Research Article

A New Inequality on Jain-Saraswat's Divergence for \boldsymbol{S}-Convex Functions

Praphull Chhabra ${ }^{\text {© }}$
Department of Mathematics and Statistics, University of Engineering and Management, Jaipur, Rajasthan, India
Email: praphull.chhabra@uem.edu.in

Received: 25 May 2023; Revised: 31 August 2023; Accepted: 21 September 2023

Abstract

In this article, a new inequality on Jain-Saraswat divergence measure is investigated for s-convex functions, which includes convex functions as a special case. Further, by using this inequality, some special results have also been derived in terms of the different divergences, at distinct values of s. Numerical verification of these results has also been discussed.

Keywords: s-convex function, discrete probability distributions, new inequality, mlogarithmic power mean, identric mean, mathematical verification

MSC: 94A17, 26D15

1. Introduction

Divergence measures are basically measures of distance between two or more than two probability distributions or it is a measure of discrimination between probability distributions. Any arbitrary divergence measure $\operatorname{Ar}(\Theta, \Phi)$ represents a natural distance measure from a true probability distribution Θ to an arbitrary probability distribution Φ. Typically, Θ represents an observation or a precisely calculated probability distribution, whereas Φ represents a model, a description, or an approximation of Θ.

Divergence measures are used effectively to resolve different problems in probability theory. The primary purpose of assessing how much information is contained in data is to quantify the amount of meaningful and useful content present in a given set of data. This assessment helps us understand the significance, relevance, and potential insights that can be derived from the data. In other words, it allows us to gauge the richness and value of the data in terms of the knowledge it can provide.

Divergence measures have been illustrated exceptionally valuable in a assortment of disciplines such as: guess of likelihood conveyances [1], choice making [2-3], design acknowledgment [4], examination of possibility tables [5], turbulence stream [6], Medical sciences [7-8], fuzzy sciences [9-10], etc.

Let $h:(0, \infty) \rightarrow(-\infty, \infty)$ be a real, differentiable and convex function. Also, $\gamma=\left\{\Theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{p}\right): \theta_{r}>0\right.$, $\left.\sum_{r=1}^{p} \theta_{r}=1\right\}, p>1$ be the set of all complete finite discrete probability distributions with the assumption in limiting case $0 h(0)=0 h\left(\frac{0}{0}\right)=0$.

In 1961 [11], Renyi introduced a divergence measure $R L_{h}(\Theta, \Phi)=\log \left[\sum_{r=1}^{p} h^{-1}\left\{\theta_{r} h\left(\frac{\theta_{r}}{\phi_{r}}\right)\right\}\right]$, after that in 1967 Csiszar [12] and Bregman [13] introduced $C_{h}(\Theta, \Phi)=\sum_{r=1}^{p} \phi_{r} h\left(\frac{\theta_{r}}{\phi_{r}}\right)$ and $B_{h}(\Theta, \Phi)=\sum_{r=1}^{p} h\left(\theta_{r}\right)-h\left(\phi_{r}\right)-\left(\theta_{r}-\phi_{r}\right)$ $h^{\prime}\left(\phi_{r}\right)$, respectively. Further, Burbea and Rao [14] came with $B R_{h}(\Theta, \Phi)=\sum_{r=1}^{p} \frac{h\left(\theta_{r}\right)+h\left(\phi_{r}\right)}{2}-h\left(\frac{\theta_{r}+\phi_{r}}{2}\right)$, then in 1994 [15] Miquel Salicru defined the functional divergence $M S_{h}(\Theta, \Phi)=\sum_{r=1}^{p}\left[\sqrt{h\left(\phi_{n}\right)}-\sqrt{h\left(\theta_{r}\right)}\right]^{2}$. These all are functional or generalized divergence measures for comparing two discrete probability distributions Θ and Φ, at a time, (Θ, Ф) $\in \gamma \times \gamma$.

