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Abstract: We show that if f is real analytic in [0, 1] and it is not the restriction of a periodic real analytic function of period 
1, then for all α ∈

1/1

0
limsup ( ( ) ) d 0

n
n

n
f t tα

→∞
− >∫

Keywords: moments, analytic functionals, integral representations
2010 Mathematics Subject Classication: 30B40, 46F15

1. Introduction
In a recent article, Müger and Tuset [9] considered the behavior of the moments of a non constant complex polynomial f,
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do not define an entire function. Their results complement those of Duistermaat and van der Kallen [3] who considered 
integrals of rational functions over the unit disc and employing this were able to solve a conjecture of Mathieu [7].

In this article we show that if f is real analytic in [0, 1] and it is not the restriction of a periodic real analytic function 
of period 1, then (2) holds. Our method is based on a simple but useful property of certain points with respect to analytic 
functionals.

2. Analytic functionals
In this section we recall some basic ideas about analytic functionals. Details can be found in the textbooks [1, 8].
Let U be an open set in  . We denote by ( )UD  the space of analytic functions defined on U. The topology of 

( )UD is that of uniform convergence on compact subsets of U, i.e., the topology generated by the family of seminorms 
{ }max | ( ) |:

K
z z Kϕ ϕ= ∈ , for K a compact subset of U and ( )Uϕ∈D . Since we can find a sequence of compact subsets of 

U, { } 1n n
K ∞

=
, with 1int( )n nK K +⊂ , 

1 nn
K U∞
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, it follows that ( )UD is a Fréchet space, actually a strict projective limit of 
Banach spaces.

Let us now consider the dual space ( )' UD , the space of analytic functionals in U. Since ( )UD  is a Fréchet space, if 
( )T ' U∈D then there are compact subsets K of U such that T is continuous with respect to the norm K  and consequently 

admits an extension to C (K). In other words, there are Radon measures on K, µ, not unique in general, such that

Copyright ©2020 Ricardo Estrada.
DOI: https://doi.org/10.37256/cm.132020307
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/



Volume 1 Issue 3 |2020| 113 Contemporary Mathematics

( ), ( ) ( )d ( )
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In such a case we say that K is a carrier of T. Carriers may seem similar to the supports used in distribution theory [5],         
but they are actually quite different, since the analytic functionals may have disjoint carriers, as the Cauchy formula 
already shows for the delta functional ( ) ( )T ω δ ω α= −

1 ( )d ( )( ) ( ), ( )
2 Ci

φ ω µ ωφ α δ ω α φ ω
π ω α

= − =
−∫ , ( )Uφ ∈D                                                (5)

for any closed curve C in U that goes around once. The set C is a carrier, but so is { }α . Analytic functional do not 
have minimal carriers, in general, but minimal carriers with certain extra properties, as minimal convex carriers [6], are 
sometimes well defined. 

In this article we are interested in the dual space ( )' D , the space of analytic functionals with compact carriers.
A subset S of a topological space X is called locally closed if each x S∈  has a neighborhood in X, Vx, such that xS V∩

is closed in Vx. It can be shown that S is locally closed in X if and only if there exist an open set U and a closed set F such 
that S U F= ∩ . If S is locally closed in X, we say that U is an open neighborhood of S if U is open in X and S is closed in U. 
We denote the set of open neighborhoods of S as N(S).

If S is locally closed in   then ( )SD  is the space of germs of analytic functions defined on S. That is, a function 
ϕ defined on S belongs to ( )SD  if and only if there exists U ∈  N(S) and an analytic function ( )Uϕ∈ D  such that, 
where U

Sπ  is the restriction operator from U to S. The system of topological vector spaces { } N( )
( )

U S
U

∈
D  with operators  

: ( ) ( )U
V U Vπ →D D for U V⊇  is actually a directed system and thus we can give ( )SD  the inductive limit topology. 

When K is compact, then ( )KD  is a strict limit of Banach spaces. If S ⊆   is open then ( )SD  is the space of real analytic 
functions on S; while if S ⊆   is locally closed then ( )SD  is the space of germs of the real analytic functions on S.

