a baffle in the enclosure for the analysis of flow and heat expansion 
of nanofluid. They maintained hot temperature at the top rib, low temperature at side walls and other walls of cavity 
are insulated. Rise of heat transmission observed for the enhancement of Rayleigh number and nano-particle volume 
fraction.

Isam et al. [17] analysed heat transfer characteristics by natural convection within a trapezoidal cavity consists of 
an adiabatic circular cylinder positioned at its center packed with Ag-water nanofluid in porous field. Results reveals 
that thickness of the boundary layer is inversely proportional to the heat expansion and high Rayleigh number boosts 
the fluid flow. Alsabery et al. [18] also considered trapezoidal cavity for the analysis of Darcian free convection but 
the enclosure filled with two layers (one is porous layer and second one is nanofluid layer). They filled the cavity 
with water-based nanofluid and the nanoparticles Ag or TiO2 or Cu chosed for the analysis. As a result, convection is 
remarkably increased with the addition of Ag-water nanofluid. Dutta et al. [19] analysed MHD free convection, heat 
propagation and entropy generation within a Rhombus shaped cavity packed with cu-water nanofluids. The rate of 
entropy generation diminished for the rising values of magnetic number, Rayleigh number and inclination Angles of the 
cavity. Liu et al. [20] also studied free convection and entropy generation of water _Al2O3 nanofluid inside an inclined 
enclosure formed by connecting two inclined triangular cavities with the implementation of horizontal magnetic field. 
In this geometry half of the right walls of the cavity maintained Hot and rest of the walls kept adiabatic. As a result, 
decrement in Entropy generation and increment in Bejan number observed for high inclination angle. 

Asgar Ali et al. [21] addressed the critical role of magnetohydrodynamics with Hall currents on a time-dependent 
gyrating stream of non-Newtonian Modified Hybrid Nanofluid (MHNF) with Casson fluid model past a vertically 
fluctuating plate with ramped motion, and Newtonian heating in a porous environment. Asgar Ali et al. [22] presented 
the dynamism of a non-Newtonian water-ethylene glycol mixture (vol. 60-40%) based tri-hybridized nanofluid (Cu-
TiO2-Al2O3/WEG) on an oblique plate with ramped motion in the attendance of Hall and ion-slip currents, Darcy’s 
porous resistance, heat radiation, chemical reaction, Newtonian heat and mass fluxes in a magneto-rotating environment. 
Das et al. [23] conducted to demonstrate a time-dependent hydro-magnetic Couette flow and heat transport features 
inside a gyrating channel filled with a reactive second-grade hybrid NF (copper-alumina-ethylene glycol) and 
Darcian porous medium under multiparty impacts of Hall currents, temperature-dependent thermal conductivity, and 
Arrhenius chemical reaction. Asgar Ali et al. [24] examined magneto-bioconvective Darcy-Forchheimer (DF) transport 
of gyrotactic microbes using the Williamson nanofluid model over a flexible cylinder under the physical effects of 
Arrhenius activation energy, thermal radiation, triple stratifications and wall slip. A note in a mixed convection flow was 
presented by Meena and Pranitha [25]. Meena et al. [26], Meena et al. [27] examined mixed convection flow using Lie 
group scaling. We can count more relevant work of porous medium as [28-30].

The main theme of the study is to examine the behavior of convective in a fluid that has non-Newtonian properties 
and is contained in a square cavity. An enclosure containing a non-Newtonian fluid (i.e., Casson viscoelastic fluid) 
saturated with porous medium is studied using a stream function-based finite difference approach. Flow in porous 
medium is modeled by the Brinkman-Darcy model, a Local Thermal Equilibrium (LTE) approach. Solving the boundary 
value problem in stream function form is the best way to solve a non-dimensional problem. As far as the author’s 
knowledge, this problem has not been explored previously in a square cavity despite its numerous practical applications. 
A visual representation is provided of the effects of the Casson viscoelastic fluid parameter β and thermal Rayleigh 
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number (Ra) on fluid flow patterns and thermal distributions. In addition, the Nusselt number is examined on the right 
wall of the enclosure. It also includes grid-independent validation tests.

2. Physical and mathematical model
A schematic representation of the square shape model used in this study is shown in Figure 1. It is a two-

dimensional enclosure with L as height. In this study, we will examine a two-dimensional enclosure filled with porous 
medium with Casson viscoelastic fluid. The schematic geometry of present numerical investigation of interested domain 
is depicted in Figure 1, where x and y are the coordinates of the Cartesian geometry and L is the length of the square 
enclosure. It is assumed that the left wall is heated and kept at high temperature Th.

