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Abstract: In wireless sensor networks (WSNs), mobile sink-driven data acquisition can mitigate hotspot issues, 
which further increases WSN efficiency, such as throughput, lifetime, and energy efficiency, while reducing delay and 
packet loss. Recently, most mobile sink algorithms have focused on efficient paths, and few consider obstacles in the 
network environment. Nevertheless, constructing an obstacle-aware trajectory in a WSN is challenging. In this context, 
this paper proposes a bug algorithm based on an obstacle-aware intelligent trajectory (CSOBUG) for a mobile sink 
to acquire data from sensor nodes in WSNs efficiently with the help of cat swarm optimization (CSO). The proposed 
CSOBUG algorithm has two phases: selecting visiting points and constructing a trajectory. A CSO-based clustering 
approach is used to select visiting points, and a bug algorithm is used to select a trajectory. Comparing CSOBUG with 
existing techniques, it is found that CSOBUG is less computationally intensive than the existing techniques. As well as 
outperforming traditional methods based on multiple performance metrics, the CSOBUG achieves superior results in a 
variety of scenarios.

Keywords: Bug 2 algorithm, data collection, mobile sink, obstacle-aware path, WSNs

MSC: 68M10

1. Introduction
A wireless sensor network (WSN) collects data packets from the field through sensor nodes (SNs) and transmits 

them to a base station (BS). This process continues in different applications such as climate analysis, forest fires, smart 
homes, healthcare, smart cities, air quality, etc. [1]. This process uses multi-hop or single-hop communication. This 
process uses some SNs between the transmitting node and the BS, which are called relay nodes. But these SNs operate 
using a battery, whereas these batteries are running on limited battery power, and replacing or recharging batteries is a 
hectic task [2, 3]. Relay nodes die soon because heavy data transmission through multiple SNs consumes more energy. 
This causes an interruption in data routing, and this problem is called the sink-hole or energy-hole problem [4, 5].

The mobile sink (MS) has been used in several works in recent years to address sink-hole issues. It acquires data 
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packets from a set of nodes, traverses these packets to the sink, and then visits another node with the data [6]. Instead of 
acquiring from every node, identify a set of nodes called visiting points (VPs), where an MS takes the data from them 
and moves to a BS. However, identifying such nodes is a challenging task. Further, determining a visiting order among 
them for the MS is another challenging task. especially, the path must not be long, and data packets should not overflow 
from the nodes and MS. In the case of the shortest path, it might be a challenging task. So finding an optimal VP and 
path is a challenging task. In the literature, some of the works address this issue, but they have their own benefits and 
limitations [7, 8].

Currently, most existing works are identified as VPs using clustering approaches [9, 10], and the path is found 
using the Traveling Salesman Problem (TSP) for visiting orders for MS. These clustering approaches identify the cluster 
head or centroid as a VP. But there are some cases, such as when some environments are associated with obstacles. The 
path construction team must be aware of these obstacles during the construction of the path. It is another challenging 
issue. In such cases, use the non-human intervention approach, which can easily categorize the difference between 
regular nodes and obstacles while constructing the path. This path must be optimal, which means not so long or shorter 
[11, 12]. In this context, self-learning approaches are used to determine the VPs and the path between them. Most of the 
terminology used in this paper is summarized in Table 1.

Table 1. Terminology

Terminology Definition

WSN It is a spatially and randomly deployed interconnected sensor node network to monitor 
a field of interest.

SNs An SN is also called a mote, and it can perform the sensing, transmitting, and collecting 
of data from the field of interest with limited processing capabilities.

Sink/BS A sink node is also called a BS, and it is a central hub for a network to analyze the data 
that is transmitted by the SNs. The sink node can act as a gateway to the Internet of 
Things [5].

VPs The VP is a sensor node, and it can collect data from a set of SNs until an MS collects 
it. Some algorithms also consider it a cluster head [13].

This paper proposes an algorithm to determine the VPs using a clustering algorithm called Cat Swarm Optimization 
(CSO). In this process, we identify efficient VPs for data collection. Additionally, we construct the route using the bug 
algorithm in order to avoid obstacles in the WSNs.

The proposed algorithm is named the CSO-based bug (CSOBUG) approach for efficient data collection for WSNs. 
The contributions are summarized as follows:

• The proposed work identifies the VPs using cat swarm optimization, where the load among the VPs is equally 
distributed.

• By utilizing the bug algorithm, the obstacle-aware path can be constructed efficiently, determining the best 
route.

