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Abstract: Cloud services are increasingly becoming available through containers because of their scalability, 
portability, and reliable deployment, particularly in microservices and smart vehicles. Due to the diversity of workloads 
and cloud resources, the scheduler component of cloud containers plays a crucial role in optimizing energy efficiency 
and minimizing costs. The growing demand for cloud services poses a challenge in terms of energy consumption. It is 
possible to optimize energy consumption on servers by utilizing live migration technology. This study aims to propose 
a hybrid model that will facilitate the migration of containers from one server to another using gradient descent Namib 
beetle optimization (GNBO) algorithms and thereby reduce the amount of energy consumed by cloud servers. The work 
is carried out by cloud simulation with physical machines (PMs), virtual machines (VMs), and containers. The tasks are 
allocated to VM in a round-robin manner. The actor-critic neural network (ACNN) is used to predict the load of PMs. 
Overloading and underloading conditions are determined based on the load. A hybrid optimization algorithm, GNBO, 
calculates the optimal solution based on predicted load, migration costs, resource utilization, energy consumption, and 
network bandwidth. This results in a load of 0.177 millions of instructions per second (MIPS), migration costs of 10.146 
J, and energy consumption optimized to 0.068 W.

Keywords: container migration, cloud computing, energy consumption optimization, ACNN, VM migration, live 
migration

MSC: 32C05, 32C07, 32C22, 32C30

1. Introduction
Cloud computing elevates software computation when compared to traditional computing methods by providing 

on-demand online computing scalable infrastructure and storage, which are extensions of storage-based devices like 
desktops and phones, and offering apparent access to obtain them anytime and anywhere [1]. The cloud model involves 
various key modules, like the user interaction interface, the management of resources and services, and the resource 
provisioning phase. The system resource management component controls a huge network of servers executing in 
parallel. It also utilizes virtualization models for dynamically allocating and de-allocating computing resources. These 
days, the computing domain is capable of envisioning transitioning into cloud computing platforms due to breathtaking 
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advancements in computing and information techniques over the previous three decades [2]. A growing demand for 
cloud resources has led cloud providers to handle warehouse-sized data centers. This large-scale cloud data center 
(CDC) is equipped with thousands of computing servers connected by high-speed communication links. It consumes a 
lot of electricity. As part of this process, approximately 30% of servers remain in idle mode, while approximately 12-
15% are used for completing resource requests. The workload requests for cloud applications, including interactive 
ones, are frequently changing, which causes dynamic resource demands, resulting in service level agreements (SLAs) 
being violated and performance degradation [28]. Cloud computing is an eminent technique that offers the services of 
information technologies to address several issues [3, 4]. Cloud computing with virtualization offers end-user services, 
such as application levels and hardware resources [4-6]. Meanwhile, cloud computing poses several features that can 
help scientists. By utilizing the cloud computing model, one can offer a huge number of distributed platforms using the 
opposite platform [4, 7, 8]. The requirement of cloud computing has simplified the dynamic operation of computing, 
storage resources, and networking to offer desired services [9].

Cloud computing commonly refers to hosted services. It represents the physical hardware virtualization [10], 
wherein data is arranged in particular centers. In cloud computing services, the virtual cluster permits the active 
allocation of visualized resources. The management of users and virtual storage represents a common cloud model. In 
cloud platforms, the input represents job association, and its arrangement is imperative for the competency of complete 
cloud services [7]. With the progression of virtualization, one of the crucial virtualization techniques utilized for hosting 
cloud services is virtual computers, which share networking, processing, and storage resources with real machines [9]. 
The standard of containers facilitates a reliable and lightweight platform, which permits the software program to begin 
sharing and underlies the operating model. Thus, the containers are utilized in highly effective deployments of the 
same applications, which utilize similar kernel code [11]. The container technique has various industrial applications. 
A few organizations where containers are employed include [12, 13] containers of Internet of Things (IoT) tools, 
containerization in gaming, healthcare, web applications, financial services providers, micro-services models, scientific 
workflows, edge computing, marketing, and advertising [13].

