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Abstract: Linearized polynomials are gaining attention from many researchers because of their applications in the field 

of coding theory, cryptography and finite geometry. The linearized polynomials of the type ( )k
lT Z  and ( )k

lS Z  were 
recently introduced in the literature. The characterization of these linearized polynomials and patterns in their roots over 
finite fields have been extensively studied by various authors. In the present paper, we extend the study of families of 
linearized polynomials ( )k

lT Z  and ( )k
lS Z  by taking k and l  as prime powers and construct new families of linearized 

polynomials over finite fields. Further, we establish relation between linearized polynomials ( )k
lT Z  and ( )k

lS Z  which 
may be helpful in determining zeros of these polynomials over finite fields.
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1. Introduction
Finite field is an important area of algebra which has many applications in network security, coding theory, elliptic 

curve cryptography etc., see [1-2]. Evariste Galois [3] introduced the finite field ( )nGF p , which is also called Galois 
field whose number of elements are np , where p is a prime and n is a positive integer. Any map from nq

 
to itself can be 

represented by a polynomial in [ ]nq x , where q is prime or prime power. Therefore, any polynomial in [ ]nq x  induces a 
map of nq  which corresponds to the linearized polynomial =0( )

i
i
k q

kL X a X= Σ , see [4]. 
Solving linearized polynomials over finite fields and determining their zeros is the matter of concern of many 

researchers due to their vast applications in modern symmetric cryptosystem. The methods given in the literature for 
finding the number of zeros of linearized polynomials are not applicable to many specific linearized polynomials. 
Mesnager et al. [5] provided general method to get a more precise upper bound on the number of rational zeros 
of any linearized polynomial over finite fields. In [6], an explicit representation for the solutions of the equation 

1 2
=0(X) = =

k lilk
il X aT
−Σ , for any given positive integers k , l and n with |l k, in the closed field 2  and in the finite field  

2n  were given. This study helped the authors to completely characterize the a’s for which this equation has solution in 

2n . Further, the explicit representation of all solutions in np  to the affine equations ( )k
lT X a=  and ( )k

lS X a= , npa∈
 were discussed in [7]. The solutions to these equations were determined by finding the kernel of ( )k

lT X  and ( )k
lS X  over 

np .
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Various authors contributed in the characterization of linearized polynomials and worked towards their 
applicability  in areas such as coding theory and cryptography. In [8], the study of isomorphism among different types 
of algebra such as ( )nn q , composition algebra nn q qq

∨ ⊗   and Dickson matrix algebra was carried out. Chou et al. 
discussed cardinalities of the subfield value set of linearized polynomials, power polynomials and Dickson polynomials 
over finite fields in [9]. Reis in [10] introduced the class of nilpotent linearized polynomials over the finite field nq . 
Martínez-Peñas introduced the linearized Reed solomon codes using linearized polynomials in [11]. The distinct roots 
of q-polynomials over nq  were found using the maximum kernel method introduced by Csajbók et al. in [12]. Batoli 
and Bonini [13] constructed the planar polynomial from linearized polynomials of the type 2

, ( ) ( )q qA Bf x x x Ax Bx= + +  
over the field 3q . Permutation polynomials of the form ( ( ) ( )) ( )f L x kL x M x+ ×  were constructed from linearized 
decomposition by Reis and Wang [14].

In the present paper, we extend the study of linearized polynomials ( )k
lT Z  and ( )k

lS Z  by taking k and l  as prime 
powers. Further, we construct new families of linearized polynomials over np  by using ( )k

lT Z . In addition to this, we 
derive interesting relation between linearized polynomials ( )k

lT Z  and ( )k
lS Z  over finite field np . With the help of this 

relation, we construct a new family of linearized polynomials using ( )k
lS Z .

This paper is organised in six sections. The following Section overviews the preliminaries which are required for 
the study of this paper. In Section 3, construction of new families of linearized polynomials using ( )k

lT Z  is proposed. 
Relation between the linearized polynomials ( )k

lT Z  and ( )k
lS Z  is discussed in Section 4. The construction of a new 

family of linearized polynomial using ( )k
lS Z  is presented in Section 5. We finally conclude our results in Section 6.