We can obtain several well known divergences by defining a suitable convex function in one of these generalized divergences, like Csiszar's divergence is very useful for generationg different divergences due to its compact formula. Such as: For the convex function $\frac{(u-1)^{2}}{(u+1)}$, we have Triangular discrimination [16], for $(u-1) \log \left(\frac{u+1}{2}\right)$, we have Relative J-divergence [17], for $(u-1)^{2}$, we have Chi square divergence or Pearson divergence [18], similarly for the function $\frac{u+1}{2} \log \left(\frac{u+1}{2 \sqrt{u}}\right)$, we have Arithmetic-Geometric mean divergence [19], also for $\frac{u}{2} \log u+\left(\frac{u+1}{2}\right) \log \left(\frac{2}{u+1}\right)$, we have Jensen-Shannon divergence or Capacitory discrimination [14, 20], for the function $u \log u$, we have the famous Kullback-Leibler divergence or Relative entropy or Directed divergence [21], and many more.

We may say that Csiszar divergence behaves like a generator of divergences by using the appropriate convex function as a generating function.

Similarly, in 2013 [22] Jain and Saraswat introduced the following generalized divergence measure:

$$
\begin{equation*}
S_{h}(\Theta, \Phi)=\sum_{r=1}^{p} \phi_{r} h\left(\frac{\theta_{r}+\phi_{r}}{2 \phi_{r}}\right), \tag{1}
\end{equation*}
$$

where θ_{r} and ϕ_{r} are probability mass functions corresponding to the discrete distributions Θ and Φ, respectively.
The following fundamental properties (theorem 1.1 and 1.2) on $S_{h}(\Theta, \Phi)$ can be accessed from the article [22]:
Theorem 1.1 If the given function h is convex and normalized in the interval $(0, \infty)$, i.e., $h^{\prime \prime}(u) \geq 0$ and $h(1)=0$, then $S_{h}(\Theta, \Phi)$ and $S_{h}(\Phi, \Theta)$ are both non-negative and convex for the probability distributions $\Theta, \Phi \in \gamma$.

Theorem 1.2 Let $D=a_{1} h_{1}(u) \pm a_{2} h_{2}(u) \pm \ldots \pm a_{p} h_{p}(u)$, where $h_{1}, h_{2}, \ldots, h_{p}$ are the finite number of convex functions characterized within the interval $(0, \infty)$. Then $S_{D}(\Theta, \Phi)=a_{1} S_{h_{1}}(\Theta, \Phi) \pm a_{2} S_{h_{2}}(\Theta, \Phi) \pm \ldots \pm a_{p} S_{h_{p}}(\Theta, \Phi)$, where a_{r} is constant for each $r=1,2, \ldots, p$ and $(\Theta, \Phi) \in \gamma \times \gamma$.

Other properties, bounds, inequalities in terms of the different divergences and applications of $S_{h}(\Theta, \Phi)$ can be found in the articles [23-29].

In addition, the article [27] reveals the following relationship:
Theorem 1.3 Let $h:(0, \infty) \rightarrow \mathbb{R}$ be a real, convex function on $(\kappa, \zeta) \subset(0, \infty)$ with $0<\kappa \leq 1 \leq \zeta<\infty, \kappa \neq \zeta$. For $\Theta, \Phi \in \gamma$, we have

$$
\begin{equation*}
S_{h}(\Theta, \Phi) \leq B_{h}(\kappa, \zeta), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{h}(\kappa, \zeta)=\frac{(\zeta-1) h(\kappa)+(1-\kappa) h(\zeta)}{\zeta-\kappa} \tag{3}
\end{equation*}
$$

In this work, we will use the following generalized means (m-Logarithmic power mean (4) and Identric mean (5)), to summarize the long calculations.

$$
\begin{gather*}
L_{m}(\kappa, \zeta)=\left\{\begin{array}{ll}
\frac{\zeta^{m+1}-\kappa^{m+1}}{(m+1)(\zeta-\kappa)} & \text { if } m \neq-1,0 \\
\frac{\log \zeta-\log \kappa}{\zeta-\kappa} & \text { if } m=-1, \kappa, \zeta>0, \kappa \neq \zeta . \\
I(\kappa, \zeta)= \begin{cases}\frac{1}{e}\left(\frac{\zeta^{\zeta}}{\kappa^{\kappa}}\right)^{\frac{1}{\zeta-\kappa}} & \text { if } \kappa \neq \zeta \\
\zeta & \text { if } \kappa=\zeta\end{cases}
\end{array} . \begin{array}{l}
\text { if } \quad,
\end{array}\right. \tag{4}
\end{gather*}
$$