Thus, it is imperative to model a sensible container migration model for realizing load balancing, considering edge 
networks, and reducing the influence of container migration. To address the aforementioned issue, a container migration 
selection model and sensible migration timing are required, and meanwhile, the container migration techniques need 
normal selection. Regarding the issue of migration timing, some classical models rely on static thresholds, whereas 
others utilize prediction models like machine learning [14, 15] and linear regression [15, 18, 30-33]. Some techniques 
are provided as heuristic techniques for getting the approximate best solution, but it is easy to fall into local optima. 
Bio-motivated meta-heuristic techniques, like the genetic algorithm (GA), ant colony system (ACS), and particle swarm 
optimization (PSO), cannot avoid falling into the local optimum solution but also acquire high-quality approximations 
[15, 20]. Some of the meta-heuristic models, like PSO and GA, need extraordinary encoding for combinatorial 
optimization issues as they devised continuous issues. ACS is devised to discover the optimum mapping of virtual 
machines on servers in the data center to search for Pareto-optimal solutions considering two dimensions: waste of 
resources and consumption of power. However, the aforementioned technique is utilized in container redeployment 
and considers delay and migration costs in edge computing [15]. There have been several studies conducted on both 
container migrations and virtual machine (VM) migrations, and it has been determined that container migrations are 
better than virtual machine migrations because of their smaller size, resulting in a faster migration time or reduced 
migration cost [29].

The goal is to devise a model for container migration to optimize energy consumption in the cloud. The simulation 
of the cloud is done, and the tasks are allocated to the VM in a round-robin manner. Here, the load of physical machines 
(PMs) is predicted using actor-critic neural network (ACNN). If the load is higher than the threshold value, then 
the containers are optimally migrated from overloaded PM to underloaded PM using gradient descent Namib beetle 
optimization (GNBO) by considering multi-objectives like predicted load, migration cost, resource utilization, energy 
consumption, and network bandwidth.

The major contributions include:
• Proposed GNBO for container migration: The GNBO is utilized for container migration in cloud computing 

by considering multi-objectives, like predicted load, migration cost, resource utilization, energy consumption, and 
network bandwidth. Here, GNBO is obtained by blending the gradient descent optimization algorithm and Namib beetle 
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optimization (NBO).
The paper organization is done as follows: Section 2 describes priority-devised container migration techniques. 

Section 3 offers a cloud model. Section 4 describes the container migration model. Section 5 discusses efficiency, and 
Section 6 concludes the paper.

2. Motivation
Intellectual management of tasks in huge-scale infrastructures is complex because of the extensively volatile 

platform of contemporary workload applications. Container migration has emerged to alleviate the issue by utilizing 
heuristics to rapidly reach decisions or artificial intelligence (AI)-driven techniques for dynamic scenarios.

2.1 Related work

An overview of previous research on container migration is presented in this section, along with its merits and 
challenges, as well as an explanation of the details of the work.

Table 1. Summary of related work

Work Objective achieved Energy optimization considered 
[YES/NO] Demerits/GAP

Benomar et al. [19] Cloud management middleware 
named OpenStack. NO

The work does not consider 
various policies for managing 
and migrating the containers.

Bhardwaj and Krishna [26] LXD/CR container-based 
migration. NO Security in container migration.

Saboor et al. [13]
Micro-service execution for 
performing the container 
migration.

NO Not tested in a simulation 
environment.

Ma et al. [15]
Container migration-based 
decision-making (CMDM) 
model for container migration in 
power IoT.

NO
This method did not adapt 
mobility and enhance the 
migration model.

Al-Tarawneh [16] Mobility-aware container 
migration. NO Migration time was high.

Singh and Singh [9] Container migration to migrate 
the host front to back. NO Could not execute in other cloud 

platforms.

Chhikara et al. [11] Energy-efficient container 
migration. YES Did not consider multi-objective 

criteria for migration.

He et al. [17] Container migration using 
dynamic resource dependency. NO The work does not minimize the 

count of live migrations. 

Buyya et al. [24] Multi-objective-based container 
migration. YES Migration cost was not 

considered as a parameter.

Benomar et al. [19] presented de facto cloud management middleware named OpenStack for enabling the control 
of the remote platform to provision and control the containers. However, this method did not consider various policies 
for managing and migrating the containers. To adopt other policies, Bhardwaj and Krishna [26] devised the LXD/CR 
container-based migration technique for container migration. Here, the experimental set-up was adapted for executing 
and analyzing the efficiency of the method. The checkpoint/restore mechanism was adapted for container migration. 
However, this method did not consider security. To imply security, Saboor et al. [13] devised a conceptual model for 
managing the huge quantity of micro-service execution for performing the container migration. Here, four key agent 
services were considered, which include intellectual partitioning and mutation actions. However, this method was not 
examined and tested on the simulation platform. To test in simulation infrastructure, Ma et al. [15] devise a CMDM 