2. Preliminaries
In this paper, we use the following symbols:
· n-a positive integer.
· p and r-prime numbers.
· a and b-positive integers with a b≥ .
Let qF =   is a finite field with q elements where sq p= , p is a prime and s is a positive integer.
Definition 2.1 [1] A polynomial of the form

=0
( ) = i

n
qi

i
L X a X∑

with coefficients in an extension field mq  of q  is called a q-polynomial over mq . If F  is an arbitrary extension field of 
mq  and ( )L X  is a linearized polynomial over mq , then

( ) ( ) ( )L L Lβ γ β γ+ = +    for all β , Fγ ∈

and    ( ) ( )L c cLβ β=    for all qc∈  and for all Fβ ∈ .

Definition 2.2 [1] The polynomials =0( ) n iiil X a X= Σ  and =0( ) iqn
iiL X a X= Σ  over mq  are called q-associates of each 

other. More specifically, ( )l X  is the conventional q-associate of ( )L X  and ( )L X  is the linearized q-associate of ( )l X .
Lemma 2.1 [1] Let 1( )L X  and 2 ( )L X  be q-polynomials over q  with conventional q-associates 1( )l X  and 2 ( )l X . 

Then 1 2( ) ( ) ( )l X l X l X=  and 1 2( ) ( ) ( )L X L X L X= ⊗  are q-associates of each other.
Definition 2.3 [7] Let k  and l  be positive integers such that |l k. Define p-polynomial over p  as

1

=0
( ) = .li

k
l

k p
l

i
T X X

−

∑ 
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Definition 2.2 implies that

 1

=0
( ) =

k
l

k li
l

i
t X X

−

∑

is the conventional p-associate of ( )k
lT X , where p is a prime.

Definition 2.4 [7] Let k and l be positive integers such that |l k. Define p-polynomial over p  as

1

=0
( ) = ( 1) .li

k
l

k i p
l

i
S X X

−

−∑

Definition 2.2 implies that

1

=0
( ) = ( 1) li

k
l

k i
l

i
s X X

−

−∑

is the conventional p-associate of ( )k
lS X , where p is a prime.

3. Construction of new families of linearized polynomials using ( )k
lT Z  over  np

The linearized polynomial ( )k
lT Z  over np  can be expressed according to definition 2.3. Furthermore, when 

considering a prime number r and positive integers a and b, where a b≥ , the polynomial ( )a
b
r

rT Z  is defined as follows:

( )
1

=0
( ) = .

a b
ba r i

b

r
r p

r
i

T Z Z

− −

∑

In this section, we first prove some identities related to composition of the linearized polynomial ( )a
b
r

r
T Z . Further, 

we construct families of linearized polynomials using ( )k
lT Z  over np  for different values of l  and k.

Proposition 3.1 For , , , ', 'a b c a b  with c a b≥ ≥  and ' 'a b≥ , the following identities hold:
(a) ' '

' '
a a a a

b b b b
r r r r

r r r rT T T T= 

(b) a c c
b a b
r r r

r r rT T T=

(c) ( )a
a
r

rT Z Z=

(d) 2 ( ) aa r
a
r p

rT Z Z Z= +

Proof. Using equation (1) results from (a) to (d) can be easily proved over np .
Theorem 3.1 Consider the linearized polynomial ( )a

b
r

r
T Z , where a m=  and 1b = . Then, the family of linearized 

polynomials of degree 1mr rp + −  given by

1( ) ( 1) ( )m mr rr rT Z p T Z++ −

is expressed as

1

1
( 1)

m
ri

m

i r
p

i r
p Z

−

= −

=

− ∑

(1)

□
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over np .
Proof. By using Definition 2.3 and equation (1), we compute

1
1

1 1

0 0
( ) ( 1) ( ) ( 1)

m m
m m ri ri

r r
r r p pr r

i i
T Z p T Z Z p Z

−
+

− −

= =
+ − = + −∑ ∑

2[ ] ( 1)[
mr r r rp p pZ Z Z Z p Z−= + + + + + −

12 ]
mr r r rp p pZ Z Z
+ −+ + + +

1

1
( 1) .

m
ri

m

i r
p

i r
p Z

−

= −

=

= − ∑

                                          

                                            

                                          

Therefore, 1( ) ( 1) ( )m mr rr rT Z p T Z++ −  represents a family of linearized polynomials 1
= 1
=( 1) −

−− Σ m ri
m

i r p
i rp Z  of degree 

1mr rp + −  over np .
In the following theorems, we prove results related to ( )k

lT Z , where r is an even prime in Theorem 3.2 and r is an 
odd prime in Theorem 3.3.

