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Abstract: In this research work, we offer an efficient spectral numerical scheme for handling the Volterra integro-
differential of the third kind via Chebyshev polynomials of the fifth kind. The celebrated fundamentals and relations 
were stated with some details. With the aid of the spectral collocation method and the properties of Chebyshev 
polynomials, the singular Volterra integro-differential equation with its initial condition was transformed into a system 
of algebraic equations. The convergence and error analyses were discussed in depth. The validity and applicability of 
the method were tested and verified through three numerical examples, with the absolute errors reported in tables and 
graphs.
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1. Introduction 
Orthogonal-spectral methods are a class of schemes employed in physics and mathematics to approximately solve 

differential and integral equations, involving the use of the integral transform. The idea is to write the solution of the 
differential/integral equation as a sum of certain ”basis functions” (for example, Legender, the four kinds of Chebyshev, 
ultraspherical, and Jacobi polynomials), and then to choose the coefficients in the sum in order to satisfy the differential/
integral equation as much as possible. For more details about spectral methods, see [1-10].

A fundamental class of symmetric orthogonal polynomials is introduced in Masjed-Jamei’s excellent PhD 
thesis, which addressed the extended Sturm-Liouville problem to symmetric polynomials. There are four separate 
parameters in this class. Some properties of these polynomials are also introduced, such as a second-order differential 
equation, a three-term difference equation, and several other significant relations. The benefit of introducing this class 
of polynomials is that it generalizes numerous well-known classes of orthogonal polynomials and contains special 
polynomials that are new varieties of orthogonal polynomials. Specifically, the four well-known Chebyshev polynomial 
types. Chebyshev polynomials of the fifth and sixth kinds, two further innovative classes of orthogonal polynomials, can 
also be obtained. One of the main categories of issues in applied mathematics is integral equations. Numerous fields, 
including biology, business, engineering, and physics, use integral equations. The Volterra-Fredholm integral equations 

https://www.wiserpub.com/
https://orcid.org/0000-0001-8009-2045
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are derived from the modeling of the spatiotemporal evolution of an epidemic, the parabolic boundary value issues, and 
the physical and biological models. Integral equations have been more focused on recently for this use. There are two 
categories of common approaches to solving integral equations: analytical and approximation. The response of integral 
equations is typically not determinable using analytical methods. As a result, approximate approaches are utilized to 
gauge how integral equations will respond. The study of Fredholm kernels and operators is based on the solution of the 
Fredholm integral equation, a mathematical integral equation. Ivar Fredholm looked at the equation for an integral. The 
Adomian decomposition approach is a helpful strategy for resolving these problems [11-16].

In this work, we are interested in the study of finding an approximate semi-analytic solution to the linear first-order 
Volterra integro-differential equation of the third kind [17].

0

( ) ( ) ( ) ( ) ( , ) ( ) , [0,1]
t

t y t a t y t g t k t x y x dx tβ ′ = + + ∈∫

subject to the initial condition

y(0) = y0.

The organization of the paper is as follows: in Section 2, we report some preliminary and useful relations of 
Chebyshev polynomials of the fifth kind; Section 3 is devoted to the procedure of the solution; Section 4 is devoted 
to the study of convergence and error analyses; in Section 5, we report some numerical results; and finally, some 
concluding remarks are reported in Section 6.

2. Mathematical preliminaries
The basic set of symmetric polynomials that were created in [18] is described in this section. The use of an 

extended Sturm-Liouville differential problem is the main idea for developing this polynomial class. More specifically, 
the author in [18] made the supposition that y = ϕi(z) is a set of symmetric functions that answers the second-order 
differential equation shown below:

1 2 3 4 5
1 cos( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

2i i i i
iA z z A z z A z A z A z zπφ φ µ φ− ′′ ′+ + + + = 

                                     (1)

where Ai(z), 1 ≤ i ≤ 5 are independent, and {µi} are constants. In [18], it has been shown that Ai(z), i = 1, 3, 4, 5 are even, 
and A2(z) is odd. You may obtain the desired symmetric category of orthogonal polynomials if Ai(z), 1 ≤ i ≤ 5, {µi} are 
chosen as follows:

( ) ( )2 2 2 2
1 2 3

4 5

( ) ,  ( ) ,  ( ) ,

( ) 0,  ( ) ,  (( 1) ),i

A z z rz s A z z mz n A z z

A z A z n i i r mµ

= + = + =

= = − = − − +

where the m, n, r, and s parameters are real-free.
The options above give the following differential equation:

( )2 2 2 2 1( ) ( ) ( ) ( ) ( 1) (1 ( 1) ) ( ) 0.
2

i
i i i

nz s r z z z n mz z i i r m z zφ φ φ+ ′′ ′+ + + − − + + + − = 
                               

(2)
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The solution of (2) is the generalized polynomials , , , ( ),m n r s
iG z  which has the explicit form:

1
22 2( ), , , 2

0 0 , , , , ,

1( ) ,2

ii k i km n r s
i

k j i j m n r s

i
G z z

k

   − −      −

= =

      =     Γ 

 
 
  

 


  
∑ ∏

where

1

, , , , ,
1

(2 ( 1) 2)[ .
(( 1) 2 2 )

2

i

i j m n r s
i

j s n
ij r m

+

+

+ − + +
Γ =

 − + + +  

In addition, the author in [18] introduced the symmetric orthogonal polynomials , , , ( )m n r s
iG z  defined as

1
2

, , , , , ,
, , , , ,

0

( ) ( ).

i

m n r s m n r s
i i j m n r s i

j

G z G z

 −  

=

 
 = Γ 
 
 

∏

The polynomials , , , ( )m n r s
iG z  satisfy the following recurrence relation:

, , , , , , , , ,
1 , , , , 1( ) ( ) ( ), 0,m n r s m n r s m n r s

i i i m n r s iG t zG z A G z i+ −= + ≥                                                     (3)

with the initials:

, , , , , ,
0 1( ) 1, ( ) ,m n r s m n r sG z G z z= =

and

( ) ( )2 1
2

, , , ,

( 2 ) cos( ) ( 2 ) 1 cos( )
.

(2 )(2 3 )i m n r s

r si m r s i rn i m r n i
A

ri m r ri m r
π π+ − − + − −

=
+ − + −                                       

(4)

Many properties of , , , ( )m n r s
iG t  may be found in [18]. There are many specific categories of important orthogonal 

polynomials of , , , , , ( ).i j m n r sG z  The four different types of Chebyshev polynomials could be formed through to the 
expressions:

1, 0, 1, 1 3, 0, 1, 1

3, 2, 1, 1 3, 2, 1, 1
2 2

( ) ( ),  ( ) ( )

1 1( ) 2 ,  ( ) 2 ,
2 2

i ii i

i i
i ii i

T z G z U z G z

z zV z G W z G

− − − −

− − − −

= =

   + −
= =      

   

and ( ), ( ), ( ), ( )i i i iT z U z V z W z  are located, respectively, the first, second, third, and fourth categories of Chebyshev 
polynomials. All these other polynomial categories could be obtained as specific categories of , , , ( ).m n r s

iG z  The two types 
of orthogonal polynomials in [18], especially the Chebyshev fourth and sixth types of polynomials, may also be defined, 
respectively, as:
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3, 2, 1, 1

5, 2, 1, 1

( ) ( )

( ) ( )

i i

i i

X z G z

Y z G z

− −

− −

=

=

We inhibit our study to the Chebyshev fifth type and their shifted polynomials, which have changed. The property 
of orthogonality of ( )iX z  is

2
1 , 3,2, 1,1

121

( ) ( ) ( 1) , when ,
2

1 0, wh en 

 

,

i
i

i j L
L

z X z X z A i j
dz

z i j

π
− −

=−

 
− = =  

−  =/

∏∫
                                            

(5)

and , , , ,i m n r sA  is given in (4).
Alternatively, the orthogonality relation above can be written as

2
1

21

,  
 

( ) ( ) if ,
0, if ,1

i j iz X z X z h i j
dz

i jz−

=
=  =/− 

∫                                                               
(6)

and

2 1

2 1

,  even,
2

( 2) ,  od

 

. d
2

i

i

i

i
h i i

i

π

π

+

+


=  +
                                                                         

(7)

It is more reasonable to normalize fifth type Chebyshev polynomials. For this specific purpose, we describe

1( ) ( ).i i
i

X z X z
h

=

Accordingly, Xi (z) are orthonormal on I = [₋1, 1]:

21

21

1, if ,
( )

.
 
