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1. Introduction

Throughout this paper, we let p be an odd prime and fix ¢ = 2(p — 1). The notation A denotes the mod p
Steenrod algebra. For more details about the Steenrod algebra, please refer to [1-3]. We let S be the sphere spectrum,
which is localized at p. It is well known that determining the structure of the stable homotopy groups of spheres is
one of the most important problems in homotopy theory. In order to approach it, we mainly use the classical Adams
spectral sequence (ASS), whose E,-term is E;" =Ext{ (Z/ p,Z/ p), the cohomology of the Steenrod algebra A .
The differential of this spectral sequence is d, : E*' — E***""'. According to the reference [4], we know that the first
filtration Ext'(Z/ p,Z/ p) has a Z/ p -basis, including a, € Ext'(Z/ p,Z/ p),h, € Ext'/*(Z/ p,Z./ p) for all i >0,
and the second filtration Ext’"(Z/ p,Z/ p) has a Z/ p -basis including Ezz,ag,aoh,. (i>0),g,(i=0),k (i20),b(i=0),

" +2p")q,(2p"" +p')g. p™q and (p' + p’)gq, respectively.

Generally, if a generator x, € E;” is a nontrivial permanent cycle in the ASS and converges to an element
f, € m,S, we say that f; can be represented by x; in the ASS. Although much work has been done on this problem, a huge
number of homotopy elements in 7.5 have not been determined. In the following, we state some known results on this
problem. In [5], a family of nontrivial elements ¢, ﬁpnq+q_3S(n >2) has been determined. It is already known that ,

i+l

and ih;(j >i+2,i>0) with degrees as 2¢ +1,2, p'qg +1,(p

has filtration 3 and can be represented by a permanent cycle hb, , € Ext’;’ "*9(Z/ p,Z/ p) in the ASS. In [6], a family

of nontrivial elements £ ez ,
n (p"+p)g-3

represented by a permanent cycle (b,h, +hb, |) € Ext” *"9(Z/ p,Z/ p) in the ASS.

(n > 3 and p > 5) has been determined. This element has filtration 3 and can be
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We know that the periodic elements of the stable homotopy groups of spheres are very important. There is a
close relationship between the existence of the periodic elements and the existence of the Toda-Smith spectra. We use
the notation BP to denote the Brown-Peterson spectrum, which is localized at p. It is known that BP is a p-local ring
spectrum whose coefficient ring is BP, = BR.S =Z,,[v,v,, -], where Z , denotes the p-localization of Z and the
generator v; has degree 2(p' —1). In [7], it is shown that if we are given a spectrum X, then BP.X admits a comodule
structure over the Hopf algebroid BP.BP. We use the notation /,,, to denote an ideal generated by the elements p, v,, -,
v,. In [8], Toda studied the existence of some finite spectra V(n) whose BP-homology is

BPV(n)= BP. /1, (as BP.-module, hence as BP.BP-comodule)

In [8], it is shown that the spectrum V{(n) exists under the condition p > 2n for 0 < n < 3. Toda [8] also verified the
existence of some Greek letter maps

a™ 2Py (=1 > V(n-1),

where @ = p,a, B,y when n =0, 1, 2, 3, respectively. Here, we mention that the notation (—1) denotes the sphere
spectrum S. Furthermore, we have a cofiber sequence

a(ﬂ) i,

’ P
Y -1V (n-1)=>V#m)->27 'V(n-1),
where V(n) is the cofiber of o”. In what follows, we write the three notations
a, = jo(@V)iy, B, = joji(@?) iy, and y, = joji (@) by v

that denote the first, second, and third periodic elements in 7.S, respectively (refer to [9]).

In [10], it was shown that there exists a nontrivial cohomology class a, € Ext'(Z/ p,Z/ p) for n < p and
s#0,1,---,n—1 mod p. We call this cohomology class the n-th Greek letter element. Especially, we write a. as
gts,ﬁs,}js,gs for n =1, 2, 3, and 4, respectively. In [10], it was shown that &s,ﬁ_‘., and 77_\_ represent the periodic
elements a,, f,, and y,, respectively. Since the existence of the fourth periodic element is still an open problem, we do

not know whether or not &, represents a possibly existing fourth periodic element.

In what follows, we introduce the notion of a product element in the ASS. Suppose that we are given two nontrivial
elements x,y e Ext’;'(Z/ p,Z/ p) in the ASS. Thus, multiplication on the ASS gives us an element xy in the ASS,
which is called the product element. Generally, xy may not be a permanent cycle in the ASS. This drives us to find the
condition under which xy is a permanent cycle in the ASS. Among these product elements, we are especially interested
in the nontriviality of the product of one of Z}“;/S, and &, with some other element in E,-term of the ASS. Some
progress has been made on this problem. For example, in [11], it was shown under the conditions p > 7, n >4, and 0 <
s < p — 4, the product element 7~/s+3hobn-1 € Ext[*"(Z/ p,Z/ p) is a nontrivial permanent cycle in the ASS. In [12], a
nontrivial product involving f-family was detected in the ASS. Also in [13], it was shown that under the conditions 0
<s<p—4and p > 11, the product element 5.y+4h0b0 e Ext',""(Z/ p,Z/ p) is a permanent cycle in the ASS. Recently,
more nontrivial product elements have been detected [14-16]. The proofs of these results are based on the method of
combinatorial analysis with some restrictions on the range of the filtration s. In order to extend the range of the filtration s,
we plan to apply a new computation method in this paper to obtain a relatively more general result by showing that the
product Sﬁz;hobn_] e Ext';""(Z/ p,Z/ p) is a permanent cycle in the ASS under the conditions p > 11, n> 1 and n # 5,
0 <s <p — 4. We state our main result as follows:

Theorem 1.1. Let p > 11 and 7> 1 with n# 5. If 0 < s < p — 5, then the product &,.4h,b, , is a nontrivial permanent
cycle in the ASS.

Remark 1.2. The case n =5 is special due to the existence of a possible obstruction, which is related to one possible
higher Adams differential. A detailed discussion will be given in Remark 4.3.

We organize this paper as follows: in Section 2, a new method is introduced to compute the generators of the E,-
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term of the May spectral sequence (MSS). In Section 3, we will apply this method to give an explicit computation in
order to prove Theorem 1.1. In Section 4, the proof of Theorem 1.1 is given.