Theorem 3.2 Consider the linearized polynomial ( )k
lT Z , where 2l r=  and mk r= . Then, the family of linearized 

polynomials of degree 2 2mr rp −  given by

1( ) ( 1) ( )m mr rr rT Z p T Z++ −

is expressed as

1
2

2

= 1

=
( 1)

−

−

−
− ∑

m
ri

m

i r
p

i r
p Z

over np  , where r is an even prime. 
Proof. By using Definition 2.3 and equation (1), we compute

1

1 2 2

1 1
2 2

2 2
0 0

( ) ( 1) ( ) ( 1)

m m

m m ri ri

r r
r r

r r p p
r r

i i
T Z p T Z Z p Z

+

+

− −

= =

+ − = + −∑ ∑

                                        
2 4 6 2[ ]

mr r r r rp p p pZ Z Z Z Z −= + + + + +

                                           12 2 .2 2 .3 2 .4 2( 1)[ ]
mr r r r r rp p p p pp Z Z Z Z Z Z
+ −+ − + + + + + +

                                        
12 2 2( 1)[ ].

m mr r rp pp Z Z
− −= − + +                                   

Therefore, 1
2 2( ) ( 1) ( )m mr r

r rT Z p T Z++ −  represents a family of linearized polynomials 1 2
2

= 1
i=

( 1) m ri
m

i r p
rp Z−

−
−− ∑  of degree 

2 2mr rp −  over np , where r is an even prime.

Theorem 3.3 Consider the linearized polynomial ( )k
lT Z , where mk r r= +  and 2l r= . Then, a family of linearized 

□

□
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polynomials of degree 1mr rp + −

1
2 2( ) ( 1) ( )m mr r r r

r rT Z p T Z++ ++ −

is expressed as

2

1

1
2

1
2

( 1)

m

ri

m

ri

p

ri

p Z
−

−
=

+
=

− ∑

over np , where r is an odd prime.
Proof. By using Definition 2.3 and equation (1), we compute

1

1 2 2

1
2 2

2 2
0 0

( ) ( 1) ( ) ( 1)

m m

m m ri ri

r r r ri i
r r

r r r r p p
r r

i i
T Z p T Z Z p Z

+

+

+ +
= − =

+ +

= =

+ − = + −∑ ∑

2 2 .2 2 .3 2 .4 mr r r r r rp p p p pZ Z Z Z Z Z −= + + + + + +

+12 2 .2 2 .3 2 .4( 1)[
mr r r r r rp p p p pp Z Z Z Z Z Z −+ − + + + + + +

1
( 1)[ ]

m mr r r rp pp Z Z
++ −= − + +

2

1

1
2

1
2

( 1) .

m

ri

m

ri

p

ri

p Z
−

−
=

+
=

= − ∑

Therefore, 1
2 2( ) ( 1) ( )m mr r r r

r rT Z p T Z++ ++ −  represents a family of linearized polynomials 
1 22
1+1

2

=

=
( 1)

mr ri
mr

i p
i

p Z
−

−− ∑  of degree 
1mr rp + −  over np , where r is an odd prime.
The following theorem provides some useful results related to the composition of linearized polynomials ( )k

lT Z  

over 2n

Theorem 3.4 The following results hold for the composition of linearized polynomials of the type ( )a
b
r

rT Z  over 2n :

(a) 14 2 2
2 2 2

( ) ( )m m
mT T Z T Z+=

(b) 1
1 1

2 2 2
2 2 2

( ) ( )m m m
m m mT T Z T Z+
− − =

(c) 1 1
4 2 2 2

2 2 2 2
( ) ( )m m m

m mT T Z T T Z− −= 

 

Proof. ( )a  Since

4 2
2 ( ) 1t Z Z= +

and

2 2 4 6 2 2
2 ( ) 1m mt Z Z Z Z Z −= + + + + +

are conventional associates of 4
2 ( )T Z  and 2

2 ( )mT Z  respectively, then

□
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4 2 2 2 4 6 2 2
2 2( ) ( ) (1 ) (1 )m mt Z t Z Z Z Z Z Z −⋅ = + ⋅ + + + + +

                                                                         21 mZ= +

                                                                         
12

2 ( ).mt Z+=

 So,

4 2 2
2 2( ) ( ) 1 .m mt Z t Z Z⋅ = +

Since product of conventional associates of 4
2 ( )T Z  and 2

2 ( )mT Z  is equal to conventional associate of 12
2 ( )mT Z+ , then 

by using Lemma 2.1, we can write

Hence,

14 2 2
2 2 2

( ) ( ).m m
mT T Z T Z+=

( )b  Since conventional associate of 1
2

2
( )m

mT Z−  is 1
2
2

( )m
mt Z− , therefore

1
1 1

2 2 2 2 2
2 2

( ) ( ) (1 ) 1m m m m
m mt Z t Z Z Z−
− −⋅ = + = +

that is,

1 1
2 2 2
2 2

( ) ( ) 1m m m
m mt Z t Z Z− −⋅ = + .