Volume 5 Issue 3|2024| 3465 Contemporary Mathematics

model for container migration in power IoT. However, this method did not adapt mobility or enhance the migration 
model. To adapt to mobility, Al-Tarawneh [16] developed a mobility-aware container migration technique for container 
migration in a cloud-based IoT model. The method was devised based on an integrated MCDM approach. However, 
the expected time of migration was very high. To reduce migration time, Singh and Singh [6] devised a technique 
for container migration to migrate the host from front to back. The method aids in minimizing the quantity of data 
transmission over the network. However, the method was not able to execute on other cloud platforms. To execute on 
other platforms, Chhikara et al. [9] developed an energy-efficient container migration model for container migration 
using the source host server to the destination host server to meet container resource needs. Here, the new technique 
was utilized for determining the better destination host for container placement to address host over-load or under-load 
issues, considering the best-fit container placement. The need for extra resources for one container was not utilized. 
To acquire extra resources, He et al. [11] devised a technique for container migration. Here, the resource competitions 
amidst the live migrations were modeled as a dynamic resource dependency graph. It did not minimize the number of 
live migrations.

2.2 Challenges
Some of the challenges of container migration are described below:
• A technique is devised by Benomar et al. [19] to deploy or manage the containers at fog levels to attain effective 

container migration. However, this technique did not examine the system’s scalability by combining the S4T platform 
with emulators.

• An approach for container migration was implemented by Saboor et al. [13], but this method did not combine 
expert scheduling models and learning techniques for containers and microservices.

• The developed method by Ma et al. [15] did not use definite mathematical techniques for approximately 
improving the algorithm’s stability.

• The technique devised by Singh et al. [9] for container migration for migrating back to a similar host failed to 
minimize the data transfer between the source and destination hosts.

• The definite migration of runtime applications must take place in real-world cases, and thus it is essential for 
accessing the migration process by employing different workloads.

3. System model
Cloud computing is a type of computing model that has attracted huge attention because of its various applications 

and its simple nature. The VM resources use various configurations with various amounts of memory, storage, and 
power. Due to the complete control of cloud functions, a performance bottleneck may appear and may lead cloud 
infrastructure to become ineffective. Thus, devising a container migration strategy is important. Figure 1 exposes the 
cloud model for revealing the container migration process. The system model is a network model of cloud data center 
networks (DCNs), which are designed to provide efficient and scalable communication within large-scale data centers. 
They aim to optimize resource utilization, minimize latency, and improve overall network performance.

Changes are made in Figure 1.
Assume a cloud model with a number of PMs, such that T = {T1, T2, ..., Tx, ..., Ty }. Each PM contains one or several 

VMs, such that R = {R1 , R2 , ..., Rr , ..., Rs }. Furthermore, each VM contains one or several containers, such that S = { S1 , 
S2, ..., Sw, ..., Sz}. Each VM needs the processing elements, like millions of instructions per second (MIPS), memory, and 
the applications or tasks that run on containers, such that

{ }1 2 3, , , , , , .m nH H H H H H=                                                                    (1)

The container parameters include CPU, memory, and MIPS.
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Figure 1. System model

4. Proposed GNBO for container migration in cloud computing
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Figure 2. Structure of proposed GNBO for container migration in cloud computing
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The objective is to present an effective model for container migration in cloud computing. Initially, cloud 
simulation with PM, VM, and containers is done, and then tasks are assigned to the VM in a round-robin manner. 
Thereafter, the load of PM is predicted utilizing ACNN [21]. If the load is greater than the threshold value, then 
the containers are optimally migrated from overloaded PM to underloaded PM using GNBO by considering multi-
objectives like predicted load, migration cost, resource utilization, energy consumption, and network bandwidth. Here, 
the GNBO is obtained by blending the gradient descent algorithm [10] and the NBO [20]. Figure 2 shows the structure 
of container migration model in cloud computing using the proposed GNBO. 

4.1 Algorithm steps

Step 1) Initially the task is assigned to the container in a round-robin manner. 
Step 2) Predict a load of VM and PM using the ACNN.
Step 3) If Lx

p> τ, then migrate the container among PM.
Step 4) If Lr

p> τ, then migrate the container among VM within the PM.
Step 5) Container migration is done optimally using the proposed GNBO. 