• Python is used to implement the proposed CSOBUG, and its quality metrics are compared with recent and 
related works.

The remaining paper is organized as follows: the literature of the paper is summarized along with its pitfalls in 
Section 2. The WSN network, energy, and system models, along with the problem formulation, are presented in Section 
3. The proposed CSOBUG algorithm along with its complexity derivations are presented in Section 4. The simulation 
results of the proposed work are presented in Section 5, and Section 6 concludes the proposed work with a future 
research plan.

2. Related works
Recently, many algorithms have been published with respect to data collection using MS. Some of the MS-based 
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algorithms were studied and survived in [14], which extended the discussion, including limitations and benefits. In this 
context, all path-based algorithms are presented using obstacles and non-obstacles.

In WSNs, the static paths are determined by Lin et al. [15] using MS, and data fusion is performed. Path planning 
algorithms are based on ant colony optimization (ACO) for dynamic WSNs [7]. An ACO can be used in conjunction 
with pathfinding to find RPs in this approach. Additionally, the authors extend this work by adding virtual RPs with a 
modified probability function of the ACO [16]. Aside from providing an optimal path, these approaches also improve 
efficiency in terms of time, energy, lifetime, throughput, delay, and so on. A particle swarm optimization (PSO) 
approach was used by Mehto et al. [17] to construct efficient paths between RPs. To partition WSNs into clusters and 
cluster heads, Mehto et al. [17] used the squirrel search algorithm. However, none of these approaches are implemented 
to construct a trajectory in obstacle environments for MS.

In [18], MSs are used for data collection in grid-based sensor deployment and uniform data rates. It has been 
considered a density-based network during the simulation, and a route that provides the best performance along with 
an efficient path has been provided for this work. Multiple MSs are employed [19] to acquire data from a WSN, 
which generates uniform data. There are multiple-hop RPs partitioning the network, which further degrades WSN 
performance. An MS-based data collection using delay as a primary objective is presented in [20]. A dynamic routing 
procedure is used for sensitive data, while an MS collects delay-insensitive data. Further, the hotspot issue was mitigated 
by an extension of this work [21]. As a result, this approach requires a longer path and is computationally complex. An 
approach using a spanning tree-based approach to minimize delay and energy consumption is presented in [22]. The tree 
and trajectory for MS would take a long time to be constructed using this traditional approach.

According to Gupta and Saha [23], the artificial bee colony (ABC) approach was adopted for path construction 
and data collection for WSNs where data rates are equally distributed. An optimal set of RPs is identified in [24] using 
PSO for a longer lifetime with efficient energy utilization in the network. This is where the data is uniformly distributed. 
Data rate adaptive control is controlled through data collection using MS [25]. In addition to being low in computational 
complexity, this approach balances the network and energy as efficiently as possible. But this approach is not considered 
an obstacle-aware network. For efficient data collection based on MS, a method using fuzzy logic for clustering the 
network and a method for path construction are developed. An efficient path for MS using geometric approaches has 
been presented in [26]. Overall, none of the above algorithms are considered obstacles in the WSNs while constructing 
an MS trajectory.

In [10], artificial intelligence (AI) and artificial computational approaches are employed to construct a path within 
an obstacle WSN environment and collect data through MSs. ACO is initially used to build the clustering and AI-
enabled approaches for path construction in WSNs for MSs. By utilizing mobile sensors, connectivity can be maintained 
while avoiding obstacles [27]. The collected data were analyzed, and the AI-based approach was compared to traditional 
clustering algorithms. The results showed that AI-based approaches could improve WSN performance with regard to 
obstacle avoidance and coverage. A sink-hole problem for WSNs is addressed using an information-based clustering 
approach in [28]. The [29] paper uses clustering for an obstacle-aware approach to WSN data acquisition using MS, 
whereas the [30] paper uses trajectory optimization for WSN data collection. As described in [31], Selvaraj and 
Vasanthamani propose a dynamic routing approach that eliminates obstacles in the WSNs by avoiding obstacles.

In the literature reviewed above, few works suggest an obstacle-aware pathway for MS to acquire sensed data from 
SNs, or RPs. Currently, only a few approaches have been published that use obstacle-aware paths for MS to accumulate 
sensing from SNs for WSNs. The existing approaches are computationally expensive and not optimal. Furthermore, they 
are not suitable for dynamic environments. Therefore, there is a need to develop an efficient and robust obstacle-aware 
pathfinding approach for MS in WSNs.