If S ⊆   is locally closed, then the dual space ( )' SD  is called the space of the analytic functionals on S. When 
K ⊆   is compact then ( )' KD  is actually isomorphic to the space ( )KB  of hyperfunctions defined on K, although 
hyperfunctions are usually constructed by using a dierent approach [8,11,12]. Observe that if K ⊆   then the space of 
distributions ( )T D'∈   whose support is contained in K, the space [ ]' K , is a subspace of ( )KB .

If K is a compact subset of  , and ( )T ' K∈D  then its Cauchy or analytic representation, denoted as 
{ }( ) ( );f z T zω=  , is the analytic function ( \ )f K∈ D  given by
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Notice that the analytic representation satisfies

lim ( ) 0
z

f z
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=                                                                                                                         (7)

According to a theorem of Silva [8], the operator C is an isomorphism of the space ( )' KD  onto the subspace 0 ( \ )KD  
of ( \ )KD  formed by those analytic functions that satisfy (7). When K ⊆   then the operator   becomes an isomorphism 
of the space of hyperfunctions ( )KB  onto 0 ( \ )KD .

The inverse operator 1−
 is given as follows. Let ( )Kϕ∈D , and let ( )Uϕ∈ D  be an analytic extension to some 

region N( )U K∈ ; let C be a closed curve in U such that the index of any point of K with respect to C is one. Then if 
0 ( \ )f K∈ D  we define { }1 ( )T f ' K−= ∈ D  by specifying its action on ϕ  as

( ), ( ) ( ) ( )
C

T f dω ϕ ω ξ ϕ ξ ξ= − ∫ 



                                                                                (8)

Clearly { }1T f−=   is defined if ( \ )f K∈ D , but in this space 1−  has a non trivial kernel, namely, the constant 
functions [8, Section (4)].

If ( )T K∈ ′D , then the power series expansion of its Cauchy representation at infinity takes the form 
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where

( ) ( ), n
n T Tµ ω ω=                                                                                                            (10)

are the moments of T and where { }max | |:z z Kρ = ∈ . Observe that { }( );T zω  is defined if \z K∈ , but the series 
in (9) could be divergent if z ρ≤ .

3. Distributional analytic forms
Let C be a piecewise C1curve in  , not necessarily simple, given by z = z(t), a ≤ t ≤ b. We say that C is closed if z(a) 

= z(b), not closed otherwise. If C is not closed, simple means that ( )t z t  is injective in [a, b], but if C is closed it means 
that it is injective in [a, b). 

We are interested in a certain kind of representation of the analytic functionals along a curve C, given by z = z(t), a ≤ t 
≤ b. Let g0 be a non zero function defined on the interior of C that is analytic along the curve, that is, if a < c < b, and ε > 0 
is small enough, then g0 admits an analytic extension to a neighborhood of z ([c− ε, c + ε]). Notice that g0 is not defined at 
the points where the curve intersects itself, but along each branch of the curve g0 can be defined at such points in a way that 
the function is analytic on the branch. Notice also that even if z(a) = z(b) = ξ then in general g0 does not have an analytic 
extension to a neighborhood of ξ.

Definition 3.1 Let ( )T ∈ D′  be an analytic functional. If for all ( )ϕ∈ D

( ) ( )
, , |C D' C D C

T gϕ ϕ
×

=                                                                                                  (11)

where g is a distribution of D'(C) that equals g0, an analytic function along C \ {z(a), z(b)} , in the interior of C, then we 
say that g is a distributional analytic form of T along C. Our notation for distributions is the standard one [5].

Our first result is based on the following observation: if C is not a closed curve, and T has a distributional analytic 
form along C then both z(a) and z(b) belong to any set Λ that carries T. In other words, if { }0 ( ) ( );f z T zω=  on the outside 
of a disc, then f0 cannot be analytically continued to a region that contains either of these points. Let us start with the case 
of a simple curve.

Lemma 3.2 Suppose C is a simple not closed piecewise C1 curve from z(a) to z(b). Let T be an analytic functional that 
has a distributional analytic form along C. Let

{ } 1 1( ) ( ); ( ),
2

f z T z T
i z

ω ω
π ω

= =
−

                                                                            (12)

\z C∈ . Then f cannot be analytically continued to a region of the form \ F , F finite. 
Proof. Let r > 0 be small enough such that C intersects the disc ( ),z a r  on a simple curve from the boundary of the 

disc to its center, z(a). Then f has a jump equal to g0 along the open part of this intersection, and since g0 is not zero, f does 
not admit continuous extensions to { }( ), \ ( )z a r z a . 