4.2 Load prediction of VM and PM using actor-critic neural network

A load of rth VM and xth PM is provided as ACNN input to predict the load. ACNN [21] represents a supervised 
classifier that mostly comprises two operating modules, namely actor and critic modules. The ACNN is utilized to 
predict the state of switching, and it provides the processing speed delivered with good accuracy. Meanwhile, the critic 
module provides the control action that offers effective prediction. ACNN has two modules: the actor module and the 
critic module. The actor module selects the container to be migrated based on the load pattern, and the critic module 
selects the most overloaded container among the containers selected in the actor phase to migrate. The procedure is 
repeated to find the optimal output.
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Lr Lx

[1 × 24]

[1 × 48]

[1 × 24]

[1 × 24]

[1 × 48]

[1 × 24]

[1 × 24]

Figure 3. ACNN model
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Figure 3 depicts the ACNN model.
(i) Actor module: Assume actor mode input is denoted by P(o) and is a system state that aids in estimating the 

best action, and the output obtained is denoted by J 
Aa(o). The actor module executes absolutely with the parameterized 

model, such as a neural network. In the actor module, a straightforward feed-forward neural model with one hidden 
layer is employed for functioning. The actor output is modeled as

( ) ( ) ( ( ) ( )) ( ) ( ),Aa u u u
Aa Aa Aa Aa AaJ o Y o U o P o Y o oγ χ= =                                                   (2)

where PAa(o) represents input, UAa(o) denotes weight matrix amidst the input and hidden layer while YAa(o) signifies weight 
amidst the hidden and output layer. In addition, the activation attribute X(.) is expressed as follows, and it represents a 
hyperbolic tangent function.

( )
v v

v v
e ev
e e

χ
−

−
−

=
+                                                                               

(3)

(ii) Critic module: Critic module provides the action of control using the newest criterion by modeling the further 
accumulative reward-to-go measure represented as

0
Reward ( ) ( 1)

u
g

g
o W o gλ

=

= + +∑
                                                                         

(4)

where 𝜆g represents a discount factor that relies in 0 < 𝜆g < 1 , o expresses time, and u denotes terminal step. Thus, a similar 
three-layer feed-forward neural model is adapted for approximating Reward(o) in equation (4).

The critic module output represents an approximation of Reward(o), and is expressed as

( ) ( ) ( ( ) ( )) ( ) ( ),u u u
Cc Cc Cc Cc CcC o Y o U o P o Y o oχ χ= =

                                                   
(5)

where PCc symbolizes critic input, U u
Cc  is the weight matrix amidst input and hidden layer. Meanwhile, the weight matrix 

amidst the hidden and output layer is denoted by Y u
Cc (o). The predicted load of rth VM is denoted as Lr

p , and the predicted 
load of x th PM is denoted as Lx

p .

4.3 Container migration using proposed GNBO

Container migration is termed an effective lightweight virtualization model for managing the load. In container 
migration, the container is migrated between two models and performs several applications to control through physical 
models. The container can handle the delay sensitivity of mobile applications for usage and provisioning. The containers 
are devised in a way to facilitate quick migration and the effective making of decisions. Here, the container migration is 
done using the proposed GNBO, considering two conditions. The first condition includes migrating containers among 
VMs within the PM, and the second condition includes migrating containers among PMs. These conditions are briefly 
illustrated below. 

4.3.1 Condition 1: Migrate container among VM within the PM

The first condition is the migration of containers among the VMs through the PM. Here, the overloaded containers 
are shifted to underloaded containers amongst the VMs by checking the load of each VM. The solution encoding and 
fitness are described below.

4.3.1.1 Solution encoding

Figure 4 represents the solution representation process. Here, R3 seems to be overloaded. Hence, the container 
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migration is done among VMs within the PM in such a way that each VM contains two containers. Thus, R1 contains 
containers 1 and 2, R2 contains containers 6 and 3, and R3 contains containers 4 and 5 to balance the load by performing 
container migration among VMs within the PM.

R1 R2 R3 R1 R2 R3

S1 S2 S3 S4 S5 S6 S1 S2 S6 S3 S4 S5

Figure 4. Solution encoding of container migration among VM within the PM

4.3.1.2 Fitness function

Fitness is a maximization function that comprises the load of VM, the energy consumption of VM, resource 
utilization, and migration. Here, fitness is manifested as

( )
1

1 ,
4

s
r
p VM

r
L S P RU

=

ℜ = + + +∑
                                                                   

(6)

where S represents migration cost, PVM symbolizes energy consumption of VM, RU denotes resource utilization and Lr
p  

expresses predicted load of rth VM, and s represents total VMs, such that 1 ≤ r ≤ s.
Here, the migration cost is given by

1

1 ,
*

z

w

VS
z k l=

= ∑                                                                                  (7)

where z depicts total containers, V refers to the number of migration of containers, k symbolizes migration constant, and 
l is a normalizing factor.

The energy consumption [22] of VM is manifested as

1
,

z

VM container
w

P P
=

= ∑
                                                                                 

(8)

where Pcontainer refers energy consumed by a specific container. It is formulated as

( )max
* * ,idle

idle

VM
container c VM VM c

P
P V P P U

s
 

= + − 
                                                                                   

(9)

where Uc is the utilization level of the container, and Vc is a fraction of VM resources allocated to the container, Pcontainer 
refers to energy consumed by a specific container and, PVMmax

 and PVMidle
 refer to energy consumption when the CPU is 100% 

utilized and idle in VM.
The resource utilization is formulated as

* *
.

