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Abstract: Black pod disease is a major threat to cocoa production worldwide. A mathematical model for the spread of 
cacao black pod disease is presented in this article. The model takes into account several variables that influence the 
spread of the disease. A set of differential equations that are numerically solved using Runge-Kutta method embedded 
in MATLAB software are used to simulate the dynamics of disease transmission which form the basis of the model. 
Utilizing information from the literature and ecological observations from cocoa fields in West Africa, where black pod 
disease poses a serious threat to the production of cocoa, the model was verified. The model’s outcomes highlight the 
significance of early detection and rapid intervention in mitigating the severity of cocoa black pod disease outbreaks. 
Moreover, it emphasizes the importance of adopting integrated disease management approaches that consider fungicide 
administration and removal of infected pods. The usefulness of mathematical modeling as a tool for understanding and 
managing cocoa black pod disease is illustrated by this study.
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1. Introduction
The Millennium Development Goals (MDGs) were a set of global development goals set by the United Nations 

(UN) in the year 2000, which were meant to address important problems like poverty, hunger, health, education, gender 
equality, environmental sustainability, and global partnership [1].

Cocoa production is a very important part of many emerging countries’ economy, especially in Africa, Central 
America, and Southeast Asia. It has a close connection to the MDGs and is a very important part of that sector [2].

Cocoa Black Pod Disease (CBPD) is one of the most devastating diseases affecting cocoa production worldwide, 
causing major yield losses and economic devastation to farmers and the cocoa industry, hence impeding the MDGs 
for hunger and poverty alleviation [3]. The disease is caused by several species of Phytophthora (P), including P. 
megakarya, P. palmivora, P. capsici, and P. tropicalis [4]. The fungal disease poses a serious danger to the production 
of cocoa and the livelihoods of farmers in many places since it can result in yield losses of up to 90% in affected areas. 
Dark lesions on the pods, which can spread quickly and cause the pods to rot and fall from the tree, are signs of cocoa 
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black pod disease. Infection by the fungus on leaves, pods, stems, and shoots can result in defoliation and dieback [5-6].
The destructive cocoa pathogen P. megakarya can spread both directly and indirectly to the cocoa tree and pods. 

While indirect transmission involves vectors that spread the infection from one plant to another, direct transmission 
entails the pathogen coming into direct contact with the plant. Direct means of transmission of P. megakarya in cocoa 
include: Rainfall: Rainfall can directly disperse P. megakarya spores from infected plant tissues to healthy tissues, 
particularly during the rainy season when the spores are more abundant and favorable environmental conditions exist [7]. 
Infected plant debris: The pathogen can survive in infected plant debris and can directly infect healthy plants that come 
into contact with the debris [5, 7]. Soil-borne transmission: The pathogen can survive in the soil for several years and 
can directly infect cocoa roots through the soil [7]. Indirect means of transmission of P. megakarya in cocoa include: 
Insects: Several insects have been found to be vectors of P. megakarya, including the cocoa pod borer (Conopomorpha 
cramerella) and several species of beetles and flies [8], these insects can indirectly transmit the pathogen to healthy 
plants as they feed on the tissues of infected plants. Human activity: Human activities such as pruning and harvesting 
can indirectly transmit the pathogen to healthy plants as workers move from infected to healthy plants [7].

Cocoa trees produce small, delicate flowers that grow directly from the trunk and branches. The flowers are usually 
white or pale pink in color. Pollination occurs during this stage, either through self-pollination or with the help of 
pollinators like insects, once pollinated, the flowers begin to develop into cocoa pods, this stage is usually referred to as 
Cherelles stage. After successful pollination, the cocoa pods start to grow from the base of the flowers, initially, they are 
small, green, and hard. At this stage, the cocoa beans are tiny and undeveloped, and the pods enlarge and become more 
prominent, at this point, the pods start to change color, transitioning from green to yellow, red, or purple, depending on 
the cocoa variety. The color change indicates that the cocoa pods are approaching maturity (usually this stage is referred 
to as the young and mature pod stage). The maturity stage is the ideal time for cocoa pod harvesting. During this phase, 
the pods have reached their full size and have fully changed color (ripe) and ready for harvesting [7-8]. Mathematical 
modeling is a useful technique in plant disease management for determining disease transmission and developing 
control measures. Most epidermic models reported in the literature were created using the groundbreaking research 
of Kermach and McKendrick [9]. Plant-Disease Mathematical Models (Deterministic and stochastic models) can be 
used to broadly categorize mathematical models of plant diseases. Deterministic models are founded on equations that 
describe the spread of disease under specific conditions [10], whereas stochastic models account for random factors that 
influence the spread of disease [11]. Both types of models have been applied to the study of the spread of plant diseases, 
and their utility depends on the disease’s specific characteristics and the available data [10-11]. The susceptible-
infectious-recovered (SIR) model is a widely applied deterministic model, this paradigm classifies the population into 
three distinct subgroups: susceptible, infectious, and recovered.