 

( )
0, if 1

i j

i jz X z X z dz
i jz−

=
=  =/− 

∫                                                            (8)

2.1 Fifth type of shifted orthonormal Chebyshev polynomials (5SOCP) 

The 5SOCP Ci (z) can be defined on I* = [0, 1] by:

1( ) (2 1),i i
i

C z X z
h

= −
                                                                         (9)

and hi is known in (7).
From (8), it is easy to note that ( ), 0iC z i ≥  are orthonormal on I *. Directly, we have
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1 *

0

1, if ,
( ) (

i 
) ( )

0, f .
 

i j

i j
w z C z C z dx

i j
=

=  =/
∫                                                             

(10)

and 
2

*

2

(2 1)( ) .zw z
z z
−

=
−

 The following formulae are needed in the sequel.

Theorem 1 The polynomials Ci (z) in (9) are connected with Ti
*(z) by the formula

*
,

0
( ) ( ),

i

i i j j
j

C z g T z
=

= ∑                                                                          
(11)

where

2
,

, ,  even,
22 ( 1) , ,  odd,

0 otherwise,

j
i j

i j

i j
jg i j
i

δ

π

−


= − 



and

1 , if  = 0,
2
1, if 0.

j
j

j
δ


= 
 >                                                                           

(12)

Proof. See [19].
Theorem 2 [19] The polynomials Ci (z) in (9) are connected with Ti

*(z) by two formulae below:

*
2 2

0

2( ) 2  ( 1) ( ),
i

i r
i r r

r
C z T zδ

π
+

=

= −∑                                                                (13)

where δr is defined in (12), and

*
2 1 1 2

0

2 2( ) ( 1) (2 1) ( ).
(2 3)(2

 
1)

i
i r

i r
r

C z r T z
i iπ

+
+ +

=

= − +
+ +

∑                                               
(14)

The next corollary is important in the sequel: 2 2 1( ) and ( ).i iX z X z+  The following corollary shows these important 
illustrations.

Corollary 1 The trigonometric representations hold:

2
2 cos((1 2 ) )(cos ) ,

cosi
iX φφ

π φ
+

=
                                                                 (15)

and

2 1 2
2 (3 2 )cos((2 2 ) )cos cos((3 2 ) )(cos ) .

(2 1)(2 3) cosi
i i iX

i i
φ φ φφ

π φ+

+ + − +
=

+ +                              
(16)

Proof. See [19].
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The following connection theorem is needed in sequel.
Theorem 3 The polynomials Tr

*(z) is linked to a polynomial Ci (z) by two formulae below:

* 2
2 2 2

( )1( ) ( ) , 0,
2 2

r
r r

r

C zT z C z rπ
δ −

 
= + ≥ 

                                                          
(17)

and

*
2 1 2 1 2 1

1 3 2 2 1( ) ( ) ( ) , 1.
2 2 1 2 1 2r r r

r rT z C z C z r
r r

π
+ + −

 + −
= + ≥  + +                                            

(18)

Proof. See [19].
The following two theorems are important.
Lemma 1 [19] The Tn

*(z) power form and its inversion formula are given as:

2
*

0

( 1) 2 ( 1)!( )
(2 )!( )!

r r
r

r

rT z z
r r

+

=

− + −
=

−∑










                                                              
(19)

and

1 2 *

0
2 (2 )! ( ).

( )!( )!
j

j
j

z T z
j j
δ−

=

=
− +∑



 



                                                             
(20)

Theorem 4 [19] The analytical form Ci (z) is specifically given as

,
0

( ) ,
i

r
i r i

r
C z z

=

= ∑                                                                              
(21)

where

22

132 22
,

1 1
22 2

2

( 1) (2 1)!
2 ,  even, 

(2 )!