* *

V V V
w w w
T T T
w w w

CPU mem MIPS
RU

CPU mem MIPS
=

                                                                                 
(10)
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4.3.2 Condition 2: Migrate container among PM

The second condition is the migration of containers among PMs. Here, the overloaded containers are shifted to 
underloaded containers amongst the PMs by checking the load of each PM. The solution encoding and fitness are 
described below.

4.3.2.1 Solution encoding

Figure 5 represents the solution representation process. Here, R3 seems to be overloaded. Thus, the container 
migration is done among PMs in such a way that each VM contains two containers. In T1, the R1 contains containers 1 
and 2, while R2 contains containers 3 and 4, and R3 contains containers 5 and 6, whereas in T2, the R1 contains containers 
8 and 9, while R2 contains containers 7 and 10, to balance load by performing container migration among PM. Here, the 
container migration takes place amongst the PM.

T1 T2

R2R1 R3 R1 R2

S1 S2 S3 S4 S5 S6 S7 S8                                               S9                                              S10                                              

T1 T2

R2R1 R3 R1 R2

S1 S2 S3 S4 S5 S6 S7S8                                               S9                                              S10                                              

Figure 5. Solution encoding of container migration among PM

4.3.2.2 Fitness function

Fitness is a maximization function that comprises the load of PM, energy consumption of PM, resource utilization, 
and migration. Here, fitness is manifested as

( )
1

1 ,
4

y
x
p PM

x
L S P RU

=

ℜ = + + +∑
                                                                

(11)

where S represents migration cost, PPM symbolizes energy consumption of PM, RU denotes resource utilization and Lx
p 

expresses predicted load of xth PM obtained from ACNN, and y represents total PMs, such that 1 ≤ x ≤ y.
Here, the formula of migration cost, and resource utilization is obtained from Section 4.3.1.2. 
The energy consumption is manifested as
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1

z

PM
w

P P
=

=∑ (12)

( )max* * ,idle
PM PM idle

P
P P P u

y
ω

 
= + − 
 

(13)

where u refers to CPU utilization level and, Pidle and Pmax refer to energy consumption when the CPU is idle in VM and 
100% or maximum utilized.

4.3.3 Proposed GNBO algorithm

A comparison between the behavior of the Namib beetle and its application in the proposed GNBO algorithm is 
provided in Table 2, followed by a detailed description of the algorithm with pseudocode.

Table 2. Analogy between Namib beetle and proposed GNBO

Namib beetle Proposed GNBO

Initial population Initialize matrix with possible solutions 
for container migration

Suitability of area for water collection Find a suitable VM or PM based on the 
load prediction by ACNN

Moving toward wet area Migrate container

Move the wet mass and removal of 
population Remove repeated allocation

Return back safely Repeat the procedure and fine-tune with 
gradient descent optimization

An efficient GNBO algorithm is used for container migration, which is obtained by combining gradient descent and 
NBO. The NBO [20] is inspired by the behavior of Namib beetles, which are utilized for collecting water in the desert 
and are considered an intellectual part of generating water. 

The behavior of beetles is modeled, which moves to heights for absorbing steam and air humidity and is utilized 
for solving optimization issues. It poses the highest capability to minimize dimensions and feature selection space, has 
high stability, and ranks first in finding optimal solutions with less error. Meanwhile, the gradient descent algorithm 
[25] aimed to offer intuitions concerning the behavior of various algorithms. It offers better balance amidst the accuracy 
of parameter updates and time, and it converges to the global optimal solution. In addition, it is more robust to poor 
initialization and aids in the training of deep and complicated networks. Hence, the blending of gradient descent and 
NBO offers a better solution. The steps of the proposed GNBO are explained below:

Step 1) Initialization
As per NBO [20], each solution is modeled as a beetle, encoded with B dimensions, and given as

[ ]1 2 3, , , , .BG h h h h=                                                                           (14)

Each beetle possesses B decision attributes. Some of it is arbitrarily produced as K in the range M and N, modeled 
as the initial population given by
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1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

.

B

B

K K K B

G G G
G G G

Q

G G G

 
 
 =
 
 
  





   



                                                                         

(15)

Here, Q represents initial beetle’s population. Here, Ga,b expresses bth component linked to ath beetle. The equation 
to randomly build any solution in problem space is given by

( ) ( ), 0,1 .a bG M N M rand= + − ⋅                                                                 (16)

Step 2) Find fitness function
Here, the fitness function is explained in Sections 4.3.1.2 and 4.3.2.2. The first fitness is utilized when the container 

is to be migrated among VMs within the PM, and the second fitness is used when the container is to be migrated among 
PMs.