Understanding the transmission dynamics of CBPD and developing effective control strategies requires the use of 
mathematical modeling. Several mathematical models have been developed in recent years to characterize the spread of 
plant diseases and evaluate the effectiveness of various control approaches [12-14]. There are only a few studies in the 
literature on the mathematical modeling of cocoa disease [8, 15]. To control the spread of the disease, the study intends 
to develop, assess, and apply a new model that captures the control and dynamics of the disease coupled with direct and 
indirect modes of transmission.

The possibility of a parasitic infection on cacao pods causes cocoa growers and researchers great concern, but 
the underlying causes of the spread of P. megakarya on cacao remain unclear. As a result, there is a growing need for 
a fundamental understanding of the P. megakarya epidemiology in order to develop workable management strategies; 
Nembot et al.’s [8] work has made a significant contribution in this regard, particularly in the area of transmission. In 
this work, we included Latent compartment (L), Removed compartment (R) and Treatment compartment (T) to better 
the model of Nembot et al. [8] in order to treat the disease in the most effective way. The most important parameters in 
determining the severity of the condition were also identified using sensitivity analysis of parameters.

The motivation behind this research lies in the critical importance of cocoa as a major cash crop for numerous 
cocoa-producing regions, serving as a significant source of income and livelihood for millions of farmers. However, 
the persistent and unpredictable nature of cocoa black pod disease outbreaks severely impacts cocoa yields, leading to 
substantial economic losses and compromising food security.

The article introduces a groundbreaking contribution to the field of cocoa black pod disease research. Through 
its comprehensive integration of epidemiological and ecological factors, predictive capabilities, evaluation of diverse 
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control strategies, sensitivity analysis, and implications for sustainable cocoa production, our study offers a novel and 
robust foundation for combating this devastating pathogen and safeguarding the global cocoa industry.

This paper is arranged as follows: Section 2 describe the model formulation of the study. In section 3, analysis 
of the model was considered. Sensitivity analysis was described in section 4, Numerical simulation, Finding of study, 
Discussion and Conclusion were discussed in section 5, 6 and 7 respectively.

2. Model formulation
In this section, we present a mathematical model that describes infection transmission among the infectious 

environment, infected pods, and healthy cocoa pods. The total population N(t) at time t > 0 was subdivided according 
to stages of cocoa pod development. The first stage of cocoa pod development, the floral and formation of pod state, 
is called Cherelles (Sc(t)), followed by the young and mature pod stage (Sp(t)), and finally the ripe pod stage (Sr(t)). 
L(t) represents the latency compartment when a microbe’s persistence in a host causes host harm without disrupting 
homeostasis sufficiently to trigger clinical signs or disease. The infectious pod compartment is represented by I(t). Is(t) 
denotes the secondary infection(indirect transmission), likewise the primary infection(direct transmission) Ip(t) are 
infection transmitted through the spores of infected pods to healthy pods. T(t) denotes the treated pods compartment and 
R(t) represent the removed pod compartment.
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Figure 1. Compartmental diagram for the transmission dynamics of CBPD

The model diagram as shown in Figure 1 describe the diagrammatically representation of the transmission of 
the disease with respect to the of stages of pod development, differential equation was used to transform the model 
information to a system of differential equation where the inflow of new susceptible into the Cherelles compartment was 
considered at rate k (recruitment rate), this compartment reduces by γ1 which is the rate of transmission from Cherelles 
to young and mature stage, d the natural death rate at Cherelles stage and the forces of infection rate (σ1 & σ2) denoted 
by
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where P is the Michaelis constant for the disease transmission of pod infection, β1 & β2 denotes the primary and 
secondary infection rate at Cherelles stage respectively.