Our aim is to prove a corresponding result for arbitrary not closed piecewise C1 curves. In order to do so we need to 
point out that the analyticity of g0 allows us to obtain from an analytic form of T along a curve C other analytic forms of 
T along curves C1 from z(a) to z(b) that are obtained by deforming C inside simply connected regions of analyticity of g0. 
Before considering the general case, it is instructive to consider the case of a curve that intersects itself just once.

Lemma 3.3 Suppose C is a not closed piecewise C1 curve from z(a) to z(b) that intersects itself once, at a point ξ. Let 
T be an analytic functional that has an analytic form along C. Let { }( ) ( );f z T zω=  , z in the unbounded component of 

\ C . Then f cannot be analytically continued to a region of the form \ F , F finite.
Proof. Let us assume that f admits an analytic continuation to \ F , F finite, and see that this leads to a contradiction. 

Let C = Cz(a) ∪ Cξ ∪  Cz(b), where Cz(a) is the part from z(a) to ξ, Cξ is the closed path that starts and ends at ξ, and Cz(b) is 
the part from ξ to z(b). The three parts are simple curves.

We shall consider the situation at z(a). Let Λext be the unbounded component of \ Cξ , Λint the bounded component. 
The contradiction follows as in the Lemma 3.2 if Cz(a)⊂  Λext; in fact this remains true no matter how many times C 
intersects itself. Let us then suppose that Cz(a) ⊂ Λint. The function g0 is analytic in Cξ \ {ξ} , and may be continuous or 
have a jump discontinuity at ξ. Let us consider the function
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We have 

f (z) = h (z) + fa (z) + fb (z), z ∈  Λext ,                                                                                     (14)

where fa and fb are the evaluations of the restrictions of g(ω) to Cz(a) and Cz(b) at the test function 1(2 ( ))i zπ ω −− . Since 
the jump of h across Cξ \ {ξ} is g0 and both fa and fb are continuous on Cξ \ {ξ}, it follows that 

intint |h h Λ=  has an analytic 
continuation to a neighborhood of Cξ \ {ξ} and in that neighborhood, 

g0(z) = hint (z) − f (z)                                                                                                             (15)

Therefore g0 admits an analytic continuation to the region Λint \ F for some finite set F, given that f does and hint is 
analytic in Λint. Let us now deform Cξ to another simple closed curve from ξ to itself, say Cξ

 , within Λint, in such a way that 
z (a) is in the exterior of Cξ

 . Calling h  the corresponding integral over Cξ
  as in (13) we would have

1( ) ( ) ( )+ ( )a b a
a F

f z h z f z f z G
z a∈

 = + +  − 
∑


 ,           z outside Cξ
                                   (16)

where F F⊂  and where Ga are entire functions. This contradicts what we already proved since for the curve 

( ) ( )z a z bC C C Cξ= ∪ ∪  , part of Cz(a) is in the unbounded component of \C C .
We can now consider the general case.
Theorem 3.4 Suppose C is a not closed piecewise C1 curve from z(a) to z(b). Let T be an analytic functional that has a 

distributional analytic form along C. Let { }( ) ( );f z T zω=   for z in the unbounded component of \ C . Then f cannot be 
analytically continued to a region of the form { }\ ( ), ( )z a z bΩ  if either z(a) or z(b) belongs to Ω.

Proof. Let us suppose that f can be analytically continued to a pointed neighborhood of one of the endpoints of 
C, say z(a). Then there is a simply connected region Ω formed by a disc around z(a), the exterior of another disc, and a 
neighborhood (which we can ask to have a C1 boundary) of a path from the circle about z(a) to the circle that bounds the 
disc at infinity, such that f can be defined as an analytic function in Ω \ {z(a)}.