Also,

Hence, we obtain

1
1 1

2 2 2
2 2 2

( ) ( )m m m
m m mT T Z T Z+
− − = .

( )c  From part ( )a  and part ( )b ,

14 2 2
2 2 2

( ) ( )m m
mT T Z T Z+= (2)

24 2 2
2 2 ( )

mmT T Z Z Z= +

12
2

( ).m
mT Z+=

+12 2
2

= 1 2
=0= −∑

m m imi
i Z

2
1 1

2 2 2
2 2

( ) 1
mm m

m mT T Z Z− − = +

+1

2
2= 1

22
=0

m
m imi

i
Z

−
= ∑

+12
2= (Z)m

mT
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and

1
1 1

2 2 2
2 2 2

( ) ( )m m m
m m mT T Z T Z+
− − = .

From equation (2) and equation (3), we get,

1 1
4 2 2 2

2 2 2 2
( ) ( )m m m

m mT T Z T T Z− −=  .

4. Relation between linearized polynomial ( )k
lT Z  and ( )k

lS Z  over  np

In this section, we establish interesting relation between linearized polynomials ( )k
lT Z  and ( )k

lS Z  by performing 

computations over np . Further, we prove this relation with the help of definitions and properties of ( )k
lT Z  and ( )k

lS Z  
Results provided in this section are used to construct a new family of linearized polynomial using ( )k

lS Z . Also, the 
relation between ( )k

lT Z  and ( )k
lS Z  may be useful in finding the zeros of these polynomials.

Theorem 4.1 For any prime p, the linearized polynomials ( )k
lT Z  and ( )k

lS Z  satisfy the following relation

2 2( ) ( 1) ( ) ( 2)l l
l lS Z p T Z p Z= − + + ,   for 2k l=

and

Proof. Case 1: For 2k l=

2 1

2

0
( 1) ( ) ( 2) ( 1) ( 2)lil p

l
i

p T Z p Z p Z p Z
−

=

− + + = − + +∑

( 1)[ ] ( 2)lpp Z Z p Z= − + + +

( 1) lpZ p Z= + −

2 ( )l
lS Z=

                                            
                                           

                       
                       

           

Therefore,

2 2( ) ( 1) ( ) ( 2)l l
l lS Z p T Z p Z= − + + .

Case 2: For 2k l≠ , 
(i) When k

l  is even, then

2

1 1
2

2
0 0

( 1) ( ) ( 2) ( ) ( 1) ( 2)li li

k k
l l

k k p p
l l

i i
p T Z p T Z p Z p Z

− −

= =

− − − = − − −∑ ∑
                                                                         

(5)

(4)

(3)

□

 if k
l

 is even
,   for 2 .k l≠

 if k
l

 is odd.
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

,

1 ,

1 2

2

k k
l l

k
l

k k l
l l

p T Z p T Z
S

p T Z p T Z
Z

+

 − − −
= 
 − − −
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 2 3 4 3( 1)[ l l l l k lp p p p pp Z Z Z Z Z Z −= − + + + + + +

     2 2 4 6] ( 2)[k l k l l l lp p p p pZ Z p Z Z Z Z− −+ + − − + + +

                                                           8 4 2 ]l k l k lp p pZ Z Z− −+ + + +

                                                        2 4 6 8 4l l l l k lp p p p pZ Z Z Z Z Z −= + + + + + +

                                                           2 3k l l l k lp p p pZ Z Z Z− −+ − − − −

                                                        ( )k
lS Z=

Therefore, when k
l  is even

2( ) ( 1) ( ) ( 2) ( )k k k
l l lS Z p T Z p T Z= − − − .