2. Computation method for the MSS

In this section, we will recall some preliminary knowledge on the MSS and introduce an effective method to
compute the E,-term of the MSS. According to [7], we know that the MSS is a triple-graded algebra with differential
d :EXM — EXM Tt is well known that the MSS converges to Ext’ (Z/ p,Z/ p). According to [7], we know that
the E,-term of the MSS has the structure as

E** =Elh,,|m>0,i>0]® Plb

m,i

|m>0,i>0]® Pla, | n>0],

where the notation E[ ] denotes the exterior algebra and P[ ] denotes the polynomial algebra. Among these generators,
h,eE” 7 can converge nontrivially to a generator %, € Ext'’(Z/ p,Z/ p). 1t follows that d.(h,;) =0 for r > 1. The
degrees of the above generators are listed as follows:

1L,2(p" -1)p' 2m-1 2,2(p" -1 p™ (2m-1 1,2p" 1,20+
h,ieEl(p )pm’b’ieE1 04 )p(M)p’ an€E1p el

m m

The r-th May differential d : E>*" — E*'""" satisfies the Leibniz law

d,(x)=d,(x)y+(=D)""xd, (y)

for xe E"" and yeE™"". If we are given {x,y}<{h, b, a,}, then we have the graded commutativity
xy = (=1)""C* yx. For each generator, the first May differential d, : E/"" — E*""""" can be given explicitly as

dl (h[,j) = Z hi—k,k+jhk,j’ dl(ai) = z h[—k,kakﬂ d] (b[,j) =0.

O<k<i 0<k<i

For a given x € E"", its three degrees are expressed as dim(x) =s, deg(x) =, and M (x) = M, respectively. For
the above generators of £, we have

dim(h, ;) =dim(q,) =1,dim(b, ;) =2,
M(h ;) =M(a,_)=2i-1,M(b,;)=(2i-1)p,

i

i+j-1

)4,

deg(bi,‘,') = 2(pl —1)pj4rl = (ij +...+pf+j)q’

deg(hi,j) = 2(PL —I)Pj = (pj +--+p

deg(a,) = 2p —1=(1+-+p g +1,
deg(a,) =1

and b,

i,j?

We use the letters x, y, and z to denote the generator a,,4, ,,

respectively. According to the graded

# %

commutativity, one generator 4 € E""" can be written as the form

h=0x0x ) v)(E 000 z) € B0
For each degree of 4, we have s < b + g with 0 < b < g, and t=(¢c,+¢,p+:--+¢,p")q with 0<¢,<p for

0<i<n,c,>0. Itis claimed that u = b. Otherwise, according to the above expressions of deg(a,), deg(#; ), deg(b,;), and
t, we see that there exists some positive integer w such that u = b + wg. It follows dim(k) > b + wg > s = dim(#). This is
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clearly a contradiction. Thus, we have

E1b+v+21,t+b,* .

h=(xx) )z z) €
It should be noted that deg(x;),deg(y,), and deg(z;) are uniquely p-adic expressed as follows:
deg(x,)=(x, o +x, ,p+--+x,,p")g+1,
deg(y)) = ip + Y P+ +2,P" )4,

deg(z,)=(0+ Zgptet Zi,npn )q.

It is easily checked that among the above expressions the sequence (x,,,x,,"--,x,,) has the form (I,---,1,0,---,0),
but the sequences (V9,1 Y;,) and (0, Z,y,"»2;,) both have form (0,---,6,1,---,1, 0,---,0). By the graded
commutativity on E"*, we can rearrange h=(x,---x,)(y, -y, )z, -+-z,) € E/™" as follows:

(a) ifi>j, place a, on the left side of a;

(b) ifj <k, place h;; on the left side of 7,.,;

(c) if i > w, place &;; on the left side of

(d) use the same rules (b) and (c) for b,,.

After we finish the above operation, x;;, y;;, and z;; in the above sequences satisfy the following conditions (a):

1) x,2x,;22x,%,2x,2--2x, fori<bandj<n;

(i) if y,,, =0 and y,, =1, then y,, =0 fork<j;

(ii)if y, ;=1 and y,,, =0, then y,, =0 fork>j;

(V) Y1 2 Vop 22 Yy 05

V) if Y0 = Vios Via = Yivto Vi = Viarjo then there is ;i1 2 Vs jurs

(vi) use the same rules (i))~(iv) for z, .

According to the properties of p-adic numbers, for the p-adic expression of deg(x;), deg(y,), and deg(z;), we have
the following group of linear equations (5)

W%

Xip Tt X0t Vot TV =¢, thkp=c,
Xyt X, H Y ety o etz =6 -k thp =

Xt X, Yt Y2, ez, = c -k

Xt X, ty, oty 2, bz, =0, -k, =c,.

1,n
There are two integer sequences
K =(k,,--,k,)and § = (¢, "-,c,)

where S is determined by (¢, --,¢,). The group of linear equations (f) is said to have a solution if its solution satisfies
the conditions (a).
We express the above group of linear equations by the following matrix

A B C
Xio %o [ Ve o Ywo | O 0)g
X Xy [ Y Ve | 2 T Zn |6
xl,n xb,n yl,n ym,n Zl,n Zl,n cn' (1)

According to the conditions (&), we see that Section A4 is an echelon matrix as
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1 1 1
1 - 1
1 2

where the missing numbers are all zeroes. Section B has the form

1 1 1 1
1 1 1
1 1 1 1 1 1
1 1 1 1
1 1
1 3)

where the missing numbers are all zeroes. Section C has a similar form as Section B except that the first horizontal lines
are all replaced by zeroes.

By observing the above matrices, we can easily find that each column in Section 4 determines some x;, and each
column in Section B or C determines some y; or zi, respectively. It should be noticed that each column in the above
matrix does not have the form (---,1,0,---,0,1,---)", i.e., there are no zeroes between 1 and 1. Finally, the determination
of E"*"" can be reduced to the following steps:

Step 1. Express #/q by the p-adic number as the form ¢ = (¢, +¢,p+---+¢,p")q.

Step 2. List all the possible of sequence K whose numbers lie in the corresponding of sequence S.

Step 3. For each sequence S, we can solve the group of linear equations () which satisfies the conditions (a).

Step 4. Do the replacement #, ., — b, ; and resolution 4, ; > h_, .. b or a,—>a,_h,, .