3. Problem formulation
The WSNs are assumed and represented as a graph G, where the SNs are considered the nodes (S) and 

the connections are treated as relations or edges D. So, in simple terms, the WSN is treated as G(S, D). The 
{ } (1, ).iS s i n= ∀ ∈  All the S are deployed in random places, and it is decided using Sah et al. [32]. The BS is represented 

as S0. The total SNs in the network are n. The distance between two SNs is treated as dij, where si and sj are the two 
nodes. The communication range is considered rc. The VPs in the network are calculated as V = {V1,V2,....,Vk}, and the 
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total number of VPs is treated as k. The order of the path is stored in 0{ ( )}.M s order V= ∪  The energy is measured 
using E (initially it is full), and the buffer is shown as B (initially it is empty). Buffer availability of a node si is measured 
as Bi. MS speed is v m/s. The total distance traveled is considered L. The obstacles are mentioned in the paper using O = 
{o1, o2,..., op}, where p is the number of obstacles. The frequently used notations used in this paper are listed in Table 2.

Table 2. Frequently used notations and their meanings

Notation Meaning

G WSNs

S SNs

D Relational edges

V Set of VPs

O Set of obstacles
t
ijE Energy required to transfer from node i and j

p Number of obstacles

v Velocity of MS

Λ Amount of data packet transfer from the SN si to sj

a The energy consumption (EC) of amplification

b The EC of processing a bit data

 Network lifetime

ϒi Length of trajectory of MS

Bi The buffer occupancy of the si

 Adjacency matrix

 Similarity matrix

 Degree matrix

 Laplacian matrix

λ Eigenvalues

Ea Average energy consumption

δ Number of rounds completed by the MS

ζ Latency

This paper uses the energy model according to Donta et al. [16]. For reader convenience, we present it here again. 
Λ data packet sent from node si to sj consumes energy as per equation (1).

                                                                                   
t
ij ijE a b d= Λ + Λ                                                                               (1)

where a is amplification energy, b is processing energy for a bit data. The number of bits transferred is considered as Λ 
from node i to j. The energy required for receiving Λ-bits from nodes i i S∀ ∈  is computed using equation (2).

                                                                                         rx
iE r= Λ                                                                                     (2)

where r is the energy for receiving a bit data from other nodes. The energy required for i i S∀ ∈  for receiving and 
transferring at a time t is extracted from equation (3).
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rx tx

i i ijE E E= +                                                                                  (3)

We can calculate the remaining energy of si, as shown in equation (4).

                                                                                       i iE Eξ = −                                                                                    (4)

The lifespan of network ( ) is the time which is calculated using the time until the first node dies, the number of 
rounds ϕ   completed. We consider it in terms of minutes. The proposed CSOBUG,   is calculated using equation (5)

                                                                                      0

60
i

i v

ϕ  

=

 = ϒ × 
 

∑
                                                                        

(5)

The distance traveled by MS in ith round at a velocity v is represented as ϒi.
The ultimate objective of the proposed CSOBUG is to maximize the   through improving the utilization efficiency 

of Ei and Bi, respectively.

                                                                                         max                                                                                       (6)

subjected to min Ei and max Bi.

4. Proposed CSOBUG
Two steps are involved in the proposed CSOBUG: VP selection and trajectory finding. The VP selection uses the 

CSO algorithm to balance the load between the nodes, reducing the number of multi-hop communications as much as 
possible. Further, the bug algorithm helps to find an obstacle-aware path between the VPs in the WSN. So, the detailed 
contributions are detailed in the subsequent sections.

4.1 VP selection

CSO mainly works by recognizing cat behaviors, such as tracking and seeking. It starts by doing a clustering 
mechanism, then optimizes the clusters. This algorithm takes as input the number of clusters denoted as k, and it 
converts these into a network of nodes n. In this algorithm, the optimal k is determined by the estimated cost of the 
proposed work. Once the estimated cost is determined, the algorithm can begin. The optimal number of clusters is 
decided based on the approaches used in Donta et al. [33].

The initial virtual cluster heads are identified by using a distance function once the k (amount of clusters) has been 
fixed, as shown in equation (7)

                                                                   
2

1
( ) (( 1)% )

n

ij i j
i

d s s j i n
=

= − ∀ = +∑
                                                              

(7)

To optimize the clusters using equation (8), we must update the fitness function during the seeking and tracing 
operations.