The young and mature susceptible compartment increases through transmission rate from Cherelles compartment 
γ1 and reduces due to ripening rate γ2 the ripening rate of young and mature pods, d the natural death rate at young and 
mature pod stage and forces of infection σ3 & σ4, which is denoted by

(3)3
3 ,?s

s

I
P I
β

σ =
+

 see [8] for more details
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 see [8] for more details

where β3 & β4 denotes the primary and secondary infection rate at mature pod stage respectively.
The ripening susceptible compartment increases by γ2 the ripening rate of young and mature pods and decreases by 

d the natural death rate at this stage and ψ, which is the pod harvesting rate.
The latent compartment increases by σ1, σ2, σ3, σ4 and decreases by d, the natural pod death rate, α, the rate of 

transmission from latent to infectious state, ϕ1, rate at which pod is treated with fungicide.
Infectious compartment increases due to α and reduces through the releasing rate of spores η, ω & θ1, natural death 

d, rate of infected pod removal δ.
The treated pods compartment increases due to the effective rate of fungicide spraying θ1 and reduces due to the 

infected pod recovery rate θ2 and natural death d.
The recovery compartment increases due to the inflow θ2 from Treatment compartment, ripe infected pod γ3 from 

infected class, healthy ripe pod harvested rate ψ and the compartment reduces due to the natural death d.
The production rate of spore release rate n causes the secondary infection compartment to grow, and the natural 

death rate d causes it to reduce. The main infection compartment rises as a result of the spore release rate ω and reduces 
as a result of the natural death rate d.

The set of first-order ordinary differential equations that are nonlinear governing the transmission in the Figure 1 is 
provided as follows, under the aforementioned assumptions:
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( ) ( ) ( )1 2 3 4c p
dL S S d L
dt

σ σ σ σ α= + + + − +
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dI L n d I
dt

α ω θ δ= − + + + +

( )1 2
dT I d T
dt
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2r
dR S T dR
dt

ψ θ= + −
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nI dI
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= −

p
p
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I dI
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ω= − (5)

subject to the initial conditions

(6)( )(0), (0), (0), (0), (0), (0), (0), (0), (0) 0.c p r s pS S S L I T R I I ≥

3. Model analysis
In this section, we considered the analysis of the model by considering its feasibility, positivity, disease free and 

endemic equilibrium.

3.1 Boundedness (feasibility) of the model

Theorem 3.1 The domain Ω = {(Sc, Sp, Sr, L, I, T, R, Is, Ip) ∈ R9
+; 0 ≤ N(t) ≤ k

d } for the model system (5) with non 
negative starting conditions in R9

+, is positively invariant and attracting.
Proof. Let

(7)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).c p r s pN t S t S t S t L t I t T t R t I t I t= + + + + + + + +

Then, we have

(8)( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( )p pc srdS t dI tdS t dI tdS tdN t dL t dI t dT t dR t
dt dt dt dt dt dt dt dt dt dt

= + + + + + + + +

(9)( ) ( )dN k dN t I t
dt

δ= − −

(9) is known as model population dynamics (see [16] for more details). In the absence of infection δ = 0, (9) is reduced 
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to a differential inequality,

(10)( )dN k dN t
dt

≤ −

on integrating the differential inequality (10), we have

(11)1 ln( ( )) ,?ok dN t t C
d

− − ≤ +

where Co is constant of integration

(12)( ) ,dtk dN t Ae−− ≤

where A is a constant, A = e−doCo.
At t = 0,

(13)(0)k dN A− ≤

substituting equation (13) into (12) yields

( ) (1 ) (0) ,dt dtkN t e N e
d

− −≤ − +

as t → ∞

( ) ,kN t
d

≤ (14)

hence, the feasible (boundedness) solution for the system (5) is given by

( ) 9, , , , , , , , ; 0 ( )c p r s p
kS S S L I T R I I N t
d+

 Ω = ∈ℜ ≤ ≤ 
 

is a compact forward invariant set. Every solution with a starting condition of R9
+ thus stays in the Ω region for t > 0. 