3. Computation of E,-term of the MSS

In order to prove our main theorem, we will apply the method introduced in Section 2 to determine the generators
of E 7 where | <r<s+7and t=s+2+(s+2)p+(s+3)p* +(s+4)p’ + p". In what follows, we use M, to
denote the May filtration for each i > 1.

Theorem 3.1. Foreach0<s<p—5,welet t=s+2+(s+2)p+(s+3)p* +(s+d)p’ +p". If 1 <r<s+7andn>1,
then we have the generators of E'~*74*¢~*D* a5 follows:

(1) when 2 <r <5 + 7, there is no generator;

(2) when r =1, the generators are stated as follows:

(a) if n =1, there is one generator a,h, \h by by 1, b (M, =85 +18);
(b) if n = 2, there is one generator a,h, h  hy by hy b (M| =8s +18);
(c) if n = 3, there is no generator;

(d) if n = 4, there are 54 generators
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ahs ohyob, b, ,

(M, =9s+4p+16)

a:_la1h5,0h4,0h2,2h1,3b3,0’ aih2,0h4,0h2,2h1,3b3~1
aihé,oh1,oh2,zh1,3b3,o > asa:lhzt,ohl,ohz,zhl,sbs,o (M, =9s+5p+14)
azhy oIy ol hysbs o, aghy o By oy by sbs
azh, o, hy by sb,,, ayhy o h ohy 5 hy by
a:h1,0h4,0h2,2h1,3b4,0 (M, =9s+Tp+12)
ai_la1h3,1h5’0h4,0h1,3b2,1 > ai_]a2h5,oh4,0h2,2h1,3b2,1
ajh1,0h4,1 h4,oh1,3bz,1 > aih3,0h4,0h2,2h1»3b2s2
azhs oh, ohs by sb, azhs ohy o1ty 1y b,
asa,” RLUTLSLROTE asaj’lh4’0h2’0h2’2h1,3b2!] (M;=9s+3p+16)
azhy ohy ol 5y 5by aghy By oy by b,
ayhy oy yhy hy,b, ,, ahy oy ohy 2hy 3by
aih4,oh3,ollﬁ,3h2,3b2,1 ’ a:h4,0h3.0h1,3 h2,2b2’2
aghy oy hyohysby (Mg =9s+3p+18)

ay ahy oy ohy by, @y ashs oy ohy i b
azh3~0h431h4~0h2~2b1,2’ aihs,o}ﬁ,oh&lhz,zbl,z
ayhs oy ohshy5by o, aghs ohy oh b
asaf] h4,0h3,0h1,3h2,2b1,2 > a: h4,0h‘,0h3’1h3yzb1’2
a h4=0h3’0hh3 h3,2bl,2 > aih4,oh3,ohz,zhz,3bl,z

(M, =95+ p+18)

ayhyohy by by ohy by

(e) for n =5, there are two generators:

(M,, =95 +20)

azhy ohy iy oy 5by s, azhy oy oy by s, (Mg =9s+ p+20)
ahyohy hyohy b, (Mg =9s+ p+22)
aih1,0h1,1h2,3h4,0h2,2}ﬁ,3 (M, =9s+16)
aiilal}’3,1}5,0h4,1h4,oh2,2h1,3a aflalh3,1h2,oh3,zh4,oh2,zh1,3
aflal by by ohy shy ohy oy 5, ayhy oy by by ohy S
ayhyohy s s hy ohy oy s, ayhy ohy by ohy by 5y
agh oy by shyohy o5, aghy oy shyohy by s (M, =9s +18)
ayhy ohy 3hyohy by S s ay” ayhy ohyohy b by 5y
azilashzt,ohl,ohxlhzg hy sl s ay’ aghs ohy ohy ohs o 5y
azhy by ohy hyohy s, ayhyohy o hy by oy

aih4,0h3,1h2,2h1‘3h1,0h1,5 (M5 =95 +18)
aspdhs,oh4,1h3,2h2,3h1,oh1,4 (M, =11p-29,s=p-5)

(f) forn>5and s = p — 5, there are 15 families of generators
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1= aih4,0h3,1h2,2h1,3}5,0h (M5 =95 +13)

h 1,n

h, = a575hn,ohs,ohnfz,zhnfs,sbnfm (M; =4np—4n—8p-9)
h, = arlyFShn,ohs,ohnfz,zhnf4,4bn73,z (M, =4np—-4n—6p—11)
h, = af_shn,ohs,ohn%,shn74,4bnfz,1 My =4np—4n—4p—-13)

. h, = arlpFShn,Ohl,Ohn—l,lhn—2,2hn—3,3h1,4
W = a7k, b ok, ko ok sk (AT <n—1)

n-iilt-2,2
h(7i) = arI:75hn,Oh[,Ohnfi,[hn72,2h2,3hn74,4 (I<i<n-1i#2,4)
h{ = affshn’oh[,oh,ﬂ,,.hj’zhn%ﬁhn%A (1<i<n-1,i#3,4)
h, = anp_6a1hn71,lhn,OhS,Ohn72,2hn73,3hnf4,4

_ h,, = a:_shl,ohn—l,lhS,Oh/z—Z,Zhn—3,3hn—4,4 (M)

hﬁ) = a:_shi,Ohnfi,ih5,0h1172,2hn73,3hn—4,4 (6<i<n-1)
hilz) = a:_shn,Ohi,OhS—i,ihn72,2hn—3,3hn—4,4 (I<i<4)

hf? = a:_shn,OhS,Ohi,Zhn—i—Z,i+2hn—3,3hn—4,4 (3<i<n-3)
h&) = a:_shn,ohS,Ohn—2,2hi,3hn—i—3,i+3hn—4,4 (2<i<n-4)

hiis) = a:_shn,OhS,Ohn—Z,Zhn—3,3hi,4hn—i—4,i+4(1 <i<n-5)

where M, =2, -2, + -19.
In what follows, we give the proof of Theorem 3.1 case-by-case when » and # take different values.
Proof. For t =s+2+(s+2)p+(s+3)p° +(s+4)p’ + p", we see that
when n = 1, there exists the sequence §1 =(s+2,5+3,5s+3,5+4);
when n = 2, there exists the sequence §2 =(s+2,5s+2,5+4,5+4),
when n = 3, there exists the sequence ‘S_} =(s+2,5+2,5+3,5+5);
when n > 4, there exists the sequence with form

S =(C,¢)=(s+2,5+2,5+3,5+4,0,---,0,1).
For a given generator h € E'" 07 with | <r<s+ 7, we have
dim(h) =s—r+7and deg(h) =tq+ (s —r+1).