                                                                             
( )2

1
|| ||

i

k

i
i s C

Fit s H
= ∈

= −∑∑
                                                                        

(8)

It is necessary to achieve minimal clustering results during the running of the clustering CSO algorithm. The fitness 
values are initially assigned to infinity. Algorithm 1 shows the pseudocode of the CSO clustering and VP selection. 
Initially, we define k random cluster heads for the partition Hi. It is clustered through a distance function defined in 
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equation (7). Once the initial cluster heads for Hi are determined, the fitness function is updated with multiple iterations 
of running Seeking() and Tracing() process.

Algorithm 1. Clustering through CSO

1: Fits = Fitt = ∞

2: k random points are initialized in the network as temporary cluster heads Hi∀1 ≤ i ≤ k

3: Group the nearest points from the cluster head to make a cluster using an Euclidean distance using equation (7)

4: Calculate the fitness value for the algorithm using equation (8)

5: while i ≤ Ilimit do

6:  while Fits ≤ Fit do

7:  Operate Seeking(); (Call Algorithm 2)

8: end while

9: while Fitt ≤ Fit do

10: Operate Tracing(); (Call Algorithm 3)

11: end while

12: end while

4.1.1 Seeking()

There is no movement during Seeking(), but the cats keep on looking around to see if they can find anything 
to eat or strive for. It requires four main functionalities to execute Seeking(), but we only use three in this approach: 
seeking memory pool (SMP), self-position consideration (SPC), and range of dimensions (SRD). This metric is of 
little importance because it is taken into account by default at 100%. In SMP, the number of cluster center copies is 
expressed as some Boolean value [TRUE, FALSE], while SPC represents the ratio of mutations between 0 and 1. When 
the Seeking() parameter is called, the j value is updated based on the SPC value and starts at SMP. Following that, we 
calculate the mutative ratio by multiplying SRD by Hi. Determine the fitness value for each Hi using equation (8). At 
each Hi, begin by modifying or moving the Hi based on the computed fitness. A constant equation (9) will be used to 
find the Hi that had the highest probability among the multiple Hi.

                                                                     
max

max min

| |
0i

i
Fit Fit

Prob i j
Fit Fit

−
= ∀ < <

−                                                                 
(9)

You now need to keep updating the fitness rate with each iteration and change the existing Hi to the updated Hi. You 
also need to update the cluster members based on equation (7). As long as Fits is below the minimum of Fits previous, 
Seeking() is continued. Algorithm 2 shows the Seeking() operation. 
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Algorithm 2. CSO Seeking()

1: Define SMP, SRD, and SPC

2: for i = 1 to k do

3: Hi → SMP

4:  if SPC == TRUE then

5:  j = SMP − 1

6: end if

7:  SV ← SRD ∗ Hi //SV indicates shifting value

8: end for

9: for h = 1 to SMP do

10:  SV ± RandomInt()

11: end for

12: Use equation (7) to group the data

13: Calculate Fits using equation (8)

14: Identify the new cluster head Hi

4.1.2 Tracing()

The Tracing() operation starts once the Seeking() holds. In this process, the cat starts reacting to the targets. 
Tracking aims to shift cluster head to an optimal location by shifting it from one to another. The Tracing updates cat i’s 
velocity in (Hi) according to the equation (10).

                                                                          ( )i i best iH Hλ λ ζ ξ= + − × ×                                                                    (10)

where a constant is represented using ξ, and a random value between the [0,1] can be assigned to ζ. Hbest is the best 
position get while optimizing the fitness value. With equation (11), the position of Hi will be updated from its current 
position to its optimal position.

                                                                                      i i iH H λ= +                                                                                (11)

Until reaching the minimum fitness value, the tracing function iterates for each Hi, where 1 ≤ i ≤ k.
During iteration of the CSO algorithm, the optimal partitions are determined, and they are used to construct paths. 

Algorithm 3 shows the pseudo code for Tracing() operation.

Algorithm 3. CSO Tracing()

1: for i = 1 to k do

2: Update λi using equation (10)

3: Update pos(i); using equation (11)

4: Hi = new(Hi)

5: end for

6: Use equation (7) to group the data 

7: Calculate Fitt using equation (8)
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4.2 Obstacle-aware path

An obstacle-aware path uses the bug algorithm [34], one of the traditional, low-computation algorithms. There 
are many advantages to using this approach in local maxima, including its efficiency and ease of use. Once obstacles 
are identified, they are traversed along their edges, and the path is constructed in a straight and short line. In addition, 
it checks the minimum distance between the MS and the RP simultaneously. This flow chart (Figure 1) illustrates the 
detailed process of constructing a trajectory using the bug algorithm. This makes it easier to find a feasible path and 
reduces the risk of getting stuck in local minima. Furthermore, the bug algorithm is able to quickly identify the shortest 
path between two points while avoiding obstacles.