The Definition 1.1, Remark 1.2 and Theorem 1.4 below can be found in the article [30].
Definition 1.1 Let Z be a linear space and s be a fixed positive real number, i.e., $s \in(0, \infty)$. Let $B \subset Z$ be a convex subset. Then, the mapping $h: B \rightarrow \mathbb{R}$ (Set of real numbers), is desginated as s-convex on B if

$$
\begin{equation*}
h(\delta x+\eta y) \leq \delta^{s} h(x)+\eta^{s} h(y) \tag{6}
\end{equation*}
$$

for $\delta, \eta \geq 0$ with $\delta+\eta=1$ and $x, y \in B$.
Further, for $y_{r} \in B$ and $\delta_{r} \geq 0 \forall r=1,2,3, \ldots, p$ with $\sum_{r=1}^{p} \delta_{r}=1$, we have

$$
\begin{equation*}
h\left(\sum_{r=1}^{p} \delta_{r} y_{r}\right) \leq \sum_{r=1}^{p} \delta_{r}^{s} h\left(y_{r}\right) . \tag{7}
\end{equation*}
$$

Remark 1.1 At $s=1$, the convex functions are precisely 1-convex functions or convex functions.
Remark 1.2 Generally, s-convex functions are different from functions that are convex.
(a). There are s-convex mappings in linear spaces which are not convex for some $s \in(0, \infty)$ with $s \neq 1$ (see Example 1.1).
(b). If $0<s \leq 1$, every non-negative convex function defined on a convex set in a linear space is also an s-convex function. If $s \geq 1$, every non-positive convex function defined on a convex set in a linear space is also an s-convex function.

Example 1.1 Let Z be a normed linear space, also let $B=Z$ and $0<s<1$, define $h(x)=\|x\|^{s}$ for all $x \in B$. For each $x, y \in B$ and $\delta, \eta \geq 0$ with $\delta+\eta=1$, when $\|\delta x\|=0$, either $\delta=0$ or $x=0$, therefore $\delta x=0$, and $h(\delta x+\eta y)=h(\eta y)=\|\eta y\|^{s}=$ $\eta^{s}\|y\|^{s}=\eta^{s} h(y)$; when $\|\delta x\| \neq 0$, from the increasing behaviour of the function $g(u)=1+u^{s}-(1+u)^{s}$ in the interval [0, $\left.\infty\right)$, we have $g(u) \geq g(0)=0, \forall \mathrm{t}>0$, then

$$
\begin{aligned}
h(\delta x+\eta y) & =\|\delta x+\eta y\|^{s} \leq(\delta\|x\|+\eta\|y\|)^{s}=\delta^{s}\|x\|^{s}\left[1+\frac{\eta\|y\|}{\delta\|x\|}\right]^{s} \\
& \leq \delta^{s}\|x\|^{s}\left[1+\left(\frac{\eta\|y\|}{\delta\|x\|}\right)^{s}\right]=\delta^{s}\|x\|^{s}+\eta^{s}\|y\|^{s}=\delta^{s} h(x)+\eta^{s} h(y)
\end{aligned}
$$

Hence function h is s-convex on Z but not a convex function on Z with $0<s<1$.
Theorem 1.4 Let $h: B \rightarrow \mathbb{R}$ be a s-convex function, and $A_{p}=\sum_{r=1}^{p} \delta_{r}^{\frac{1}{s}}$ with $\delta_{r} \geq 0$, for any $1 \leq r \leq p$. Then we have

$$
\begin{equation*}
\frac{1}{A_{p}^{s}} \sum_{r=1}^{p} \delta_{r} h\left(\lambda_{r}\right) \geq h\left(\frac{1}{A_{p}} \sum_{r=1}^{p} \delta_{r}^{\frac{1}{s}} \lambda_{r}\right) \tag{8}
\end{equation*}
$$

for all $\lambda_{r} \in B \subset Z$, where Z is linear space.

2. New inequality on jain-saraswat's divergence

Now, we will derive the following new inequality on $S_{h}(\Theta, \Phi)$ for s-convex functions. This inequality will further illustrate the relations in terms of different information divergences.