If s+ 1 <r<s+7, then there is s — r + 1 < 0. This implies that the number of g, in A is s —r + 1 + q. This is
impossible due to the reason of dimension. Thus, we can now assume 2 < r <s + 1 which follows s —r+ 1 > 0.

Since s —r+ 7 <s—r+ 1+ g, we see that the number of x; in /2 is s — r + 1. According to the reason of dimension,
we list all the possibilities of / as

xl o xsfrJrl
Xy X aNIaZi12,
Xy X N2 V3 Va2

X Xy a1 V2 V3 Vs Vs Ve

212,24

When 1 < n < 3, the sequence K = (k;," -, k,) becomes (0,---, 0) and thus the corresponding (c,,-*-,c,) equals to
S =(G,-,c,). When n=4, we have (k,,---,k,) = (0,---,0) and then

(Cprorr0,) =8 =(s+2,5+2,5+3,5+4,1)
When n > 5, all the possibilities of K = (k,,---,k,) are listed as

K, =(0,:--,0)
Ki:(03070503'"90:1(i)9"'71) (SSlSn)
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where 1) means that the i-th term of K, is 1. For each K, we get the corresponding S = (cye"+>C,) as

S =(+2,5+2,5+3,5+4,0---,0,1)
S, =(s+2,5+2,5+3,5+4,0---,0,p”, p—1,---,p—1,0) (5<i<n).

where p'” means that the i-th term of S, is p.
Casel. h=x X

s—r+l

In this case, we see that s <p — 5 and r > 1, which follows the inequality

Z,Z2,Z;.

s—r+l
in,OSs—r+1£s—l+l<Eozs+2.

i=1

This implies that the first equation of (f) has no solution. Thus, such % cannot exist.
Case2. h=xX_  NWVrZZ,-
Subcase 2.1.s<p—5andr>2.
Since

s—r+l
z X3+ Vst Yoz T 25+ 2,5 <s+3<c =s5s+4,
i=1

it follows that the fourth equation of (f) has no solution. Such / cannot exist.

Subcase 2.2. s<p—5,r=1,andn=1, 2.

For S, and S,, solving the corresponding group of equations (5) by virtue of («) gives generators & = ajhf,obwbl,2
and a}h;,b;,, which are both zeroes due to /;, = 0.

Subcase 2.3.s<p—5,r=1,and n=3.
Since

s—r+l
D XtV Vs 22, SS+A<T =5+5,

i=1

the fourth equation of () has no solution. It follows that such 4 cannot exist.

Subcase 2.4. s<p—5,r=1,and n =4.

For S =(s+2,5+2,5+3,5+4,1), solving the corresponding group of equations (5) by virtue of (a) gives one
generator

aih5,0h4,ob2,1b1,2' 4)

Subcase 2.5.s<p—5,r=1,andn>5.

For §,, the corresponding group of equations () by virtue of (a) has no solution since there is a solution with the
form (0,---,0,1,---,1,0--- ,0,1).

For S; (5§ <i < n), the inequality

s—r+l
Z Xt Vi T Vo T 20 T 20 <s+4<c, =p
=l

implies that there is no solution for the i-th equation of (f). Thus, such / cannot exist.
Case3. h=x X _ Y ),V3)47.
Subcase 3.1.s <p —5and r>2.
The inequality

Contemporary Mathematics 1002 | Hao Zhao, et al.



s—r+l 4
D X+ vtz <s+4<T

i=1 i=1

implies that there is no solution for the fourth equation of (f). Thus, such % cannot exist.

Subcase 3.2. s<p—5,r=2,andn=1, 2.

For §, and §,, solving the corresponding group of equations () by virtue of (a) gives =aj'lh43,0h3‘lbl’2,l
a,”'h} by by, and @B by ,b, . respectively. They are all zeroes since 4], = 0.

Subcase 3.3. s<p—5,r=2,and n=3.

For §,, the inequality

s—r+l 4
Z X5 +Zyl.’3 +2z; <s+4<c=s5+5
=] =]

implies that there is no solution for the fourth equation of (f). Thus, such /4 cannot exist.

Subcase 3.4. s<p—5,r=2,and n=4.

For S =(s+2,5+2,5+3,5+4,1), solving the corresponding group of equations (f) by virtue of («) gives the
following generators:

s=2 3 s—1 2 s—17.3 s=173
a, ash4,oh2,2b1,2 a, h5,0h4,oh2,2b1,2 a, h4,oh3,2b1,2 a, h4,oh2,2b2,2
52 3 s—1 2 s=17.3 s=17.3
a, a5h4,0h1,3b2,1 a, h5,0h4,0h1,3b2,1 a, h4,oh2,3b2,1 a, h4,0h1,3b3,1'
. . 2
They are all zeroes since they all contain /;, = 0.

Subcase 3.5. s<p—5,r=1,and 1 <n <3.
For S, , solving the corresponding group of equations () by virtue of («) gives the following generators:

s=17.2 s=172 72 s=17.2
a4 h4,0h2,2h],3b1,03 a4 h4,0hl,3b2,0 and a4 h4,0h2,]hl,3bl,2'

They are all zeroes since they contain hf’o =0.
For §,, solving the corresponding group of equations () by virtue of (a) gives the generators

s=172 s=17.2
a, h4,oh2,zh1,3bl,1and ay h4,oh2,2h1,zb1,2a

which are both zeroes since they contain hfﬁo =0.
For §;, solving the corresponding group of equations (f) by virtue of (a) gives the generators

s=172 s—172 2
Cl4 h4,0h2,2hl,3bl,23nd a4 h4,()hl,3b2,l’

which are both zeroes since they contain hfﬁo =0.

Subcase 3.6. s<p—5,r=1,and n=4.