2
(2 )!

 odd. 1 ( 1) (2 1) (2 )!,
(2 1)!( 2)

ii j r
j

rjr

r i
i i j r

rj

j j r
i

j r

r

ij j r
j ri i

δ

φ

+ −

+ = +  

− +
+ −

 =  


 − + −


−

= 



− + +
 − ++


∑

∑

 (22)

Theorem 5 The inversion formula (21) of the analytical formula may be written as

,
0

( ),
m

m
mz q C z

=

= ∑
 

                                                                            
(23)

where
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( )2 2

12
2,

2 (1 )
  even,

( )!( 2)!

2 (2 )!  

2   odd.
2 ,

( (2 ))!( 2 )! ( )!( )!

m
m

m m

m m

q m

m m m m

π
− −


 + + +

 − + +

= 

 +

+ + − + + + + −







 

 



 

   

，

Proof. See [19].
The following derivative formula is needed.
Corollary 2 These two identities hold for all non-negative integer q:

,1
( ) ,q

i i qt
D C z α

=
=                                                                  (24)

,0
( ) cos(( ) ) ,q

i i qt
D C z i q π α

=
= +                                                                  (25)

where

, , ,
0

,
i

i q i j q
j

α α
=

=∑
                                                                              

(26)

and

2

, ,

,  if ,   even, 

,   odd, 2 2( 1) ( )(1 )
,

1 2( )
2  

0, otherwise 

j

i j

q
i j q

i j

i jj q j q j i
i ij q

δ

α

−




− Γ + + − = 

+  Γ Γ +   



(27)

where ( j)q denotes the known Pochhammer symbol.
Proof. See [19].

3. Procedures of solution
In this section, we build an efficient collocation algorithm for numerically handling the following Volterra-

Fredholm integral equation of the third kind:

0

( ) ( ) ( ) ( ) ( , ) ( ) , [0,1]
t

t y t a t y t g t k t x y x dx tβ ′ = + + ∈∫                                                (28)

subject to the initial condition
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0(0)y y=                                                                                   (29)

using the change of variables x = tμ, we have

0

( ) ( ) ( ) ( ) ( , ) ( ) .
t

t y t a t y t g t k t t y t dβ µ µ µ′ = + + ∫                                                        
(30)

Based on the interesting Rombergs’ integration formula, we have

1

,( ) ( )t n m to
z d r zµ µ ≈∫                                                                          (31)

and , ( )n m tr Z  are given by

( )

( ) ( )

( ) ( )

1

0,0

2

, 1,0
1

, , 1 , 1 1,

(0) (1)
2

1 2 2 (2 1)
2

1
4 1

n

t t
t

n n
n m t n t

k

n m t n m n m n mm

z z
r z

r z r z k

r z r r r

−
− −

−
=

− − −

+
=

= + −

= + −
−

∑

with n ≥ m ≥ 1. Now, equation (28) will be

, 0( ) ( ) ( ) ( ) ( ); (0)n m tt y t a t y t g t r z y yβ ′ = + + =                                                     (32)

Now, consider the following approximate solution:

0
( ) ( ) ( ).

N

N i i
i

y t y t C tν
=

≈ =∑                                                                       (33)

Equation (32) can be written in the following discretized form:

,
1 0

( ) ( ) ( ) ( ) ( )
N N

i i i i n m t
i i

t C t a t C t g t r zβν ν
= =

′ ≈ + +∑ ∑                                                       (34)

Let 1{ }Ntη η=  be the first N distinct roots of 1( )NC t+  collocating (34) at tν, we have

,
1 0

( ) ( )) ( )) ( ) ( ) ( ); 1
N N

i i i i n m t
i i

t C t a t C t g t r z N
η

β
η η η η ην ν η

= =

′ ≈ + + ≤ ≤∑ ∑                                     (35)