The open set Ω \ C has a finite number of components, separated by parts of C. Let Γ be a component adjacent to 
the unbounded component of Ω \ C, separated by a part γ of C. Since g0 (z) = f Γ(z) − f (z) in a neighborhood of γ, where 

{ }( ) ( );f z T zωΓ =  for z∈Γ , and since both f and fΓ are analytic in Γ, it follows that so is g0. Therefore we can deform the 
path γ to the part of the boundary of Γ that bounds the rest of Ω \ C obtaining a new distributional analytic form for T with 
a new curve C1 such that Ω \ C1 has one component less than Ω \ C. Repeating this procedure we will eventually obtain a 
distributional analytic form along a curve Cn such that Ω \ Cn has just one component, and in fact Ω ∩  Cn is a simple C1 

path from the boundary of Ω to z(a). However, as we saw in the proof in the Lemma 3.2 in such a case f has a non zero 
jump across this path, and hence it does have continuous extensions to Ω : a contradiction.
3.1 Moments

If ( )T '∈ O , then the power series expansion of its Cauchy representation at infinity takes the form 
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for z α−  large enough, where
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are the translated moments of T.
If T has a distributional analytic form along a not closed piecewise C1 curve from z(a) to z(b) then f cannot be 

analytically continued with a set of the form   \ F, F finite. Therefore the radius of convergence of the series (17) cannot 
be infinite, this radius of convergence being at most the smallest of 1| ( ) |z a α −−  and 1| ( ) |z b α −− .
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Theorem 3.5. Suppose C is a not closed piecewise C1 curve from z (a) to z (b). Let T be an analytic functional that 
has a distributional analytic form along C. Then α ∈∀

{ }1/
,limsup | ( ) | max | ( ) |,| ( ) | 0n

n
n

T z a z bαµ α α
→∞

≥ − − >                                              (19)

Let us now consider the analytic functional Tϕ  given for Φ entire by 

1

0
( ), ( ) ( ( ))T t dtϕ ω ω ϕΦ = Φ∫                                                                                                  (20)

where ϕ  is an analytic function in a complex region that contains [0, 1], or, equivalently, it is real analytic in an open 
interval that contains [0, 1]. The moments of the analytic functional Tϕ  are the moments of ϕ  in the following sense, 

1

0
( ) ( ), ( ( ))n n

n T T t dtϕ ϕµ ω ω ϕ= = ∫                                                                                      (21)

Both interpretations of the word ‘moment’ are easy to find in the literature.
Our results immediately give the ensuing.
Theorem 3.6. Let ϕ  be real analytic in [0, 1]. If (0) (1)ϕ ϕ≠  then for all α ∈
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0
limsup ( ( ) ) max | (0) |,| (1) | 0

n
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t dtϕ α ϕ α ϕ α

→∞
− ≥ − − >∫                                            (22)

Proof. We may assume, by deforming the interval [0, 1] to another path from 0 to 1 if needed, that ( ) 0' tϕ =  for 0 < t 
< 1. Then

0( ), ( ) ( ) ( )d
C

T g z z zϕ ω ωΦ = Φ∫                                                                                       (23)

where the curve C is given by z = ϕ (t), 0 ≤ t ≤ 1, and where

0
1( )

( ( ))
g z

' zϕ η
=

                                                                                                                    (24)

η  being an appropiate branch of 1ϕ− , namely the one with ( ( ))t tη ϕ =  if ( )tϕ  is not a point where C intersects itself. 
This is a distributional analytic form of Tϕ  along the non closed curve C, and therefore (22) follows from (19).

4. Closed curves
Our next task is to consider the case of closed curves, when z(a) = z(b) = ξ. In such a case it may be the case that if 

{ }0 ( ) ( );f z T zω=   on the outside of a disc, then f0 can be analytically continued to a region that contains ξ. Nevertheless, 
as we shall see, there are conditions that ensure that such analytic extension does not exist, but before we study them it is 
useful to give an example.

Example 4.1. Let us consider the curve 2( ) itz t e π=  for 0 ≤ t ≤ 1. Let g0 (ω) be a fixed branch of 1 1/ω ω− − . Then 

0 ( )d1 1
2 C

g
i z z

ω ω
π ω

=
−∫ , 

1z >                                                                                                   (25)

 
admits an analytic continuation to { }\ 0  even though g0 is not real analytic at ξ = 1.

We now define a type of singularity at ξ that guarantees that the Cauchy transform cannot be analytically continued 
across a part of C that contains ξ.

Definition 4.2. We say that ξ is a two sided singularity of g if for no r > 0 the function g0 admits an analytic 
continuation to one of the sides of , \r Cξ .