(ii) When k
l  is odd, then

2

1 1
2

2
0 0

( 1) ( ) ( 2) ( ) ( 1) ( 2)li li

k k l
l l

k k l p p
l l

i i
p T Z p T Z p Z p Z

+
− −

+

= =

− − − = − − −∑ ∑

2 3 4 5( 1)[ ]l l l l l k lp p p p p pp Z Z Z Z Z Z Z −= − + + + + + + +

2 4 6 8 2( 2)[ ]l l l l k l lp p p p pp Z Z Z Z Z Z + −− − + + + + + +

2 4l l k lp p pZ Z Z Z −= + + + +

3 5 2l l l k lp p p pZ Z Z Z −− − − − −

( )k
lS Z=

                                                                  

                                                                                       
                                            

                                                                                      
                                                    

                                         

                                                  

       

Therefore,

2( ) ( 1) ( ) ( 2) ( )k k k l
l l lS Z p T Z p T Z+= − − − ; k

l
 is odd.

Hence, for 2k l= , we have

2( ) ( 1) ( ) ( 2)k k k l
l l lS Z p T Z p T += − − −

and for 2k l≠ , we have

The result discussed in Theorem 4.1 can be used to deduce relation between ( )a
b
r

rT Z  and ( )a
b

r
rS Z  as shown in the 

following corollary:
Corollary 4.1 Consider the linearized polynomials ( )a

b
r

rT Z  and ( )a
b

r
rS Z  , then

□

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

1 2

1 2

k k
l l

k
l

k k l
l l

p T Z p T Z
S

p T Z p T Z
Z

+

 − − −
= 
 − − −

 if k
l

 is even

 if k
l

 is odd.
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2 2( ) ( 1) ( ) ( 2)a a
a a
r r

r rS Z p T Z p Z= − + +

and

where p is prime.
Example 4.1 When 2k l≠ , al r=  and bk r= , then

over 3 .
Case 1: When r is an even prime, then

1

1(2 ) (2 )
2 1 2 1

2 2
2 2.2

0 0
2 ( ) ( ) 2

a b a b
b ba a i i

b b
p p

i i
T Z T Z Z Z

− − −

+
− −

= =

− = −∑ ∑

22 2 2 3 2 22[ ] [
b bb a bp p p pZ Z Z Z Z Z×× −= + + + + + − +

+1+1 2 32 12 21 2 2 ]
b abb bp p p pZ Z Z Z

××+ +−+ + + +

2 2 2 3 2 12 2 2 2 24b a b bb ab bp p p p p pZ Z Z Z Z Z Z× × × +− −= − + − + − + +

2
2

( ).a
bS Z=

                                                                 
                                                        

                                                                 
  

                                                                                      

So, we have

2 2 2
2 2 2.2

( ) 2 ( ) ( ).a a a
b b bS Z T Z T Z= −

Case 2: When r is an odd prime, then

( ) (2 )

11
2

2
0 0

2 ( ) ( ) 2

a b
a b

b
b ba a b r i r i

b b

r r
r

r
r r r p p

r r
i i

T Z T Z Z Z
− +

−−

+

= =

− = −∑ ∑

2 32[ ] [
b b b a br r r r rp p p pZ Z Z Z Z Z× × −= + + + + + − +

2 4 6 2 ]
b b b a b br r r r r rp p p pZ Z Z Z + −+ + + +

2 3 4 1b b b b a b a br r r r r r r rp p p p p pZ Z Z Z Z Z Z× +− −× ×= − + − + − − +

                                                                   

                                                       
                                                      

     
                                                                                  

 

(7)

(8)

(6)

2

2

( 1) ( ) ( 2) ( )
( )

( 1) ( ) ( 2) ( )+

 − − −= 
− − −

a a
b ba

b a a b
b b

r r
r rr

r r r r
r r

p T Z p T Z
S Z

p T Z p T Z

if r is even prime

if r is odd prime,

2

2

2 ( ) ( )     
( )

2 ( ) ( )+

 −= 
−

a a
b ba

b a a b
b b

r r
r rr

r r r r
r r

T Z T Z
S Z

T Z T Z

if r is even prime

 if r is odd prime

( ).a
b

r
rS Z=
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2
( ) 2 ( ) ( ).a a a b

b b b
r r r r
r r rS Z T Z T Z+= −

Hence, we obtain

2

2

2 ( ) ( ) if is even prime
( )

2 ( ) ( ) if is odd prime

a a
b ba

b a a b
b b

r r
r rr

r r r r
r r

T Z T Z r
S Z

T Z T Z r+

 −= 
−

over 3 .