This case is a little difficult. Our strategy of computation is stated as follows: for the unique S = (s +2,5+2,5 +3,
s +4,1), it can be seen that the maximal number in S is s + 4. This drives us to firstly compute out all the generators (which
may be zero) of E**"" with the form x, --xy, .3y,

For some a; or &;;in x; ***xy,y,Y+,, we first do the resolution

h, =W h oy 0ta, —>ah

and then do the replacement

h,j—>b

i, i,j-1

for (j >1).
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If what we got is all nonzero, then all the desired generators of E’*"*** are obtained and also have the form

X, X, V0,5 V.2, We do the explicit computation by the following two steps:
Step 1. For S =(s+2,s+2,5+3,5+4,1), solving the corresponding group of equations (f) by virtue of (a) gives a

set of generators of E*"“*" as

s s—1 s s
a4h5,0h4,0h2,2hl,3 P asa, h4,0h4,0h2,2hl,3 P a, h4,0h4,0h3‘2h1,3 > a, h4‘0h4,0h2,2h2,3 .

Step 2. Resolve g, or 4,;, and then replace 4, by b,;., for each; > 1.
In the following table, the elements at the rightmost column are the obtained generators. For simplicity, we only

write out the nonzero ones.

s—1
by oy s | F5%4 hy ol o1y 21 5y

s=1 T s—1
asa, hyoh oy by by = Sasay by ohy by by D,

s—1
asa, hyoh oy by b,

hyg ha
s—1 s—1 s—1
asay” hyohy oy oy —> | asay by ohyohy S hy Sk —>asayhyohy by S By D,

I3
aSajilh&O h3,0h1,3h2,2h1,3 - aSaflilh4,0h3,0h],3h2,2b1,2 (5)

s s 2ol ayhy o ohy,h5bs

aghy ool s sty =g aihy ohohs by by
ayhy ohyohy by 5b,

oy s 2 s azhy o hy oIy 5y by,

@y by ohy by o By shy g | @byl ol ol sy = S ashy by oh by by,
aih4,0h2,oh3,1h3,2b1,2

h1.3
aih4,o h3,0h1,3h3,2hl,3 - a:h4,0h3,oiﬁ,3h3,zb1,2 (6)
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s—1
b ains | 4 ahs oy ohy oy by
s—1 : i : s—1
a, ahyhsohy oy oh s — 0 ayahy b hy ohsb,
s—1
a, ahy,hsoh, o, 5b,,

%}
s—1 s—1
a4 aZh2,2h5,0h4,0h2,2h],3 - a4 a2h5,0h4,0h2,2h1,3b2,1

I3
s—1 s-1
a, a3h1,3h5,0h4,0h2,2}5,3 —a, a3h5,0h4,0h2,2}ﬁ,3b1,2

s
b s ayhy ohyohy 2h 5Dy
s ’ N ” s
ayhohyhyohy by — S agh by hyoh b,
s
ayhy ohy hyohy 5b,
s
ah, h, h,h .b
oncbyone s s oo 5 | F47 1207072200503

s S s
a;h5,0h4,0h2,2h1,3 - a4h2,oh3,2h4,0h2,2h1,3 - a4hz,oh4,1h4,0}5,3b2,1
ayh, ohy hy oy ob,
s
s s b s ayh; ohy ohy 50y b, ,
N N
a4h3,oh2,3h4,oh2,2h1,3 - a4h3,oh4,1h4,0h1,3b2,1
ayhy ohy by ohy ,b;

s
oo s ashs ohy oy b 5bs
N N : N
ayhs o hyohy by by =y aghs o hy o by by
s
ashs ohy o by by,

ayh oy ohy by Sy by Saghs ohy ohy Sy sb,
ayh ol ohyshy by shsaghs ohy ohyshy b,
ashsohy o hy ok shshaghs ohy ohy b sb (7

s
Iy 1ol 2o 5 a4h4,0h1,0h2,2h2,3b3,0
s ’ e s
a4h4,oh1,oh3,1h2,zh2,3 - a4h4,oh|,oh3,1h2,3b2,1
s
a4h4,0h1,0h3,1h2,2b2,2

Iy )
ai h4,oh4,oh2,2h2,3h4,0 aih4,o hz,ohz,zhz,zhz,s - aihzt,ohz,ohz,zhz,sbz,l

s
ha o s ayhy ol ohy 5 hy 50y,
s K
a4h4,oh3,oh1,3h2,2h2,3 - a4h4,oh3,oh1,3h2,3b2,1
s
ayhy o ohyshy b, (®

In the above tables, the elements over the left arrows denote the resolutions, and the elements over the right arrows
mean their replacements.

Subcase 3.7.s<p—5,r=1,andn>5.

For S, solving the corresponding group of equations (f) by virtue of (a) gives generators as

sp2 572 572
a4h4,0h2,2hl,3bl,n—l a4h4,0hl,nhl,3b2,l a4h4,0h2,2hl,nbl,2’

which are all zeroes since 4, = 0.
For S;(5<i<n), ifs<p—5andn >3, then the inequality

s
Z‘xf,i—] TVt Ve Yyt Y 2 S 5<¢,=p
=

implies that the i-th equation of () has no solution. Thus, such / does not exist.
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For S, if s = p — 5 and n = 5, then solving the corresponding group of equations (f) by virtue of (a) gives
generators

agh;oh3,2h2,3b1,3 asshsz‘ohs‘zhmbz‘z asshsz,ohz,shmbs,l .

They are all zeroes since h;, =0.
For S, if s = p — 5 and n > 5, solving the corresponding group of equations () by virtue of («) gives nonzero
generators

=5 =5 p=5
an hn,OhS,Ohn—3,3hn—4,4bn—2,l an hn,OhS‘Ohn—2,2hn—4,4bn—3,2 an hn,0h5,0h11—2,2hn—3,3bn—4,3' (9)

For S; (6 <i<n),if s =p — 5 and n > 5, then the corresponding group of equations (f) by virtue of () has no
solution since there is a solution of the form (0,--- ,0,1,--- ,1,0--+ ,0,1). Thus, /& does not exist.

Cased. h=2 X, \0V,03Y3Ys5Vs:

Subcase 4.1 s<p—5and r>3.

The inequality

s—r+l 6
z X5 +Z:yi’3 <s+4<gc,

i=1 i=1

implies that the fourth equation of (f) has no solution. Thus, such 4 does not exist.

Subcase 4.2s<p—5,r=3,and 1 <n<4.

Solving the corresponding group of equations () by virtue of () gives all zero generators since they all contain
h;, = 0. Thus, such nonzero / does not exist.

Subcase 4.3.s<p—5,r=3andn>5.

There is no solution for the corresponding group of equations (f) by virtue of («). Thus such 4 does not exist.