0
0

(0)
N

i i
i

C yν
=

=∑                                     (36)
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The system (35) is a system consist of N + 1 algebraic equation in the unknown expansion coefficients 0 ,{ }N
i iν =  and 

consequently,

0
( ) ( )

N

N i i
i

y t C tν
=

=∑                                                                            
(37)

4. Discussion of convergence and error analyses
Here, following the extensive work of Abd-Elhameed and Youssri [19]. The following lemma is needed.
Lemma 2 Let ( )C t



 dominated on i *. The following inequality holds:

*2| ( ) | (2 ) , .C t t I
π

< + ∀ ∈


                                                                     (38)

Theorem 6 If *
2 * (3)( ) ( ), | ( ) | ,
w

f t L I f t L∈ ≤  and if its expansion is

0
( ) ( ),f t a C t

∞

=

=∑
 



                                                                           
(39)

the series in (39) uniformly converges to f (t). Also, we have

4
1| | , for all 3.a >







 (40)

Proof. Following the steps of the proof in [19], by integrating by parts one more time, we get the desired result.
Theorem 7 [19] Let u(t) satisfy the conditions of Theorem 6, uN+1 (t) and uN (t) are two approximate solutions of 

u(t), we define 1( ) ( ) ( ).N N Ne t u t u t+= −  Then, we get the following estimation of the error:

*
3

 2,
( ) (1/ ),N w

e t O N= 

where

* 

2
2,

( ) means the -norm of  ( ).N Nw
e t L e t 

Theorem 8 Let f (t) ascertain conditions of Theorem 6. Let 
1

( ) ( )N
N

e t a C t
∞

= +

= ∑
 



 be the global error. eN(t) can be 
dominated as:

| ( ) | 3 / .Ne t L N<

Theorem 9 The residual of equation (28) satisfies the following global error estimate:

1

0

| ( ) ( ) ( ) ( , ) ( ) ( ) | .
t

N N Nt y t a t y t k t x y x dx g t Nβ −
′ − − −∫ 

                                               
(41)

Proof. We have
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0

( ) ( ) ( ) ( , ) ( ) ( )
t

t y t a t y t k t x y x dx g tβ ′ − − =∫

and

0

( ) ( ) ( ) ( , ) ( ) ( ).
t

N N Nt y t a t y t k t x y x dx g tβ
′ − − =∫

Therefore, the residual of equation (28) is given by

0

| ( ) | | [ ( ) ( )] [ ] ( , )[ ( ) ( )] | .
t

N N nR x t y t y x a y y k t x y x y x dxβ ′= − − − − −∫                                      (42)

By the triangle inequality, we have

0

| ( ) | | ( ) ( ) | | | | | | ( , ) | | ( ) ( ) | .
t

N N nR x t y t y x a y y k t x y x y x dxβ ′ ′≤ − + − + −∫

By the triangle inequality, we have

0

| ( ) | | ( ) ( ) | | | | | | ( , ) | | ( ) ( ) | .
t

N N nR x t y t y x a y y k t x y x y x dxβ ′ ′≤ − + − + −∫
                                

(43)

Since a(t), k (t, x) are continuous, they are bounded, say

| ( ) | , | ( , ) | ,a t A k t x K≤ ≤

and noting that 1,t β ≤  we get

0

| ( ) | | ( ) ( ) | | | | ( ) ( ) | .
t

N N nR x y t y x A y y K y x y x dx′ ′≤ − + − + −∫                                             
(44)

Based on Lemma 1, Lemma 2, and Theorem 8, we have

1 2 2 ,| ( ) |R x N AN K N− − −≤ + +                                                                   (45)

and hence, |R(x)| <≈ N 
−1, which complete the proof of the theorem.

5. Numerical tests and comparison
In this section, we provide three numerical examples to check the applicability of the method and verify the 

accuracy of the solutions. One of the main advantages of the method is that highly efficient solutions are obtained with 
only a small number of retained modes.

Example 1 Consider the following Volterra-Fredholm of the third kind:
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(46)
2
3

0
( ) ( ) ( ) , [0, 1],

t
t y'' t g t xy x dx t= + ∈∫

subject to the initial condition

(0) 0y =

in which

2 7 14
3 3 310 3( ) .