Theorem 2.1 Let $h:(0, \infty) \rightarrow(-\infty, \infty)$ be a s-convex function. For $(\Theta, \Phi) \in \gamma \times \gamma$, we have

$$
\begin{equation*}
S_{h}(\Theta, \Phi) \geq A_{p}^{s} h\left[\frac{1}{2 A_{p}} K_{s}(\Theta, \Phi)\right], \tag{9}
\end{equation*}
$$

where $K_{s}(\Theta, \Phi)=\sum_{r=1}^{p} \phi_{r}^{\frac{1-s}{s}}\left(\theta_{r}+\phi_{r}\right)$.
Proof: By taking δ_{r} as ϕ_{r} and λ_{r} as $\frac{\theta_{r}+\phi_{r}}{2 \phi_{r}}$ for $r=1,2,3, \ldots, p$ in inequality (8), we get the desired relation (9).
Remark 2.1 If function h is normalized, i.e., $h(1)=0$, then at $s=1$ the inequality (9) will convert into $S_{h}(\Theta, \Phi) \geq 0$.
Remark 2.2 We denote $K_{s}(\Theta, \Phi)=\sum_{r=1}^{p} \phi_{r}^{\frac{1-s}{s}}\left(\theta_{r}+\phi_{r}\right)$ to summerize the calculations.

3. Some special results

By using the inequalities (2) and (9) together, we may have the significant results in terms of the different divergences, like: Proposition 3.1 gives the result in terms of the Triangular Discrimination.

Case I For $u \in(0, \infty)$ and $s \in(0,1]$:
Proposition 3.1 For $\Theta, \Phi \in \gamma$ and $0<\kappa \leq 1 \leq \zeta<\infty, \kappa=\zeta$, we have

$$
\begin{equation*}
\frac{2(\zeta-1)(1-\kappa)}{\kappa \zeta} \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\theta_{r}+\phi_{r}} \geq 4 A_{p}^{s+1} \frac{\left(\frac{1}{2 A_{p}} K_{s}(\Theta, \Phi)-1\right)^{2}}{K_{s}(\Theta, \Phi)} \tag{10}
\end{equation*}
$$

Proof: Let $h(u)=\frac{2(u-1)^{2}}{u}, u \in(0, \infty), h^{\prime}(u)=\frac{2\left(u^{2}-1\right)}{u^{2}}$ and $h^{\prime \prime}(u)=\frac{4}{u^{3}}$. The function is strictly convex by definition because $h^{\prime \prime}(u)>0 \forall u>0$. Also, for the function $h(u)=\frac{2(u-1)^{2}}{u}$, we have $S_{h}(\Theta, \Phi)=\sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\theta_{r}+\phi_{r}}$, which is the famous triangular divergence measure [16] and

$$
B_{h}(\kappa, \zeta)=\frac{\frac{2(\zeta-1)(\kappa-1)^{2}}{\kappa}+\frac{2(1-\kappa)(\zeta-1)^{2}}{\zeta}}{\zeta-\kappa}=\frac{2(\zeta-1)(\kappa-1)}{\zeta-\kappa}\left(\frac{\kappa-1}{\kappa}-\frac{\zeta-1}{\zeta}\right)=\frac{2(\zeta-1)(1-\kappa)}{\kappa \zeta} .
$$

Moreover, by Remark 1.2 (b), we can conclude that the function $h(u)$ is s-convex for $s \in(0,1]$ since $h(u) \geq 0 \forall u>0$. So, we get the desired result (10) by using the inequalities (2) and (9), after a small simplification.

Proposition 3.2 For $\Theta, \Phi \in \gamma$ and $0<\kappa \leq 1 \leq \zeta<\infty, \kappa \neq \zeta$, we have

$$
\begin{equation*}
2(\zeta-1)(1-\kappa) L_{-1}(\kappa, \zeta) \geq \sum_{r=1}^{p}\left(\theta_{r}-\phi_{r}\right) \log \left(\frac{\theta_{r}+\phi_{r}}{2 \phi_{r}}\right) \geq A_{p}^{s-1}\left[K_{s}(\Theta, \Phi)-2 A_{p}\right] \log \left[\frac{K_{s}(\Theta, \Phi)}{2 A_{p}}\right] \tag{11}
\end{equation*}
$$