 
5. Construction of a new family of linearized polynomials using ( )k

lS Z  over  np

Theorem 5.1 Consider the linearized polynomial ( )a
b

r
rS Z , where a m=  and 1b = . Then, the family of linearized 

polynomials of degree 1mr rp + −  given by

1( ) ( 1) ( )m mr r
r rS Z p S Z++ −

is expressed as

1

1

( 1) ( 1) .
m

ri

m

i r

i p

i r

p Z
−

= −

=

− −∑

over np .
Proof. Case 1: When r is an even prime, then

1 1 12 2 2 2 2 2
2 2 2 2.2 2 2.2( ) ( 1) ( ) ( 1) ( ) ( 2) ( ) ( 1)[( 1) ( ) ( 2) ( )]m m m m m mS Z p S Z p T Z p T Z p p T Z p T Z+ + ++ − = − − − + − − − −

1 12 2 2 2
2 2 4 4( 1)[ ( ) ( 1) ( )] ( 2)[ ( ) ( 1) ( )]m m m mp T Z p T Z p T Z p T Z+ += − + − − − + −

1

2 4

1 2

2 1 2 1

2 2

( 1)( 1) ( 2)( 1)
m m

i i

m m

i i

p p

i i

p p Z p p Z
−

− −

= − = −

= =

= − − − − −∑ ∑

1 2 12.2 2(2 1) 4.2 4(2 1)( 1)( 1)[ ] ( 2)( 1)[ ]
m m m mp p p pp p Z Z p p Z Z
− − −− −= − − + + − − − + + 

1 12 2 2 2 2 4( 1)[( 1)[ ] ( 2)[ ]]
m m m mp p p pp p Z Z p Z Z

+ +− −= − − + + − − + + 

2

1

2 1

2

( 1) ( 1) .
m

i

m

i

i p

i

p Z
−

= −

=

= − −∑

                                                                         
                                 

                                                                         
  

                             

                                               
                 

                             

                                                       

                                                                         

Therefore,

1 2

1

2 1

2 2
2 2

2

( ) ( 1) ( ) ( 1) ( 1) .
m

m m i

m

i

i p

i

S Z p T Z p Z+

−

= −

=

+ − = − −∑

Case 2: When r is an odd prime, then
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1 1 1
2( ) ( 1) ( ) ( 1) ( ) ( 2) ( ) ( 1)[( 1) ( )) ( 2) ( )]m m m m m mr r r r r r r

r r r r r rS Z p S Z p T Z p T Z p p T Z p T Z+ + +++ − = − − − + − − − −

1
2 2( 1)[ ( ) ( 1) ( )] ( 2)[ ( ) ( 1) ( )]m m m mr r r r r r

r r r rp T Z p T Z p T Z p T Z+ + += − + − − − + −

2

1 1

1
1

2

1
2

( 1)( 1) ( 2)( 1)

m
m

ri ri

m m

rii r

p p

i r ri

p p Z p p Z
− −

−
== −

= +
=

= − − − − −∑ ∑

1 ( 1) ( 1)( 1)[( 1)[ ] ( 2)[ ]]
m m m mr r r r r r r rp p p pp p Z z p Z Z
−× × − + × −= − − + + − − + + 

1 1
( 1)[( 1) ( 2)][ ] ( 1)[ ]]

m m m mr r r r r r r rp p p pp p p Z Z p Z Z
+ ++ − × −= − − − − + + + − + + 

1

1

( 1) ( 1) .
m

ri

m

i r

i p

i r

p Z
−

= −

=

= − −∑

                                                                       
                                

                                                      

                          
                                 

                                        

                                            

                                                     
                                           

Therefore, 1( ) ( 1) ( )m mr r
r rS Z p S Z++ −  represents a family of linearized polynomials 1

= 1
=( 1) ( )1−

−− −Σ m ri
m

i r i p
i rp Z  of degree 

1mr rp + − over np .

6. Conclusion

In this paper, we extended the study of families of linearized polynomials of types ( )k
lT Z  and ( )k

lS Z  by taking l
and k as prime powers and constructed families of linearized polynomials using ( )k

lT Z  over finite fields. Further, we 
established relation between ( )k

lT Z  and ( )k
lS Z , and constructed a new family of linearized polynomial over np  using 

( )k
lS Z . The results derived in the manuscript are helpful in the characterization of families of linearized polynomials 

( )k
lT Z  and ( )k

lS Z . Also, the construction of new families of linearized polynomials have added to the literature of 
linearized polynomials over finite fields.
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