Thus, the model system (5) is well-posed from a mathematical and epidemiological perspective.                                      □

3.2 Positivity of solutions

The following theorem will prove that all solutions of the system (5) with positive initial data will continue to be 
positive for all time t > 0, although it has to be verified.

Theorem 3.2 System (5) maintains the positivity of the solutions, which means that the system’s initial conditions 
for the state variables are always greater than zero for all time t.

Proof. Considering the first equation in system (5),
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Integrating the inequality in (15) gives

(16)1 2 1( )( ) ,d t
cS t Be σ σ γ− + + +≥

where C1 is constant of integration and B = eC1

at t = 0, equation (16) becomes

(17)(0)cS B≥

inserting (17) into (16) gives

(18)1 2 1( )( ) (0) 0d t
c cS t S e σ σ γ− + + +≥ ≥

since

(19)1 2 1( ) 0,d tσ σ γ+ + + >

hence Sc(t) is positive for t > 0. Similar proof can be established for the positivity of other solutions in equation (5). 
Thus, the solution of the model in (5) are positive for all time t > 0.                                                                                   □

3.3 Disease Free Equilibrium (DFE)

When there are no infections among the pods population, it is said to be in a condition of DFE, all classes will be 
denoted by (o). In the absence of disease, we assume that Lo = I o = Ip

o = Is
o, (see [17-19] for details).

Let

(20)( ), , , , , , , , o o o o o o o o o o
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be the DFE state for the Pod population, therefore the DFE point is given by

1

o
c

kS
d γ

=
+

( )( )
1

1 2

o
p

k
S

d d
γ

γ γ
=

+ +

( )( )( )
2 1

1 2

o
r

k
S

d d d
γ γ

γ γ ψ
=

+ + +



Contemporary Mathematics 556 | Adebayo Adeniran, et al.
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hence, the DFE of the model (5) is
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3.4 Endemic Equilibrium State (EES)

EES (E+) is the state where the disease persist in the pod population (see [18, 20-21] for details on how to 
determine EES). Let

(22)( ), , , , , , , , c p r s pE S S S L I T R I I+ + + + + + + + + +=

where

( )1 2 1
,c

kS
d σ σ γ

+ =
+ + +

( )( )
1

3 4 2 1 2 1
,p

k
S

d d
γ

σ σ γ σ σ γ
+ =

+ + + + + +

( )( )( )
1 2

3 4 2 1 2 1
,r

k
S

d d d
γ γ

ψ σ σ γ σ σ γ
+ =

+ + + + + + +

( )( )( )
1 2 3 4 2

3 4 2 1 2 1

( )(
,

)k d
L

d d d
σ σ σ σ γ

α σ σ γ σ σ γ
+ + + + +
=

+ + + + + + +

( )( )( )
1 2 3 4 2

3 4 2 1 2 1 1

( )(
,

)
( )

k d
I

d d d d n
α σ σ σ σ γ

α σ σ γ σ σ γ θ ω δ
+ + + + +
=

+ + + + + + + + + + +

( )( )( )
1 1 2 3 4 2

2 3 4 2 1 2 1 1

( )(
,

( )
)

( )
k d

T
d d d d d n

αθ σ σ σ σ γ
θ α σ σ γ σ σ γ θ ω δ

+ + + + +
=

+ + + + + + + + + + + +

,AR
B

+ =

where



Contemporary MathematicsVolume 4 Issue 3|2023| 557

1 2 1 1 2 1 3 4 1 1[ ( )( )( )( )A k d d d d nγ γ ψ θ σ σ γ σ σ γ θ ω δ= + + + + + + + + + + +
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3.5 Local stability of disease free equilibrium

The basic reproduction number influences the local stability of the disease-free equilibrium. The overall number of 
illnesses caused by one freshly contaminated pods brought into a healthy community is known as the basic reproduction 
number (Ro). Computation of Ro is carried out using the next generation matrix as laid out in [21-23]. Ro is obtained 
using

(23)( )1
o FVρ −ℜ =

where ρ is the spectral radius of the matrix FV −1 Differential equations associated with L, I, T, Is & Ip compartment are 
the infective classes and will be used in the computation of Ro.
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s
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(24)p
p

dI
I dI

dt
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Operator Fi is the rate at which new infection arises and Vi is the rate which compartments corresponding to the 
infection are exited with respect to (24).
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Obtaining the partial derivative of Fi and Vi with respect to L, I, T, Is, Ip, and later substituting the value of Sc, Sp, Is 
and Ip at DFE, we obtain F and V as
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Ro, which is the dominant eigenvalue of equation (23), which is expressed as