Subcase 4.4. s<p—5,r=2,and 1 <n<4.

Solving the corresponding group of equations (f) by virtue of () gives all zero generators since they all contain
hy, = 0. Thus, such nonzero / does not exist.

Subcase 4.5.s<p—5,r=2,andn>5.

For §,, solving the corresponding group of equations (f) by virtue of (a) gives one
generator a; 'h; h, ,h s, , which is zero due to /4, = 0.

For S;, solving the corresponding group of equations (f) by virtue of (a) gives all zero generators since they all
contain 4, = 0. Thus, such nonzero / does not exist.

For S; with (6 <i < n), there is no solution for the corresponding group of equations (f) by virtue of () since there
will be a solution of the form (0,--- ,0,1,--- ,1,0 --- ,0,1).

Subcase 4.6. s<p—5,r=1,and 1 <n <3.

For §1 , solving the corresponding group of equations () by virtue of (a) gives one nonzero generator

aihzt,ol'ﬁ,ohz,lhl,lhz,zhls' (10)
For §2, solving the corresponding group of equations (f) by virtue of (a) gives one nonzero generator
aih4,oh1,oh3,1h1,2h2,2h1,3~ (11)

For 51, it is easy to see that the obtained generators are all zeroes since they all contain hf3 =0.

Subcase 4.7. s<p—5,r=1,and n =4.

We deal with this case by a similar method as Subcase 3.6. We see that the maximal number of the unique sequence
is s + 4. We compute out all the generators (which may be zero) of the form x, --*x,y,y,y,y,. Firstly, we resolve g, or &;;
in x; **x,1,3, and then we repeat the first step for the obtained generators of E;****. If the obtained generators
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are nonzero, then they are our desired generators of E**“*"* of the form x, ***xy,y,V:VVsVe.
As for Subcase 3.6, we have already obtained a set of generators (which may be zero) of E**“*** as

ajl h5,0h4,0h2,2 hl 3 aS aiil h4,0h4,0h2,2hl 3 ajt h4,0h4,0h3,2hl 3 ajl h4,0h4,0h2,2h2,3 .

Then, as stated before, we will do resolution twice as shown in the following table, where the elements in the
rightmost column are the obtained generators. For simplicity, we only write out the nonzero ones. Since there will be
some identical generators coming from different resolutions, we will just write out only one of them.

s—1
\ ay ahy, by ohy by o oh
5.0
s—1 s—1
ay ahy b hy oy by —ay ahs by ohy by ohy Sy

s—1
a4 al h3,] h3,0 h2,3 h4,0h2,2h] 3

s

h a4h1,0h1,1h2,3h4,0h2,2h1,3
4,1

s s

a, h1,0h4,1h4,0h2,2h1,3 - a4h1,0 hz,1h3,2h4,oh2,2h1,3
agshs g

s

azhsohyohy ol s — a4h1,0%h4,0h2,2h1,3

s
ha0ha0 a4 h1,0h1‘2h3,2h4,0h2,2h1‘3

ah, h, h h b, —
P ayhy by, ohs by

s
a4 hl,O hz,l h2,3 h4,0 h2,2 hl,3
hy 05040 -

ajl h3,0h2,3h4,0h2,2hl,3 - Cli h2,0h1,2h2,3h4,0h2,2h],3

aihxohz‘s h],OhS,]hZ,Zhl,} (12)

hao
s—1 s—1
a2h3,2a4 h4,0h4,0h2,2h1,3 - a4 a2h4,0 hl,0h3,1h3,2h2,2hl,3

as,hy o

o
s-1 s—1 s—1
asa, h4,0h4,0h2,2hl,3 - a3h2,3a4 h4,0h4,0h2,2h1,3 —a, a3h4,0 h1,0h3,1h2,3h2,2h1,3

s

as a;‘_] h4,o h1,0h3,1h2,2h1,3 - aZ" a0h5,0h4,0h1,0 h3,1h2,2h1,3 (13)

h3AZ
s s
. ho | A3hyg hl,0h3,1h3,2h1,3 - a4h4,0hl,0h3,1 h1,2h2,3h1,3
a, h4,0h4,0h3,2h1,3 -

hZ,O
aihét,()%h?s,zhlj - aih4,0mh2,2h3,2hl,3 (14)

In the above tables, the elements over the arrows denote their resolutions. We do not write out the resolutions of
a,hyyhyohy,h, , as it will produce the same nonzero generators produced by the first three generators of

Subcase 4.8. s<p—5,r=1,andn>5.

For §,, solving the corresponding group of equations (f) by virtue of (&) gives one nonzero generator

ajh4,0h3,lh2,2h‘l,3hl,0hl,n' (15)

For Ss, if s = p — 5 and n = 5, solving the corresponding group of equations (f) by virtue of (a) gives one nonzero
generator

a§75h5’0h4)1h3’2h2’3hl’0h1’4. (16)
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For S, if s = p — 6 and n = 5, solving the corresponding group of equations () by virtue of (a) gives all zero
generators since they all contain /.. Thus, such nonzero 4 does not exist.
For S;, if s <p — 6 and n = 5, the inequality

implies that there is no solution for the i-th equation of (/). Thus, such / does not exist.

For S; (6 <i<mn),if s<p—5and n> 5, there is no solution for the corresponding group of equations (f) by virtue
of (@), since there is a solution of the form (0,--- ,0,1,--- ,1,0--- ,0,1,--- ,1).