Step 3) Suitability of each region for the collection of water 
It is assumed that the beetle is positioned in an optimal region, and this optimal region can be a focus for other beetles 

and administer them to these regions for accumulating water. Each region wherein the beetle, like Ga is positioned can 
pose a capacity to receive various beetles which is represented as

( ) min
max

max min

.sin ,
2

a
a

G
F F πℜ −ℜ 

= ⋅ 
ℜ −ℜ                                                                 

(17)

where Fa represents the capacity of beetle count in the region wherein the beetle Ga is positioned, Fmax refers maximum 
capacity of beetles, ℜ(Ga) refers competence of beetle Ga, and ℜmin and ℜmax represent the minimum and maximum 
competencies of population beetles.

The count of new beetles that are in the process of being built and that follow the prior beetles that are accumulating 
water is represented by

1 2
1

K

a K
a

F F F F F
=

= = + + +∑ 

          
(18)

( ) ( ) ( )min min min
max max max

1 max min max min max min

.sin .sin .sin .
2 2 2

K
a a K

a

G G G
F F F Fπ π π

=

ℜ −ℜ ℜ −ℜ ℜ −ℜ     
= ⋅ = ⋅ + + ⋅     

ℜ −ℜ ℜ −ℜ ℜ −ℜ     
∑ 

          
(19)

Step 4) Moving towards wet regions
Each beetle requires choosing regions with adequate moisture to discover water. This focus on receiving moisture 

decreases with increasing distance. Consider a beetle Ga is in one region and other beetle, like Gb is in problem space, and   
Fa is a beetle that desires to move towards beetle Ga. The distance amidst these two beetles can be expressed as

( )2
, , ,

1
.

B

a b a b a bG G G G
=

∂ = − = −∑
 

                                                                  
(20)

The quantity of focus in a region to attract beetles is modeled. Here, the beetle Ga is considered to have entered the 
region, in which the beetle Ga is positioned as
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( )0 ,( ) * .exp ,c
a bHumidity d Humidityε= −∂

                                                                 (21)

where Humidity0 refers initial humidity, Humidity(d) signifies moisture quantity that Gb feels from regions of Ga and c 
symbolizes power, which can be either 1.5 to 2, ¶a,b represents distance between two beetles and ε is a coefficient.

The coefficient can be modeled as

( )max 0
max

1 0,1 ,randϖε ε ε
ϖ

 
= − ⋅ − ⋅ 

                                                              
(22)

where ε0 symbolizes initial coefficient of humidity increase, rand(0, 1) refers a random number between 0 and 1, εmax 

signifies maximum coefficient of humidity increase, ϖmax is maximum iteration, and ϖ  is current iteration.
The method of attracting one beetle to another beetle, wherein the present position of one beetle and the moisture 

sensing coefficient are utilized, which is expressed as

( ) ,new old old
b b a bG G Humidity G G Levy= + ⋅ − +                                                             (23)

where current and new position of beetle are given by G 
old
b  and Gnew

b  and Levy represents random vector for beetle movement,  
Ga refers to position of a beetle attracting another beetle, and it is formulated as

( )
1

1 1
2

1 sin
2 ,

1 2
2

eLevy
f

α

α
α

πα α

α α
−

 Γ + ⋅  
 = ⋅

+ Γ ⋅ ⋅ 
                                                              

(24)

where e and  f  symbolize two single random vectors that alter in range (0, 1), and α represents a constant which is equal 
to 1.5.

Assume Gnew
b  = Gb (ϑ + 1), G 

old
b  = Gb (ϑ) and Humidity = J,

( ) ( ) ( )( )1 ,b b a bG G J G G Levyϑ ϑ ϑ+ = + ⋅ − +
                                                            

(25)

( ) ( ) ( )1 ,b b a bG G JG JG Levyϑ ϑ ϑ+ = + − +
                                                            

(26)

( ) ( )( )1 1 .b b aG G J JG Levyϑ ϑ+ = − + +
                                                            

(27)

From gradient descent algorithm [21], the update equation is given by

( ) ( ) ( )( )1 ,b b bG G f Gϑ ϑ µ ϑ+ = − ∇
                                                              

(28)

where Gb (ϑ + 1) refers to new position of solution, and Gb (ϑ) is current solution, 𝜇 signifies parameter, and ∇f (Gb (ϑ)) is 
gradient function of current solution.