         

Start Align MS heading

Wall following

Go reverse
Go close

Turn back

Yes

Towards to the 
requested SN

Duplicate source 
for the path

Reach requested 
SNWay towards to the 

requested SN is free 

Near to the 
obstacle wall

If 
obstacle 

is hit

Stop

Too far from the 
obstacle wall

Obstacleʼs Carner 
detected

Optimal distance 
found

Figure 1. The general working procedure of the bug algorithm during path construction

As discussed earlier, once an obstacle is detected, the bug algorithm begins traveling adjacent to it. The bug 
algorithm will then trace the obstacle until a clear path is found. It will repeat this process until it reaches its destination. 
The bug algorithm is a useful tool for navigating a complex environment. Using MS’ current location (p, q), it calculates 
a new path, and the next VP (x, y) is taken as a straight line. The slope and y-intercept are calculated using equations (12) 
and (13).

                                                                                 
tanh y qslope

x p
−

=
−                                                                           

(12)

                                                                             ( )intcpt q slope p= − ×                                                                        (13)

Once the obstacle is found, the bug algorithm turns to identify the edges of the obstacle and traverses according to 
them. A number of options are available for circumnavigating the obstacle, but it determines which one is the shortest. 
By using the shortest route, the obstacle can be circumnavigated quickly and efficiently. It can also save time and 
resources. As shown in Algorithm 4, Initially, the MS was located at BS. From BS, it moves towards the first VP, which 
is the nearest. During this journey, it will check for any obstacles presented between them. By eliminating the straight 
line in the event of an obstacle, it constructs a curved path between the MS and the next VP.

For a better understanding of the path approach, we illustrate it through an example as shown in Figure 2. This 
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example shows the path construction between an MS and a VP. Initially, in Figure 2(a), an MS, VP, and two obstacles 
are considered. Two obstacles are of different sizes and shapes. From Figure 2(b), a virtual path is built between MS 
and VP. This path is a straight line where no obstacle-aware path is considered. From Figure 2(c), the bug algorithm 
is able to determine the edge for each obstacle. These edges help avoid the intersection with the obstacles to the MS, 
finally constructing the path. Once the MS approaches the edge, it continues traversing around the edge until it touches 
the virtual line, as shown in Figure 2(d). Further, it follows the virtual line until it touches any edge of another obstacle 
or VP. If it identifies any obstacles again, it repeats the same process until the VP is reached. It repeats the same process 
until it returns to the BS.

Algorithm 4. Path construction using bug algorithm

1: while TRUE do

2: repeat

3: Move MS from current location to next VP.

4: until Oi = TRUE

5: if status(S) == VISITED then

6: STOP

7: end if

8: repeat

9: Travel near Oi’s edges

10: until status(S) == VISITED

11: Calculate shortest distance

12: Move to the initial position

13: if Move the MS towards SNs then

14: GOAL not reached

15: EXIT

16: end if

17: end while

                                  

(a) (b)

(c) (d)

Figure 2. (a) Illustrative example of path construction approach; (b) initial obstacles, sensor node, and MS positions; (c) virtual path between the MS 
and SNs; (d) finding the borders for the obstacles 
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4.3 Time complexity analysis

The CSOBUG algorithm’s time complexity consists of two main components: selecting VPs and constructing a 
trajectory. The VP selection uses CSO, and the time complexity of CSO is computed according to Ahmed et al. [35]. It 
is approximately O(n2), where n is the number of SNs, as discussed previously. As we derived the path construction for 
the MS using the bug algorithm, it takes approximately O(n2 log n) asymptotic time complexity. So, the final asymptotic 
time complexity for the CSOBUG is O(n2) + O(n2 log n) ≈ O(n2 log n) which is better than existing approaches.

5. Simulation results
The Python simulator (Python 3.11) is used to implement and test the proposed CSOBUG and existing approaches. 