For Ss5, when s = p — 5 and n > 5, we will apply the method in Subcase 4.7. We see that the maximal term of the
sequence Ss=(p —3p—-3p—2p—lpp—1,- p—10)is p. Firstly, we compute out the generators (which may be
zero) of which have form x, ---x,—5),y,y3y4ys. Then, we resolve a; or h;; in x, -=-x,—5),¥,y3y4ys. After finishing these
two steps, if what we obtained is nonzero, then they are generators of E/**?~>* which have the form x, X,

V1YY VaYsVe-
For E/"*77* solving the corresponding group of equations (8) by virtue of () gives

p-5 p-5
a,” hoh, oh, o oh, s 5h a, ", oh, 0B, by 3B, -
p-5 p-5
an hn,Ohn,Ohj,Zhn73,3hl174,4 an hn,0h5,0h1172,2hn73,3hn74,4'

Then, we do the following resolutions:

ah hoh h h] hli afishn,ohl,Ohn—l,lhn72,2hn—3,3hl,4
RS T G hoh ko ok sk, (A<i<n—1) (17)

o

a:—s hn,Ohn,Ohn72,2h2,3hnf4,4 - a:_shn,o h[,Ohn—i,[hn—Z,Zh2,3hn—4,4 (I<i<n-1i#2,4) (18)

h,

afis h, ol ol 5h, 55t gy _; afishn,o hoh, ioh, s3h, ., A<i<n—1,i#3,4) (19)

p—6
an alhn—l‘]hn,OhS‘Ohn—2,2hn—3,3hn—4,4

a7 bl hsoh, o oh s

n-3,3""n-4,4

a7 b ok ok sk, (6<i<n—1)
075 et s oh e o @By sk sk, (1<1<4)
a}f‘shmOlmzwfzﬁzhHJhH,4 (B<i<n-3)
a7 R, s b1y (2<0<n—4)
a7 R, s b shy s (1SP<n—5) 20)

In the above table, the rightmost elements are the obtained nonzero generators.

4. Proof of Theorem 1.1

We first give two lemmas for the sake of proof of Theorem 1.1.
Lemma 4.1. Suppose that 0 <s<p—5Sandp>11. Wefix t=s+ 1 + (s + 2)p + (s + 3)p” + (s + 4)p’. Then, in the
E,-term of the MSS, the 4th Greek letter element &,.4 is represented by ajh, by h,,h 5 € E;"".
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Proof. Suppose we are given a generator h e E’*"". Then, we have dim(4)=s+4 and deg(h) =tq +s. From
the p-adic expression of ¢, we see that

(€),¢1,C5, ) =(s+1,5+ 2,5+ 3,5 +4).

Casel. h=x--xzz, OLX, - X V1,2,

Both cases give the same sequence S= (s + 1,5 + 2, s + 3, s + 4). There is no solution for the corresponding group
of equations () since the number of elements in / is at most s + 3 being less than c; = s + 4. Thus, such 4 does not exist.

Case 2. h =X, - "X\ V,V3)s

There is a sequence S= (s + 1, s + 2, s + 3, s + 4) as Case 1. Solving the corresponding group of equations () by
virtue of (a) gives

xl‘iz.nz'x.\',izl (0<i<3) Y3,0=y3,1=0
Vo=V =V =5 =1 Via =y, =1

and
Voo = 0 Yoo =Vag =Vap = 0.
Vo1 = Vo2 = Va3 =1 Vasz = L.

It follows that & = ah, ohy,hy,h, ,, and then

E1S+4J+S’* = Z/p{aih4,oh3,1h2,zhl,3}'

This shows the result.
Lemma 4.2. Suppose that p > 11 and n > 1 withn 6 =5. We fix t=s+2+(s+2)p+(s+3)p° +(s+4)p’ + p".
Then, for 2 <r<s+ 7, we have

Ext’" 74" (7| p,Z./ p) =0.
Proof. According to Theorem 3.1 (1), we have £ =( for 2 <r<s+7. Since
Elsfr+7,tq+sfr+l,* N Exti{r+7,tq+577+l (Z / P, 7, / p)’

it implies that Ext',”*"""*(Z / p,Z/ p)=0 for2<r<s+7.
Proof of Theorem 1.1. Since #,,b, , € Ext’; (Z/ p,Z/ p), converge to h,b, , € Ext;(Z/ p,Z/ p), respectively,

n-1

by Lemma 4.1 we see that 5..uhb, , € Ext'""*"(Z / p,7./ p) is represented by
azsth4,0h3,1h2,2h1,3h1,0b1,n-1 € E1H7’tq+s’9s+p+l7

in the MSS. For the sake of proving Theorem 1.1, we first need to show that the representative a;h, (i h, b hy by,
is not hit by any May differential d, : E** P77 _y pst7iats9+2417 for 1 > 1. This implies that we only need to deal
with the generators of E’**“**" with M > 9, + p + 17. Thus, according to Theorem 3.1, there is no need to consider
those generators with May filtrations M,, M,,, and M, (11 <i < 15). For the remaining generators, we write out their first
May differentials as follows (Table 1):
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Table 1. May differentials

n E}roareM M, first May differential

Ist n=4 ajh5,0h4,0b2,1b1,2 M, ai ]/Ll,oh4,1h4,0b2,1b1,2 +---

2nd n=4 ai_la1h5,0h4,0h2,2h1,3b3,0 M, aflal by ohy By ohy oy by g+
3rd n=4 ajhz,oh4,ohz,zh1,3b3,1 M, ai hl,0h‘1,1h4,0h2,2h1,3b3,1 tee

4th n=4 ashs oh, oy ,h 3by My ayhy b by ohy by by g+
5th n=4 a5ai71h4’0hl,0hz’2hlg3b3,0 M, aohs,oaiilhzt,ohl,ohz,zhl,sbs,o e
6th n=4 ayhy oy ol Sl 3 My aghyohy ooy ohy b+
7th n= 4 ajhz‘,oh]yoh},]h]gb&] M3 ai hl,0h4,]h1,0h3,lhl,3b3,l e