(25)( )( ) ( )( )( )
( )( )( )( )

4 1 2 2 3 1 1 2

1 2 1
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k P d n P d

Pd d d n d d

α β γ β γ ω β γ β γ

α θ ω δ γ γ
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ℜ =
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Remark 3.1 (i) if Ro < 1, the occurrence of infection on the pods will be decreasing,
(ii) If Ro = 0, the disease occurrence on the cocoa pod will be constant,
(iii) If Ro > 1, The infection on the pods will appear more frequently and last longer.
Theorem 3.3 The system’s disease-free equilibrium in (5) is locally asymptotically stable if and only if Ro < 1 and 
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unstable when Ro > 1.
See [21, 24-25] for details on proving of theorem 3.3.

3.6 Global stability analysis

The Lyapunov function already utilized for other models [21, 24-25] is adopted to prove the global asymptotically 
stability of model (5) for both Disease free and Endemic equilibrium point.

Theorem 3.4 Disease free equilibrium points of ststem (5) is globally asymptotically stable in Ω whenever Ro ≤ 1.
Proof. Using the Lyapunov candidate
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= − + − + − + + + + − + − + − 
+ + + + + +  

( )( ) ( )( )( )
1 2 1

1 1 2 1 2
( ) ( ) ( ) ( ) ( ) ( )o o o

c p r s s p p
k kdV k dNS S S L I T R R I I I I

dt d d d d d d dt
γ γ γ

γ γ γ γ γ ψ
 

= − + − + − + + + + − + − + − 
+ + + + + +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )o o o o o o o o o
c c p p r r s s p p

dNS S S S S S L L I I T T R R I I I I
dt

 = − + − + − + − + + − + − + − + − + − 

( )( )
1

1 1 2
[( ) ( )c p

kdV kS S
dt d d d

γ
γ γ γ

= = − + −
+ + +

( )( )( ) ( )( )( )
2 1 2 1

1 2 1 2
( ) ( ) ) ]r s p

k k dNS L I T R I I
d d d d d d d dt

γ γ ψγ γ
γ γ ψ γ γ ψ

+ − + + + + − + +
+ + + + + +

After simplification,we have

[ ]dV kN k dN
dt d

 ≤ − −  

(26)( )21 k dN
d

≤ − −

Therefore

0V ≤

Hence, V ≤ 0, if k, d, N are positive, this implies that the function V is strictly Lyapunov function which indicates 
the disease free equilibrium point (Eo) is globally asymptotically stable.                                                                            □

Theorem 3.5 Whenever Ro > 1, the Endemic equilibrium point is globally asymptotically stable in Ω.
Proof. Considering the Lyapunov candidate
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1 2 3( ln ) ( ln ) ( ln ) ( ln ) ( ln ) ( ln )c c c p p p r r rV S S S S S S S S S p L L L p I I I p T T T+ + + + + += − + − + − + − + − + −

(27)4 5 6( ln ) ( ln ) ( ln )s s s p p pp R R R p I I I p I I I+ + ++ − + − −

defined and continuous for all Sc, Sp, Sr, L, I, T, R, Is, Ip > 0 and satisfies

p pc sr

c p r s p

dS dIdS dIdSdV V V V V dL V dI V dT V dR V V
dt S dt S dt S dt L dt I dt T dt R dt I dt I dt

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

(28)