( ) ( )( ) ( )1b b bG f G Gϑ µ ϑ ϑ= ∇ + +
                                                              

(29)



Contemporary Mathematics 3474 | Rukmini S, et al.

Substitute equation (29) in equation (27)

( ) ( )( ) ( ) ( )1 1 1 ,b b b aG f G G J JG Levyϑ µ ϑ ϑ + = ∇ + + − + +                                        
(30)

( ) ( )( ) ( )( )( )1 1 1 1 ,b b b aG G J f G J JG Levyϑ ϑ µ ϑ+ − + − = ∇ − + +
                                      

(31)

( ) ( ) ( )( )( )1 1 1 1 .b b aG J f G J JG Levyϑ µ ϑ+ − − = ∇ − + +                                         
(32)

Thus, the final update expression of GNBO is manifested as

( ) ( )( )( )11 1 .b b aG f G J JG Levy
J

ϑ µ ϑ + = ∇ − + +                                                                   
(33)

Step 5) Move to wet mass
The space that poses an elevated chance of discovering water and can be in regions of optimality and gravity is 

formulated as

( )* ,new old
a aG G rand G G Levy= + ⋅ − +                                                                  (34)

where G* refers a position that has high moisture and G is position of water gravity.
The water gravity position is formulated as

1 1 2

K

a
a K

G
G G GG

K K
= + + +

= =
∑



                                                     
(35)

( )( )* 1 .new old
a aG G rand G G Levyε ε= + ⋅ ⋅ − − +                                                      (36)

Step 6) Hunting or population removal
The beetle tries to return to its nest after being watered, but here some of them are hunted by lizards. Thus, it is 

essential to present a possibility for beetle removal. Thus, the roulette wheel mechanism is utilized for removing the 
solution. Here, the improper solution is more susceptible to removal and hunting. Table 3 depicts the pseudocode of the 
proposed GNBO.

Step 7) Re-evaluation of fitness
The fitness is re-evaluated to obtain a better solution.
Step 8) Termination
The steps are repeated until the maximum count of iterations is reached to acquire the best solution.
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Table 3. Pseudocode of proposed GNBO

Input: Beetle population G 
Output: Best beetle G new

a

Begin
Initialize
   Fix basic attributes such as Q, K, Humidity
   Each solution is termed as Namib beetle
   Initialize population with arbitrary position
for a = 1 to q do
for a = 1 to B do

Update using equation (16)
End for

End for
Evaluate using fitness

for a = 1 to q do
Evaluate using fitness

End for
while (ϑ <= ϑmax) do

Compute coefficient ε using equation (22)
for a = 1 to q do

Compute Fa using equation (17)
End for

for a = 1 to q do
for j = 1 to Fa do

Search around Ga

End for
End for

for a = 1 to q do
for j = 1 to q do

Evaluate distance using equation (20)
Evaluate humidity using equation (21)
Evaluate new beetle position using equation (33)

End for
End for
for a = 1 to q do

Evaluate new beetle position using equation (36)
End for
ϑ = ϑ + 1
End while
Return G new

a

End

5. Performance evaluation
The propensity of GNBO is revealed by examining the techniques using certain evaluation metrics by altering task 

size. 

5.1 Experimental set-up

The operation of GNBO has been performed on the Windows 10 OS with 2 GB of RAM and an Intel Core 
processor and is scripted in Python. Here, four set-ups are considered, wherein the first set-up includes PM = 5, VM = 
10, and container = 15, the second set-up includes PM = 10, VM = 15, and container = 20, the third set-up includes PM 
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= 15, VM = 20, and container = 25, and the fourth set-up includes PM = 20, VM = 25, and container = 30. The resources 
allocated to a VM typically include CPU, memory, bandwidth, and frequency. The RAM of VMs varies from 2 GB to 4 
GB.

5.2 Dataset description

The HCSP-based dataset [26], which consists of cloudlets and VMs, could be utilized to schedule tasks in cloud 
computing. The dataset consists of four dataset instances: c-hilo, c-lohi, i-hilo, and i-lohi. There are 1,024 cloudlets and 
32 VMs per dataset. Any simulation can use these datasets as input by directing the files to a certain location.

5.3 Evaluation measures

The evaluation of GNBO is performed with certain measures and is defined below. The migration cost is measured 
in joules, energy is measured in kWh, and load is the number of cloudlets, where each cloudlet is of length 1,000 MIPS.

5.3.1 Load

The load used here is number of tasks executed, which is measured in MIPS. A load of PM and VM is computed 
using ACNN, which is briefly explained in Section 4.2.

5.3.2 Migration cost

Migration cost is the time required to migrate the containers. The migration cost is described in equation (7). It is 
measured in joules (J).