8th n=4 azhy ohy ohy o by 5bs M; azhyohy ohy by by +-

9th n=4 ajh4,o]”1,oh2,zhz,3b3,o M, a, h3,0h1,3h1,0h2,2h2,3b3,0 T
10th n=4  ahyh,h,hb,, M, ay ahy by hy iy b+
11th n=4 027101%,1h5)0h4,0h’3b2,1 M; aiilalhm]'Ll,oh4,1h4,0h1,3b2,1 R
12th n=4 ai_lazh5,0h4,ohz,zh1,3bz,1 M; a;"a, oy By oy By by g -
13th n=4 ajhlyoh4’1h4,0hl,3b2’1 M; aihl,o h1,1h3,2h4,0]'ﬁ,3b2,1 o
14th n=4 ayhs ohy ohy o b 5b, M azhyohyohs by sy b,y 4
15th n=4 ajhs,ohl,ohz,lhmbz,l M; a, h2,0h3,2hl,0h3,1hl,3b2,1 o
16th n=4 ayhs ohy ohy o by 5y My aghohy by ohyyhsb,y
17th n=4 asaiilh‘hoh,’ohmh|’3b2,1 M; asajil h2,0h2,2h1,0h3,lh1,3b2,l T
18th n=4 asai_lh4’0h2’0h2,2hl’3b2,1 M; asaiilh&o by by s by by
19th n=4 ajh4,0h2,0h3’2/1],3b2!]S M5 aih4,0 hl’ohl,lhg’zhmbz,] T+
20th n=4 azh, ohy yhs by 5b, | M ayhyohy by ohy by 5D,
21st n=4 aih4,0hlyoh3’lh2,2b2’2 M5 ai h3’0h1,3h|!0h3,1h2,2b2,2 +ee
22nd n=4 azh, o, o hy b, 5b,, M ayhohy by ohy by b,
23rd  n=4  ah,hhhy b, M aghy ol ohyshy by
24th n=4 ayhy o hy o hyshy ,b,y My ayhohy by ohyshy oy o+
25th n= 4 ajh2,0h4,1h4’0h],3b2!| Ms ai hl,0h1,1h4,1h4,0hl,3b2,1 +-e
26th n= 4 a;T]a1h3,1h5,0h4,0h2,2b1)2 M(, ai_lalhB,l hl,0h4,1h4,0h2,2b1,2 +-e-
27th n=4 a271a3h5,oh4,ohz,zh1,3b1,z M, aiila3 h’l,0h4,lh4,0h2,2hl,3b1,2 +e
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Table 1. Continued

n E}roare M, first May differential
28th  n=4  ahh, hhob, M, @by hyhygh b+
29th  n=4  ahsoh kb, My aghy ol Iy by by by
30th  n=4  ahgoh b, My @ hohyhyoh b+
31st n=4  ahgh,h,hb, My aghyohy By bl b
32nd n=4 aSai’lh4’0h3’0hljhz’zbly2 M, asaiilhz;,ohs,ohl,shz,zbl,z e
33cd - n=4  ahoh kb, My aghy oo by ohs B oby s e
34th  n=4  ah,hh kb, M aghyohy by ohyshyby g+
35th  n=4  ahhh,hy b, M agyohs b By b
36th  n=4  ahh, bbb, My aghyohhy by ohy by, o
37th =4 bk hob, My aghyohoh by by, + -
38th n=4  ah,h, hoh b, My aghyohy by by ohy by, 4
39th n>5 h, M anp_shn,oMhn72,2hnf3,3bn74,3
40th n>>5 h, M, dnp_shn,o hl,Oh4,1hn—2,2hn74,4bn73,2
41st n>5 h, Mg anp_shn,oMhn73,3hn74,4bn72,1
42nd n>5 h, My, a:_sM}H,Ohn%,lhn72,2hn73,3hl,4 oo

h s

43rd n>5 @< ; 1) M, a) hn,omhm,fhmz,zhn%,z}hat o
L E?l) ooy Mo W sl
shoones fé‘;, sy Mo W i b s,
46th  n>5 h, My a7 aghyoh, By ohsohy o oh, b, e
47th  n>5 hyo My @) hgh, b ohs by o oh, s bt
A%th >S5 o ih<§2; ) My @ hh, s ok o s shy g+
49th 0> . <h§;)< . My al o hoh b by ok, sk, e
50th n>5 G3< ihii?n 3 M, anp_shn,oMhi,2hn—i—2,[+2hnf3,3hn74,4 R
51st n>>5 (o< l'hS:;; 4 M, anpishn,o h1,0h4,1hn72,2hi,3hnf[*3,i+3hn*4,4 T
52nd - n>5 (< ihsiis; . My ay hohohy b, o ohy b, st
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In Table 1, for the generator with May filtration M,, since its first May differential is nonzero and does not contain
ayhy ohy by ok sk ob, -, this implies that £77""2 =0 for r>2, and hence,

n—12

ayhy ohy by s hshyob, 2 d, (E:%MH’MZ) forr>1.

For the generators with May filtration M, their first May differentials all contain at least one term, which does not lie
in the first May differential of any other generators. This implies that all the first May differentials of the generators are
linearly independent and thus E**“****7*1° ig trivial. It follows that £?*M*P~>*"*P=2""1% = for r > 2, and then

azhy ohy by sk by, 2 d, (ES My forr > 1.
The same argument shows that for the remaining generators, there is
ajhzt,()h},lh2,2hl,3h1,0bl,n—] 3 dr(E:%’tqH’M‘ )

forr>1and4<i<19.

From the above results, we see that a;h, oh, b, ,h sk by, is not hit by any May differential when s <p — 5, n >
1, and n # 5. It follows that a;h, iy hy,h 3k oby, ., is a permanent cycle in the MSS and then converges nontrivially to
Srshyb, € Ext; (L] p, 7./ p).

Let us then consider the Adams differential d, : E:™*7*~"*! 5 E*** for r > 2, which possibly hit &,.4kb,
in the ASS. According to Lemma 4.2, we know that Ext’,"*"**""(Z/ p,Z/ p) =0, which follows E """ =0,

Hence, the corresponding Adams differential is trivial and then cannot hit Ss+4hobn4 in the ASS. Thus, Ss+4h0b’171 is
nontrivial in the ASS. This finishes our proof.
Remark 4.3.Fors=p—5,r=1, and n =5, by Theorem 3.1(e) there is one non-zero generator

Elp“!wp_i“p_zg =7/ P{a:_5h4,1h3,2h2,3h1,4}5,0}-
By applying the three-filtrated cobar construction, we can show the following differential holds:
dp—] (a?Sh4,1h3,2h2,3h1,4h1,0) = afishzt,oh;]hz,zhl,3hl,obl,4~

It follows that a?~ ol ol sl by, vanishes in the E -term of the MSS. Thus, it cannot converge nontrivially to
& p-1hyb, , and then follows 8 pihyb, =0.

5. Conclusion

This paper applies a new effective computation method to determine the convergence of a product element
Ss+4h0bn71 in the classical ASS. The key point of this method is to construct a group of linear equations according
to the triple degrees of the representative in the MSS of 5}+4h0bﬂ,1, and then compute out the related generators in
the corresponding E)-term of the MSS. What we compute helps us to show that the product element 55+4h0bn—1 is a
permanent cycle without being bound in any term of the ASS. This new method admits a wide application range in
determining nontrivial elements of the stable homotopy groups of spheres. In the future, we plan to use this method to
detect more nontrivial elements in the stable homotopy groups of spheres.
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