Figure 1. Schematic of problem

Let us consider a laminar incompressible non-Newtonian viscoelastic Casson fluid flow in a domain. 
The Casson fluid rheological equation is expressed by following [31]
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From the equation (2) and (3), we have

11Bµ µ
β

 
= + 

 

The present investigation, the following assumptions are considered:
1. In a square enclosure, the horizontal walls are adiabatic and the left wall is maintained at high temperature and 

the other wall is kept low temperature. 
2. The fluid in a square cavity is assumed as laminar incompressible non-Newtonian fluid (Casson viscoelastic 

fluid) in thermal equilibrium. 
3. No slip flow is considered in a square enclosure and all wall are bounded with fluid and porous medium.
4. The fluid properties are isotropy and homogeneous everywhere.
5. The Local Thermal Equilibrium Model (LTEM) is considered between the fluid and porous medium.
6. The boussineq approximation, is applied and all fluid parameter are constant except fluid density where the fluid 

density is taken as a linear function of temperature ρ = ρ0[1 − βT (T − TC)].
Under the above discussed assumptions, the governing equations of present computations are written as follows 

[31-33].
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Introducing the following dimensionless quantities are:
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The fluid flow field introduced stream function ψ and it is defined as follows 
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so, the governing equations are taken with account of stream function and equation (8) as follows 
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Here ( )T n Cg K T T
Ra

β
να

−
=  is the thermal Rayleigh number.

The dimensionless boundary conditions of domain of interest are [31]

0,  0 on right wall ψ θ= =

0,  1 on left wallψ θ= =

0,  0  on 0 and 1Y Y
Y
θψ ∂

= = = =
∂

3. Numerical technique
The partial differential equations (10)-(11) of the present investigation of the domain and the corresponding 

boundary conditions (12) are employed by the help of finite difference method (see [32, 34-37]) with second order 
accuracy. The stream function Poisson equation (10) is employed from the gauss-seidel iterative method. The numerical 
methodology was coded in MATLAB. The developed computation algorithm is terminated when the stream function 
residual reaches below 10-8. The house-computational code is developed in MATLAB and verified converges against 
the work of [38] and [39]. Table 1 depicts the comparison of mean Nusselt number Nu obtained for different Rayleigh 
numbers and the solid volume fraction for other authors and it gives a good agreement.

Table 1. Comparison of heat transfer rate (Nu) of Triangular enclosure

Ra
Nu_avg

[38] [39] Present computation

500 9.66 9.52 9.63

1,000 13.9 13.6 13.96

4. Results and discussion
Numerical simulation conducted for the Boundary Value Problem (BVP) from (10) to (13) for the subsequent governing 

parameters Rayleigh number (R - 100, 500, 1,000), Casson viscoelastic fluid parameter (β - 0.2, 0.5, 0.8). A remarkable 
specific impact noticed on these governing parameters for both heat propagation and fluid flow discussed in detail. 

A substantial variation can be identified in heat propagation in porous square cavity by varying the governing 
parameter Rayleigh number-Ra, Figure 2 portrays streamlines as well as isotherms for Alumina-water nanofluid for 
various values Ra with Casson parameter β = 0.5. Regardless of distinct Ra values and mode of porous field, an anti-
clockwise fine mono circulation of vortex is generated inside the square enclosure. In particular, in Figure 2(a) a single 
circular vortex is noticed within the cavity and respective isotherms expanded throughout the enclosure. Increment of 
Ra values reduces the viscous force strength that causes enhancement of buoyancy and eventually strength of eddies 
inside the cavity will also be upraised. As Ra increased from 100 to 1,000 (Figure 2(b), 2(c), 2(d)), the strength of 
the vortex gradually enlarged and its shape also changed from circular to elliptic. When Ra is increased vortices of 
streamline stretches horizontally with which stream function value gets increased consequently velocity profile of flow 
gets strengthened. For Ra = 500, the streamline contour recirculate as approximate horizontal ellipse pattern. This 
substantial amount of increase in stream function value shows improved convective heat transfer. When Ra = 1,000 
(Figure 2(d)) a high strength is noticed in the vertex inside the cavity. With rise of Rayleigh number and strength of 

(12)
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convective cell the convective circulation extended towards the horizontal axis, the strength of the thermal boundary 
layer along the right cold wall will also be increased. When Ra takes higher values as depicted in the isotherms Figure 
2(c), (d) that distribution more distorted as effect of the strength of convection current related to the Ra values. Isotherm 
line are approximately parallel to the left vertical wall of the cavity when low values of Ra. But when Ra is increased, 
these lines get starts distorting which increases the longitudinal and transverse temperature/concentration gradient in the 
core of domain.