In an area of 600 square meters, 500-1,000 SNs are considered, and deployment is based on the dataset generation of 
Sah et al. [32]. The SNs battery capacity is 192.8 KJ ( 0

iE ), and all the nodes’ batteries are initially fully charged. The 
simulation time for the proposed and existing models was evaluated at 10 hours. MS velocity is 1 m/s. As part of the 
simulation, we used parameters for determining CSO, the lifespan of the WSN, the average energy drain (AED), the 
fairness index of the AED, the utilization of the buffer, the throughput, the delay, and the travel length of the MS. Other 
metrics used in this paper are summarized using Table 3. These metrics are estimated under two main scenarios, such as 
event- and time-driven WSNs. The properties of event- and time-driven are similar to those of Kafi et al. [36] and are 
summarized as follows:

Event-driven WSNs: WSNs with event-driven acquisition acquire packets only when there is an event on the 
network.
Time-driven WSNs: WSNs that are time-driven acquire the data continuously, regardless of the events happening 
in the environment.

Table 3. Frequently used notations and their meanings

Parameter Value

Simulator Python 3.10

n 500-1,000

A 600 sq.m

Node type Zolertia Z1 mote

max 96 kB

S0 (0,0)

a 0.05 J

b 0.02 J

c 0.02 J

rt 15 m

rc 20 m

MAC protocol TDMA

Data transfer rate 40 Kbps

Packet generation 3 pkt/sec

Packet size 128 bits

Emax 192.4 KJ

Channel bandwidth 103 Hz

Noise spectral power density 10−9 W/Hz

Length of a frame 6s

Topology Mesh topology
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5.1 Network lifetime
An important metric to determine the performance of a WSN is its lifetime ( ). Our study considers how long, 

in minutes, it takes a node to drain its energy until its battery no longer holds any charge. Equation (5) shows how to 
calculate it. Figure 3(a) and (b) show two scenarios under which the   is estimated: event-driven and time-driven 
scenarios, respectively.
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Figure 3. Network lifespan of (a) event-driven WSNs and (b) time-driven WSNs

Based on two different scenarios, we analyze the   analysis, including a time-driven and event-driven WSN. 
Due to the fact that most existing networks follow this strategy, the time-driven network is considered to be a regular 
network. It can be seen from Figure 3(a) that   improves by around 1.89-23.02% compared with ACO-RMS, 7.65-
73.84% over IQCQP, and 9.87-11.21% compared with eACO-MSPD for event-driven WSNs. Accordingly, in the time-
driven network (Figure 3(b)), we can notice that the proposed CSOBUG approach outperforms the existing approaches 
ACO-RMS, IQCQP, and eACO-MSPD in terms of  . ACO-RMS, IQCQP, and eACO-MSPD algorithms all exhibit 
lower   than CSOBUG, around 5.62-7.21%, respectively. MS scheduling over the network and efficient VP selection 
are among the reasons for the improvements in the proposed CSOBUG.

5.2 AED

In WSNs, the AED is calculated as a ratio of the total number of SNs to the total energy drain of each SN. A 
number of factors determine SNs’ energy drain, which is discussed in Section 3. To analyze the performance of SNs, we 
estimate their AED. In this context, we estimate the AED by using different kernel density estimation (KDE) functions 
in conjunction with the two scenarios of WSNs as depicted in Figure 4.
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Figure 4. AED of (a) event-driven WSNs and (b) time-driven WSNs

Based on two different scenarios, including an event-driven and time-driven WSN, we analyze the ADE of the 
CSOBUG and existing work. With a low impact on the existing works, we have noticed a considerable improvement 
in the results from Figure 4(a). ACO-RMS approaches have variations of 9.65-19.23%, IQCQP approaches have 
variations of 20.09-27.27%, and eACO-MSPD approaches have variations of 24.69-34.34%. Similarly, Figure 4(b) is 
a comparison of the performance variations in time-driven WSN applications between the CSOBUG algorithm and 
available algorithms. EC is reduced by around 2.22-6.49×, 4.1-7.35×, and 6.3-11.87× by using ACO-RMS, IQCQP, and 
eACO-MSPD approaches over the proposed one. The proposed CSO algorithm for determining the optimal clusters is 
responsible for the improvement in the results of the proposed CSOBUG algorithm. SNs are also able to minimize their 
energy consumption by using weight functions and order selection.

5.3 Fairness index of energy drain

For a specific reasoning behind the WSNs and an inability to identify them through the AED metric, the fairness 
index ( ) is used to identify the energy drain bottleneck. This range of   can be found in the range [0, 100], where 
the higher the value, the better the result, and vice versa. This calculation was based on Hoßfeld et al. [37], as shown in 
equation (15).