3 16
g t t t t

 
= − 

 

In Table 1, we list the maximum absolute errors (MAE) of Example 1 for various values of N. In Figure 1, we 
depict the absolute error of Example 1.

Table 1. MAE for Example 1

N 4 6 8 10 12

MAE 2.2 × 10-3 2.2 × 10-4 5.3 × 10-5 1.8 × 10-5 7.8 × 10-6

CPU (seconds) 12.3 13.5 15.7 20.5 22.8

6 × 10-6

4 × 10-6

2 × 10-6

0

8 × 10-6

 0 0.2 0.60.4 0.8 1.0

Figure 1. Absolute error of Example 1 for N = 12

Example 2 Consider the following Volterra-Fredholm of the third kind:
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1 11 1
4 62 2 2

0

1 9 1 1( ) ( ) ( ) , [0, 1], with  (0) 0.
20 2 20 30

t
t y' t ty t t t t x y x dx t y= − − − + ∈ =∫

In Table 2, we list the MAE of Example 2 for various values of N. In Figure 2, we depict the absolute error of 
Example 2.

Table 2. MAE for Example 2

N 4 6 8 10 12

MAE 1.1 × 10-2 1.5 × 10-4 1.7 × 10-5 3.5 × 10-6 1.1 × 10-6

CPU (seconds) 14.7 13.5 16.2 22.6 24.2

 0 0.2 0.60.4 0.8 1.0

6 × 10-7

4 × 10-7

2 × 10-7

0

8 × 10-7

1 × 10-6

Figure 2. Absolute error of Example 2 for N = 12

Example 3 Consider the following Lane-Emden equation [20]:

2 0;  (0,  1),  (0) 1,  (0) 0.ty'' y' ty t y y'+ + = ∈ = = (47)

with the exact solution sin( ) .ty t
t

=

By integrating (47) and using the initial conditions, we get Volterra-Fredholm of the third kind:

0
( ) 1 ( ) ( ) ,  [0, 1],  with  (0) 1.

t
ty' t y t xy x dx t y= − − =∫

In Table 3, we list the MAE of Example 3 for various values of N. In Figure 3, we show the absolute error of 



Volume 5 Issue 3|2024| 3883 Contemporary Mathematics

Example 3 for N = 8. In Table 4, we compare our method with the method offered in [20].

Table 3. MAE for Example 3

N 4 5 6 7 8

MAE 9.66 × 10-6 9.29 × 10-7 2.45 × 10-8 1.84 × 10-9 8.24 × 10-13

CPU (seconds) 17.3 18.2 19.7 25.8 29.5

 0 0.2 0.60.4 0.8 1.0

1 × 10-10

5 × 10-11

0

1.5 × 10-10

2 × 10-10

2.5 × 10-10

3 × 10-10

3.5 × 10-10

Figure 3. Absolute error of Example 3 for N = 8

Table 4. Best errors for Example 3 for N = 8

Method [20] Our method

Error 2.79 × 10−8 8.24 × 10−13

Example 4 Consider the following integral equation:

22

0

42erf ( ) 2 ( ) ; (0,1), (0) 1
t

tt y t t e y x dx t y
π

−′ = − + ∈ =∫ (0, 1),t∈
                                          (48)

with no known exact solution.
Because of the absence of the exact solution, we report in Table 5, the residual error:

22

0

4| 2erf ( ) 2 ( ) |
t

t
N N NR t y t t e y x dx

π
−

′= − − − ∫
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Table 5. Residual error for Example 4

N 4 5 6 7 8

MAE 2.4 × 10-5 3.5 × 10-6 4.6 × 10-7 6.7 × 10-8 2.5 × 10-12

CPU (seconds) 5.2 7.5 9.2 11.5 12.6

6. Conclusion
Herein, we have developed an efficient and reliable algorithm for numerically solving the third-kind Volterra-

Fredholm integro-differential equations. The convergence and error analyses were discussed in detail, and three 
numerical examples were presented to ascertain the applicability of the method.
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