5.3.3 Energy consumption 

Energy consumption is the energy consumed by the server. The energy consumption of PM and VM is described in 
equations (13) and (8). It is measured in watts (W).

5.4 Comparative methods

The proposed GNBO is analyzed with prior methods that involve Linux container migration (LXD/CR-CM) [26], 
CMDM [15], energy-efficient container migration (CM) [11], and migration technique [9].

5.5 Comparative analysis

The assessment of techniques is done using four set-ups, considering migration cost, energy consumption, and load 
by altering task size (Figures 6 to 9).
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Figure 6. Technique assessment with set-up = 1 considering (a) load, (b) migration cost, and (c) energy consumption
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Figure 7. Technique assessment with set-up = 2 considering (a) load, (b) migration cost, and (c) energy consumption
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Figure 8. Technique assessment with set-up = 3 considering (a) load, (b) migration cost, and (c) energy consumption
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Figure 9. Technique assessment with set-up = 4 considering (a) load, (b) migration cost, and (c) energy consumption

In Figure 10, GNBO ̕’s behavior is compared for four different configurations. Figure 10(c) demonstrates that the 
energy consumption of GNBO is directly proportional to its load, since load balancing is crucial for achieving energy 
efficiency in a cloud environment. In this situation, if the load is not evenly distributed, some servers will always be 
busy, whereas others will be idle or underloaded, which will result in improper energy consumption. Further migration 
costs increase with an increase in the number of PMs, VMs, and containers (as can be concluded from Figure 10(b)).
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Figure 10. Assessment of proposed GNBO (a) load, (b) migration cost, and (c) energy consumption

5.6 Comparative discussion

This section provides the collective analysis from assessment set-up = 1 to assessment set-up = 4 and is 
summarized in Table 4. A performance analysis of GNBO with algorithms LXD/CR-CM, CMDM, energy efficiency, 
and migration technique is done using metrics: load, migration cost, and energy consumption, with task variation from 
100 to 400 in each set-up. It can be observed from the assessments that GNBO outperforms in migration cost, load, 
and energy efficiency. As the number of tasks increases in all four set-ups, the average reduced value of GNBO for 
load is 29.7%, which improves workload allocation. The average reduction value of migration cost by 15.54% helps in 
reducing the downtime of the migrating container and hence improves SLA. A reduction of average energy consumption 
by 35.5% of GNBO optimizes the energy consumption of the server or the PM.
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Table 4. Comparative analysis of proposed GNBO with existing system

Set-up Metrics LXD/CR-CM CMDM Energy efficient CM Migration 
technique

Proposed 
GNBO

Set-up 1

Load 0.437 0.326 0.269 0.258 0.177

Migration cost 15.257 14.157 12.278 11.076 10.146

Energy consumption 0.369 0.268 0.158 0.098 0.068

Set-up 2

Load 0.609 0.548 0.487 0.457 0.426

Migration cost 21.970 20.897 19.970 18.970 18.087

Energy consumption 0.448 0.359 0.309 0.269 0.248

Set-up 3

Load 0.709 0.665 0.598 0.568 0.548

Migration cost 26.580 25.680 24.780 22.690 21.790

Energy consumption 0.388 0.369 0.327 0.298 0.269

Set-up 4

Load 0.589 0.489 0.355 0.286 0.268

Migration cost 31.580 30.780 29.790 28.809 25.890

Energy consumption 0.418 0.358 0.309 0.268 0.158

6. Conclusion
Due to the huge augmentation in cloud services, the migration of containers can help reduce huge performance 

bottlenecks. Hence, it helps in optimizing energy consumption, migration costs, and load reduction. Here, the migration 
is dependent on the competence of the data center. Cloud providers are considered in a quest for a solution that can 
address these overheads and provide adaptability to cloud platforms. Here, the cloud simulation is executed using the 
PM, VM, and containers, and then tasks are allocated to the VM in a round-robin manner. A load of PM is predicted 
by utilizing ACNN. If the load is higher than the threshold value, then the containers are optimally migrated from 
the overloaded PM to the underloaded PM using GNBO by considering the multi-objectives. It provides a huge 
enhancement in the migration process, and it aids and serves as a key migration to improve the efficiency of the CDC. 
The proposed GNBO provided enhanced efficiency with the smallest load of 0.177 MIPS, a migration cost of 10.146 
J, and an energy consumption of 0.068 W. Other optimization models may be adapted in the future to expose the 
feasibility of models in real-time. It is possible to use the proposed GNBO to optimize energy consumption while taking 
into account more parameters, such as network bandwidth and the data sets of other data centers.
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