                                                                

21 100
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where ζ is the standard deviation of energy drain, max{ }t
aE  indicates the maximum AED at time t, and min{ }t

aE  is the 
minimum AED at time t. In the event of similar max and min energies, ϵ prevents the [divided by zero] error. In order to 
determine the ζ value, we apply equation (16).
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Based on two scenarios, event- and time-driven, the  of the proposed CSOBUG is compared with the  of 
existing works. SNs are vary between 500 and 1,000 for these two scenarios.

The performance of the CSOBUG algorithm is significantly better than that of the ACO-RMS algorithm, ranging 
from 0.116 to 0.489%. A similar relationship exists between IQCQP and eACO-MSPD, with range from 0.276-0.448× 
and 0.379-6.487×, respectively, being lower than CSOBUG. WSNs were also generated according to time-driven 
parameters using Figure 5(b). The CSOBUG algorithm has shown significant improvements in terms of  over the 
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existing approaches that range from 0.134-0.489×, 0.236-0.501×, and 0.474-0.699× as compared to ACO-RMS, IQCQP, 
and eACOMSPD. By implementing CSO,  has been clustered efficiently, and VP selection has been improved.
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Figure 5. Fairness index of energy drain of WSNs in (a) event-driven and (b) time-driven 

5.4 Buffer utilization (BU)

Sensing data accumulated during a single MS cycle is known as data packets, and they occupy a certain amount of 
buffer space in order to accumulate them from the network environment and be used during the next MS cycle. By using 
this metric, it can be defined as a metric that defines how efficient the process of collecting data is and how efficient 
the use of resources can be. The BU ultimately determines how much data is collected, the amount of data lost in the 
network, and the efficiency of the data collection method. There is a formula that can be used for this, which is given in 
equation (17).
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For event-based and time-dependent WSNs, the BU of the CSOBUG algorithm is estimated by varying the number 
of SNs between 500 and 1,000. Even though CSOBUG outperforms existing applications, even time-driven applications 
perform better. ACO-RMS’s performance compares poorly with that of the proposed CSOBUG algorithm in event-
oriented WSN applications shown in Figure 6(a). This is approximately 1.02-2.05% better than the performance of 
CSOBUG compared to ACO-RMS. Furthermore, CSOBUG is better by 1.53-3.86% than IQCQP and by 2.96-5.24% 
than eACO-MSPD. We see improvement variations in BU performances in comparison to published and recommended 
approaches by CSOBUG by at least 1.53% in Figure 6(b). By approximately 1.31-1.67%, 2.24-3.62%, and 4.49-6.21%, 
CSOBUG outperforms ACO-RMS, IQCQP, and eACO-MSPD approaches. It can be concluded from these analyses that 
the proposed CSOBUG algorithm organizes the buffer efficiently in order to prevent network data loss and congestion. 
MS are scheduled efficiently, and VP data is accumulated timely, maximizing memory use.
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Figure 6. BU of (a) event-driven WSNs and (b) time-driven WSNs

5.5 Network throughput

Network throughput (Γ) is calculated by dividing the number of packets acquired during simulation time (T) by the 
number of packets acquired during T. A mathematical representation of it is shown in equation (18).

                                                                                      1
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(18)

where |Pi| is the number of packets available at §i  at time T by the BS.
Now, we estimate the Γ by varying the n value between 500-1,000 in Figure 7(a). With a maximum of 0.8%, 3.14%, 

and 4.50%, respectively, CSOBUG has improved Γ over ACO-RMS, IQCQP, and eACO-MSPD algorithms. ACO-
RMS, IQCQP, and eACO-MSPD algorithms, as shown in Figure 7(b), have a minimum Γ of 0.04%, 0.01%, and 0.03% 
higher than CSOBUG, respectively. Thus, CSOBUG and existing strategies perform better in terms of throughput based 
on these numerical analyses. It has been observed that the improved Γ of CSOBUG is a result of the bug approach used 
to determine the near-optimal travel route for MS in the WSNs. According to the proposed algorithm, the maximum 
throughput in the WSNs indicates efficient data accumulation and low congestion.
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Figure 7. Throughput of (a) event-driven WSNs and (b) time-driven WSNs
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5.6 End-to-end (E2E) delay

Data packets returned to the BS (S0) are delayed (in milliseconds) by the E2E delay (∆) in this research. Algorithms 
with lower E2Es perform more efficiently. From the time packets are generated to the time they reach the BS, the delay 
∆ is calculated using the formula equation (19).
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where m
ijϕ  is the time await of jth packet of node i at MS, and w

ijϕ  is the waiting time of jth packet of node i at SN, 
before it is accumulated by the MS and after it is acquired from the environment. Pi indicates the total packets generated 
by node i. A number of existing approaches are evaluated, including the ∆ of CSOBUG and CSO parameter evaluation, 
as well as the integration of time-driven WSNs into the paper.