Figure 2. Streamlines and isotherms for various values Ra and β = 0.5, Ra = 100 (a), Ra = 500 (b), Ra = 1,000 (c)
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Figure 3. Streamlines and isotherms for various values β and Ra = 1,000, β = 0.2 (a), β = 0.5 (b), β = 0.8 (c)

Generally convective fluid flows are directly proportional to temperature variations. At Ra = 100 (Figure 2(a)), 
a low-level heat propagation from hot wall to cold wall of the cavity is noticed. A significant expansion of isotherms 
observed towards cold wall. Rise of Rayleigh number increases the strength of heat expansion in particular at Ra = 1,000 
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(Figure 2(d)) the fluid particles are forcefully boosted towards right cold wall and the isotherms are steeper and high 
clustered near the right cold wall. A high thermal flume is noticed for the Rayleigh number Ra = 1,000, in Figure 2(d).

The flow patterns and thermal contours for distinct values of Casson viscoelastic fluid parameter at Ra = 1,000 
depicted in Figure 3. A clockwise flow circulation from hot wall to cold wall is noticed within the enclosure. The 
incremental values of β rises the fluid flow strength accordingly the enhancement of eddies inside the cavity is noticed 
(see in Figure 3(a), 3(b), 3(c)). At high buoyancy force (Ra = 1,000) friction within the Casson viscoelastic fluid will be 
raised and the increment of β values rises the temperature field so that a considerable change in isotherms is observed. 
The heat flume is developed along the vertical walls, where as strongly depended on the growing values of Casson 
viscoelastic parameter β. The stronger thermal boundary layer is observed at higher values of β = 0.8 and which is seen 
in Figure 3(c). 

Figure 4. Local nusselt number for various values β with Ra = 1,000
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5. The impact of Viscoplastic fluid parameter (β) on heat transfer rate is shown in Figure 4. In addition, the heat transfer 
rate along the hot wall and cold wall are shows Figure 4(a) and Figure 4(b) respectively. Increasing of Viscoplastic fluid 
parameter (β) leads to growth of the thermal transport is observed due the viscosity nature is reducing. The influence 
of buoyancy parameter on heat transfer rate is revealed in Figure 5. In addition, the heat transfer rate along the hot 
wall and cold wall are displays Figure 5(a) and Figure 5(b) respectively. The Figures 4 and 5 reveals the significant 
heat distribution along the vertical walls and the local Nusselt numbers is a growing function of both the Casson fluid 
parameter (β) and Rayleigh number (Ra). From Figure 4 and 5, it is seen that raising the Rayleigh number boosts the 
cumulative Nusselt levels due to enhanced thermal buoyancy forces. A substantial amount of increase is noted for higher 
Rayleigh number whereas for it is marginal for small values of Rayleigh number.

Figure 5. Local nusselt number for various values Ra and β = 0.5
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5. Conclusions 
The present numerical investigation, natural convective flow of Casson viscoelastic fluid in a porous enclosure 

is examined numerically by the help of finite difference method. The Darcy-Brinkman model of Casson fluid flow 
has been considered. The effect of thermal Rayleigh number (Ra), Casson fluid parameter β on convective flow and 
heat transfer are investigated. From the finite difference based numerical algorithm is used to find the solutions of the 
computational domain, it can be summarized that the thermal Rayleigh number (Ra) and Casson fluid parameter (β) can 
be a good control governing parameter for heat and convective flow. In addition, the heat distribution from the hot wall 
is an increasing function of buoyancy parameter Ra as well as Casson fluid parameter. The significance heat distribution 
(local Nusselt number) is observed for the impact of viscoplastic fluid parameter (β) and thermal buoyancy parameter 
(Ra).

The present study has examined a simple Viscoplastic model with the efficient FD numerical approach. Future 
enclosure simulation investigations may consider alternate non-Newtonian models e.g. micropolar liquids and efforts in 
this regard are currently underway. 
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