Proof: Let $h(u)=2(u-1) \log u, u>0, h^{\prime}(u)=2\left(1-\frac{1}{u}+\log u\right)$ and $h^{\prime \prime}(u)=2\left(\frac{1}{u}+\frac{1}{u^{2}}\right)$. The function is strictly convex by definition because $h^{\prime \prime}(u)>0 \forall u>0$. Also, for the function $h(u)=2(u-1) \log u$, we have

$$
S_{h}(\Theta, \Phi)=\sum_{r=1}^{p}\left(\theta_{r}-\phi_{r}\right) \log \left(\frac{\theta_{r}+\phi_{r}}{2 \phi_{r}}\right)
$$

which is the Relative J-divergence measure [17] and

$$
\begin{aligned}
B_{h}(\kappa, \zeta) & =\frac{2(\zeta-1)(\kappa-1) \log \kappa+2(1-\kappa)(\zeta-1) \log \zeta}{\zeta-\kappa} \\
& =\frac{2(\zeta-1)(\kappa-1)}{\zeta-\kappa}(\log \kappa-\log \zeta)=2(\zeta-1)(1-\kappa) L_{-1}(\kappa, \zeta)
\end{aligned}
$$

Moreover, by Remark 1.2 (b), we can conclude that the function $h(u)$ is s-convex for $s \in(0,1]$ since $h(u)>0 \forall u>0$. So, we get the desired result (11) by using the inequalities (2) and (9), after a small simplification.

By using the same procedure, we have the following results For $u \in(0, \infty)$ and $s \in(0,1]$, by omitting the proofs:
Proposition 3.3 For the function $h(u)=2|u-1|, u>0$, we have

$$
\begin{equation*}
\frac{4(\zeta-1)(1-\kappa)}{\zeta-\kappa} \geq \sum_{r=1}^{p}\left|\theta_{r}-\phi_{r}\right| \geq A_{p}^{s-1}\left|K_{s}(\Theta, \Phi)-2 A_{p}\right| \tag{12}
\end{equation*}
$$

where $\sum_{r=1}^{p}\left|\theta_{r}-\phi_{r}\right|$ is the Variational divergence measure [31].
Proposition 3.4 For the function $h(u)=4(u-1)^{2}, u>0$, we have

$$
\begin{equation*}
4(\zeta-1)(1-\kappa) \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\phi_{r}} \geq A_{p}^{s-2}\left[K_{s}(\Theta, \Phi)-2 A_{p}\right]^{2} \tag{13}
\end{equation*}
$$

where $\sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\phi_{r}}$ is the Chi-square divergence measure [18].
Proposition 3.5 For the function $h(u)=\frac{1}{3} \frac{\left(4 u^{2}-2 u+1\right)}{u}, u>0$, we have

$$
\begin{equation*}
\frac{2 \kappa \zeta+\kappa+\zeta-1}{3 \kappa \zeta} \geq \sum_{r=1}^{p} \frac{\theta_{r}^{2}+\theta_{r} \phi_{r}+\phi_{r}^{2}}{\theta_{r}+\phi_{r}} \geq A_{p}^{s-1}\left[\frac{K^{2}(\Theta, \Phi)-A_{p} K_{s}(\Theta, \Phi)+A_{p}^{2}}{K_{s}(\Theta, \Phi)}\right] \tag{14}
\end{equation*}
$$

where $\frac{2}{3} \sum_{r=1}^{p} \frac{\theta_{r}^{2}+\theta_{r} \phi_{r}+\phi_{r}^{2}}{\theta_{r}+\phi_{r}}$ is the Centroidal mean divergence measure [32].
Proposition 3.6 For the function $h(u)=\sqrt{2 u^{2}-2 u+1}, u>0$, we have

$$
\begin{equation*}
C(\kappa, \zeta) \geq \sum_{r=1}^{p} \sqrt{\theta_{r}^{2}+\phi_{r}^{2}} \geq A_{p}^{s-1} \sqrt{K^{2}(\Theta, \Phi)-2 A_{p} K_{s}(\Theta, \Phi)+2 A_{p}^{2}} \tag{15}
\end{equation*}
$$

where $\sum_{r=1}^{p} \sqrt{\frac{\theta_{r}^{2}+\phi_{r}^{2}}{2}}$ is the Root mean square divergence measure [32] and

$$
C(\kappa, \zeta)=\frac{(\zeta-1) \sqrt{2 \kappa^{2}-2 \kappa+1}+(1-\kappa) \sqrt{2 \zeta^{2}-2 \zeta+1}}{\zeta-\kappa}
$$