Continuing our testing, we switch from event- to time-driven scenarios and vary the number of SNs. Based on 
the results shown in Figure 8(a), we understand how the E2E delay varies among the different algorithms when they 
are applied to event-driven WSN applications, and we also see that the CSOBUG has a lower delay than the other 
algorithms. The proposed CSOBUG performs significantly better than the existing ACO-RMS, IQCQP, and eACO-
MSPD, with approximate performance improvements of 1.54-3.41×, 1.82-4.48×, and 4.18-6.19×, respectively. In time-
driven applications, we estimate the E2E delay of WSNs with 100 SNs in Figure 8(b). Although the CSOBUG algorithm 
performs better than the existing ACO-RMS, IQCQP, and eACO-MSPD strategies, which are 1.87-4.19×, 2.11-5.09×, 
and 4.91-7.43×, respectively. As a result of efficient tour construction between the VPs, the performance of CSOBUG is 
superior to the performance of the ACO-RMS, IQCQP, and eACO-MSPD approaches. Using an efficient route will lead 
to a shorter distance and faster accumulation of data, as well as delivering the data packets to the BS on time, which will 
result in a lower overall delay of the data packets in the WSN.
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Figure 8. E2E delay of (a) event-driven WSNs and (b) time-driven WSNs

5.7 Average MS travel length

In MS-based data accumulation, the average tour length (ATL) of an MS is an important metric since a longer MS 
results in slower delay, throughput, and buffering. The tour length of an MS is extremely difficult to trade-off; however, 
minimizing it is beneficial for achieving low E2E delays, high BUs, and fast speeds. To determine whether other 
performance metrics influence ATL of MS, we evaluate ATL of MS similar to Donta et al. [33].

According to Figure 9, the ATL is presented under both event- and time-driven WSN deployment scenarios, with 
SNs deployed randomly in both scenarios. Accordingly, the number of SNs in the event-driven scenario ranges from 500 
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to 1,000, as shown in Figure 9(a). In the proposed CSOBUG approach, the minimum ATL is 1.76 km and the maximum 
is 3.331 km. In the same way, the minimum ATLs for ACO-RMS, IQCQP, and eACO-MSPD approaches are 2046.8, 
2119.9, and 2165.8 m, respectively. ACO-RMS can achieve a maximum ATL of 3620.44 m, IQCQP can reach 3915.7 m, 
and eACO-MSPD can reach 4013.4 m. Time-driven WSN application scenarios require a minimum ATL of 2.08 km for 
the proposed CSOBUG and 2.13 km for ACO-RMS, IQCQP, and eACO-MSPD, respectively, as shown in Figure 9(b). 
The maximum ATLs for CSOBUG, ACO-RMS, IQCQP, and eACO-MSPD algorithms are 3.56 km, 3.75 km, 3.92 km, 
and 4.26 km, respectively. Based on the optimal clustering of the SNs and the optimal selection of VPs, the proposed 
CSOBUG yields the minimum ATL over the existing works.
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Figure 9. Average MS travel length of (a) event-driven WSNs and (b) time-driven WSNs

6. Conclusion
This paper proposes a CSO-based algorithm for VP selection and a bug algorithm for obstacle-aware path 

construction for MS in WSNs. Unlike the existing approach, this approach is very efficient in finding the most 
appropriate VPs and an optimal path that is not too long or short and is treated as optimal. In comparison to existing 
algorithms such as ACO-RMS, IQCQP, and eACO-MSPD, these optimal results improve the proposed CSOBUG. 
Moreover, this method is also less computational than these approaches. Besides, this approach cannot identify 
obstacles, whereas the authors need to indicate their locations. Furthermore, the work can be extended to consider 
different scenarios and identify obstacles more quickly. There was also an extension of this work to other applications 
where different obstacles such as buildings, roads, and trees were employed. The authors have also proposed the use of 
this approach in different environments, such as urban and rural areas.
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