thus,

1 21 1 1 1 1p pc c r r

c p r

S dSS dS S dSdV L dL I dIp p
dt S dt S dt S dt L dt I dt

++ + + +        
 = − + − + − + − + − +                      

3 4 5 61 1 1 1 p ps s

s p

I dII dIT dT R dRp p p p
T dt R dt I dt I dt

+++ +      
 − + − + − + + −                  

3 4 5 61 1 1 1 p ps s

s p

I dII dIT dT R dRp p p p
T dt R dt I dt I dt

+++ +      
 − + − + − + + −                  

( ) ( )1 2 1 1 3 4 21 1 pc
c c p

c p

SS
k d S S d S

S S
σ σ γ γ σ σ γ

++   
   = − − + + + + − − + + + +            

( ) ( ) ( ) ( )2 1 1 2 3 41 1r
p r c p

r

S LS d S p S S d L
S L

γ ψ σ σ σ σ α
+ +   

   − − + + − + + + − + +           

( ) ( )2 1 3 1 21 1I Tp L n d I p I d T
I T

α ω θ δ θ θ
+ +   

− − + + + + + − − + +            
   

(29)[ ] [ ]4 2 5 61 1 1 ps
r s p

s p

IIRp S T dR p nI dI p I dI
R I I

ψ θ ω
+++    

   − + − + − − + + − −              
[ ] [ ]4 2 5 61 1 1 ps

r s p
s p

IIRp S T dR p nI dI p I dI
R I I

ψ θ ω
+++    

   − + − + − − + + − −              

At endemic equilibrium

( )1 2 1 0ck d Sσ σ γ− + + + =

therefore

(30)( )1 2 1 ck d Sσ σ γ= + + +

Substituting equation (29) into equation (28) and simplifying yields
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1 2 1 1 3 4 2[(1 )( )( ) ( 1) ( )( )pc
c c c p p

c p

SSdV S S d S S S d
dt S S

σ σ γ γ σ σ γ
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+ +≤ − − − + + + + − + − + + +
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S L LS S S d p S p S p L L d
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α θ ω δ θ θ
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IR Rp S p P R R d p nI p I I d
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ψ θ
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6 5( 1) ( ) ]p
s s

p

I
p I p I I d

I
ω

+
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therefore,

0dV
dt

≤

Hence, V < 0 for p1, p2, p3, p4, p5, p6 > 0. Note that, V = 0 if and only if Sc = Sc
+, Sp = Sp

+, Sr = Sr
+, L = L+, I = I +, T = 

T +, R = R+, Is = Is
+, and Ip = Ip

+. Therefore the largest compact invariant set in (Sc, Sr, Sr, L, I, T, R, Is, Ip) ∈ Ω : V = 0 is 
the singleton E+, where E+ is the endemic equilibrium, by LaSalles invariant principle this signifies that E+ is globally 
asymptotically stable in the interior of Ω.                                                                                                                            □

4. Sensitivity analysis
Ro is the epidemic threshold that the controls spread, understanding various disease transmissions, and the 

variables help determine the most effective control approach. Predicting the sensitivities of each component involved in 
Ro is crucial. Sensitivity analysis measures how much a variable has changed to how much the factors have changed.

Definition 4.1 The following formula is used to explain the standardized forward sensitivity index of a variable B 
that is dependent on a parameter m in different ways: [20, 26].

(31)B
m

B mZ
m B
∂

= ×
∂

The sensitivity indices of reproduction number Ro corresponding to our model parameters is given as

(32)1.0000oR o
k

o

kZ
k

∂ℜ
= × = +

∂ ℜ

In a similar approach, we obtain the remaining indices for the model parameters as displayed in Table 1.
The value of Ro increases when the index with a positive indication are increased, also the value of Ro reduces 
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when the index with a negative indication are increased, thus making the parameters with negative indices a importance 
parameter used in the control of the disease.

The most sensitive parameters of our model are P, α, γ1, γ2, d, θ1, n, ω and δ, since it is not practical to increase 
most of the parameters, thus reducing Ro is a function of θ1 and δ. The result suggested that intervention strategy should 
be targeted at treating infected pods with fungicide and infected pod removal.

Table 1. Sensitivity indices of Ro

Parameters Sensitivity indices

k +1.0000

do -1.7734

ω +0.0333

δ -0.0101

ψ -0.0452

β1 +0.5433

β2 +0.4742

β3 +0.0034

β4 +0.0015

θ1 -0.0115

γ1 -0.1743

γ2 0.000

γ3 -0.0312

P -1.0000

5. Numerical simulation
In this part, we use numerical simulation to examine the effect of several variables on the dispersal of the black pod 

infection. The following starting points are used in these experiments:

(0) 100, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 20, (0) 0c p r s pS S S L I T R I I= = = = = = = = =

and the baseline parameter value are taken from Table 2. Computation were run in Mat-lab with the ODE45 routine, this 
function implement a Runge-kutta method with a variable time step for efficient computation.
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Table 2. Description of parameters

parameter  Unit value/range of value Source

k Day−1 12 [27]

d Day−1 0.05 [28]

β1 Day−1 0.05 [8]

β2 Day−1 0.05 [8]

β3 Day−1 0.02 [8]

β4 Day−1 0.02 [8]

γ1 Day−1 0.05 [28-29]

γ2 Day−1 0.027 [28]

ψ Day−1 0.01 Assumed

θ1 Day−1 0.1 Assumed

θ2 Day−1 0.09 Assumed

n SporesDay−1 0.4 [8]

ω SporesDay−1 0.4 [8]

δ Day−1 [0-0.8] [8]

P No. od Spores [0 − 1010] [8]

α Day−1 0.05 Assumed

Figure 2 demonstrates that the number of infected pods decreases with increasing δ values.
According to Figure 3, treating infected pods more quickly causes a reduction in the number of infected pods 

within the first 40 days. The first 40 days after θ1 = 0 saw the maximum number of infected pods. Thus, treating diseased 
pods regularly (by applying fungicide) can stop the infection from spreading. It is advised to treat infected pods as soon 
as possible because doing so will lessen the infection’s threat.

In Figure 4, it can be seen that changing the value of θ1 has a noticeable impact on the removed compartment in the 
first 180 days. It can also be inferred from the plot that the higher the value of θ1, the sooner the pods will be ready for 
harvest, meaning that they will grow more quickly and reach maturity on schedule.
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Figure 2. Solution plot of I(t) in model (5) showing effect of δ
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Figure 3. Solution plot of I(t) in model (5) showing effect of θ1

Figure 5 shows that different ψ values have a noticeable impact on the removed compartment. As a result, 
consistent and routine harvesting of healthy, ripe pods is necessary to lower the number of infected.
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Figure 4. Solution plot of R(t) in model (5) showing effect of θ1
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Figure 5. Solution plot of R(t) in model (5) showing effect of ψ1

6. Findings of study
The study’s findings are as follows:
(i) effort at controlling the spread of the disease should be focus on fungicide application
(ii) in all cases where the basic reproduction number is less than 1, the black pod free equilibrium is asymptotically 
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stable.
(iii) regular harvest of healthy pod is a necessity and one of the efficient approach to control the menace of the 

disease.
(iv) the spread of the disease is positively correlated to k, β1, β2, β3, β4, n, ω it is negatively correlated to P, α, γ1, γ2, 

d, θ1, n, ω and δ.

7. Discussion of results
In order to explore the dynamics of black pod disease among cocoa pods, a nonlinear mathematical model has 

been developed in this research. It is noted that whenever the basic reproduction number is less than one, the model has 
a unique disease-free equilibrium point that is locally asymptotically stable. It is also observed that the most influential 
factor on the spread of the disease are natural pod death rate d, Michaelis constant for fungi infection transmission P, 
rate of transmission from latent pod to infected pod α, transmission rate from cherelles state to young and mature pod γ1, 
transmission from young and mature pods to ripe pods γ2, rate at which the infected is treated θ1, releasing rate of spore 
shedding n, speed rate of spore shedding ω and pod removal rate δ.

8. Conclusion
To sum up, mathematical modeling is a useful tool for comprehending the dynamics of cocoa black pod disease 

transmission. Researchers and farmers can more accurately estimate how the disease will affect cocoa yields by using 
mathematical models to better understand how the disease spreads. This can aid in the creation of efficient disease 
management techniques, such as pinpointing the right moment to apply fungicides and choosing the ideal sites for the 
implantation of new cocoa trees. The impact of environmental elements on the disease, such as wind, temperature, 
and rainfall, can also be studied using mathematical models. This can assist predict disease outbreaks and lessen their 
effects. Overall, mathematical modeling is a crucial tool for controlling cocoa black pod disease and making sure that 
cocoa output is sustainable.

Future research should focus on incorporating spatial factors into the equation. Considering geographical 
variations, landscape features, and proximity to other cocoa plantations will provide a more realistic representation of 
the disease’s spread. Spa-tial models can aid in predicting potential disease outbreaks and optimizing control measures 
across different cocoa-growing regions.
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