In the Example 4.1 the point ξ = 1 is not a two sided singularity. We shall now prove that no analytic continuation to 
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\ F , F finite, is possible if ξ is a two sided singularity of g.
Lemma 4.3. Suppose C is a simple closed piecewise C1 curve from z(a) = ξ to z(b) = ξ. Suppose ξ is a two sided 

singularity of g. Let T be an analytic functional that has the analytic form g along C. Let { }( ) ( );f z T zω=  , z in the 
unbounded component of \ C . Then f cannot be analytically continued to a region of the form \ F , F finite.

Proof. Let { }int ( ) ( );f z T zω=  , z in the bounded component of \ C . If f had an analytic extension to a region of the 
form \ F , F finite, then g0, that equals fint - f in a neighborhood of C \ {ξ}, would also have an analytic extension to the 
bounded component minus F and thus ξ would not be singular from the inside side, a contradiction.

We may employ the same techniques of the Section 3 of deforming the path C along simply connected regions of 
analyticity of g0 to obtain the ensuing general result.

Theorem 4.4. Suppose C is a closed piecewise C1 curve from z(a) = ξ to z(b) = ξ. Suppose ξ is a two sided singularity 
of g. Let T be an analytic functional that has the analytic form g along C. Let { }( ) ( );f z T zω=  , z in the unbounded 
component of \ C . Then f cannot be analytically continued to a region of the form Ω \ {ξ} if ξ belongs to Ω.
4.1 Moments 

The Theorem 4.4 allows us to conclude that if T has a two sided singularity at ξ then the moments cannot decrease 
very fast at infinity.

Theorem 4.5. Suppose C is a closed piecewise C1 curve from z(a) = ξ to z(b) = ξ. Suppose ξ is a two sided singularity 
of g. Let T be an analytic functional that has the analytic form g along C. Then α ∈∀

1/
,limsup | ( ) | 0n

n
n

Tαµ
→∞

>                                                                                                            (26)

In case T = Tϕ  for a real analytic function from [0, 1] to   with (0) (1)ϕ ϕ=  then if g0 given by (24) has an analytic 
extension to any side of a , \r Cξ  then it would follow that ( ) ( )(0) (1)n nϕ ϕ=  for all n and consequently ϕ  would be the 
restriction of a periodic function of period 1 to [0, 1].

Lemma 4.6. Let ϕ  be a real analytic function from [0, 1] to   such that (0) (1)ϕ ϕ=  but such that ϕ  is not the 
restriction of a periodic real analytic function of period 1 to [0, 1]. Let 0 ( ) 1/ ( ( ))g z ' zϕ η= , η  being the branch of 1ϕ−  with 

( ( ))t tη ϕ =  if ( )tϕ  is not a point where C intersects itself. Then ξ = (0) (1)ϕ ϕ=  is a two sided singularity of g0.
Proof. Functions that are the distributional boundary values of analytic functions cannot have certain types of 

singularities, particularly, they cannot have jumps, not even in the distributional or more general senses [2, 4, 10]. If g0 is 
the boundary value of an analytic function from one side in a neighborhood of ξ, then so would ( ( ))' zϕ η , and consequently 
this function would not have a jump at ξ, that is, (0) (1)' 'ϕ ϕ= . Using that / ( ( ( )))d dz ' zϕ η  cannot have a jump at ξ we 
then obtain that (0) (1)'' ''ϕ ϕ= . An inductive argument, using higher order derivatives yields ( ) ( )(0) (1)n nϕ ϕ=  for all n, and 
this implies that ϕ  is the restriction to [0, 1] of a periodic function of period 1.

We immediately obtain the following.
Theorem 4.7. Let ϕ  be a real analytic function from [0, 1] to   such that (0) (1)ϕ ϕ=  but such that ϕ  is not the 

restriction of a periodic real analytic function of period 1 to [0, 1]. Then for all α ∈

1/1

0
limsup ( ( ) ) 0

n
n

n
t dtϕ α

→∞
− >∫                                                                                             (27)

It would also be interesting to obtain a lower bound for the superior limit 
1/1

0
limsup ( ( ) )

n
n

n t dtϕ α→∞ −∫  similar to 
(22).

The Theorem 4.7 says that (27) is satisfied if ϕ  is not the restriction of a periodic function of period 1 to [0, 1]. 
However, it is also true for some restrictions of the periodic functions. The analysis of when (27) holds for α = 0 and ϕ  a 
rational function of e2πit can be seen in [3].
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