Proposition 3.7 For the function $h(u)=\frac{2 u^{2}-2 u+1}{u}, u>0$, we have

$$
\begin{equation*}
\frac{\kappa+\zeta-1}{\kappa \zeta} \geq \sum_{r=1}^{p} \frac{\theta_{r}^{2}+\phi_{r}^{2}}{\theta_{r}+\phi_{r}} \geq A_{p}^{s-1}\left[\frac{K^{2}(\Theta, \Phi)-2 A_{p} K_{s}(\Theta, \Phi)+2 A_{p}^{2}}{K_{s}(\Theta, \Phi)}\right] \tag{16}
\end{equation*}
$$

where $\sum_{r=1}^{p} \frac{\theta_{r}^{2}+\phi_{r}^{2}}{\theta_{r}+\phi_{r}}$ is the Contra harmonic mean divergence measure [32].
Case II For $u \in\left(\frac{1}{2}, \infty\right)$ and $s \in(0,1]$:
Proposition 3.8 For $\Theta, \Phi \in \gamma$ and $\frac{1}{2}<\kappa \leq 1 \leq \zeta<\infty, \kappa \neq \zeta$, we have

$$
\begin{align*}
& \left(\frac{1}{2}+\kappa \zeta\right) L_{-1}(2 \kappa-1,2 \zeta-1)-\kappa \zeta L_{-1}(\kappa, \zeta)+\log \frac{e I(\kappa, \zeta)}{\sqrt{I(2 \kappa-1,2 \zeta-1)}} \\
\geq & \sum_{r=1}^{p}\left(\frac{\theta_{r}+\phi_{r}}{2}\right) \log \frac{\theta_{r}+\phi_{r}}{2 \sqrt{\theta_{r} \phi_{r}}} \geq \frac{A_{p}^{s-1}}{2} K_{s}(\Theta, \Phi) \log \frac{K_{s}(\Theta, \Phi)}{2 \sqrt{A_{p}} \sqrt{K_{s}(\Theta, \Phi)-A_{p}}} . \tag{17}
\end{align*}
$$

Proof: Let $h(u)=u \log \frac{u}{\sqrt{2 u-1}}, u>\frac{1}{2}, h^{\prime}(u)=\log \frac{u}{\sqrt{2 u-1}}+\frac{u-1}{2 u-1}$ and $h^{\prime \prime}(u)=\frac{2 u^{2}-2 u+1}{u(1-2 u)^{2}}$. The function is strictly convex by definition because $h^{\prime \prime}(u)>0 \forall u>0$. Also, for the function $h(u)=u \log \frac{u}{\sqrt{2 u-1}}$, we have $S_{h}(\Theta, \Phi)=$ $\sum_{r=1}^{p}\left(\frac{\theta_{r}+\phi_{r}}{2}\right) \log \frac{\theta_{r}+\phi_{r}}{2 \sqrt{\theta_{r} \phi_{r}}}$, which is the AGM divergence measure [19] and

$$
B_{h}(\kappa, \zeta)=\frac{(\zeta-1) \kappa \log \frac{\kappa}{\sqrt{2 \kappa-1}}+(1-\kappa) \zeta \log \frac{\zeta}{\sqrt{2 \zeta-1}}}{\zeta-\kappa}
$$

$$
\begin{aligned}
& =\frac{\kappa \zeta\left[\log \kappa-\frac{1}{2} \log (2 \kappa-1)-\log \zeta+\frac{1}{2} \log (2 \zeta-1)\right]}{\zeta-\kappa}+\frac{\zeta\left[\log \zeta-\frac{1}{2} \log (2 \zeta-1)\right]}{\zeta-\kappa}-\frac{\kappa\left[\log \kappa-\frac{1}{2} \log (2 \kappa-1)\right]}{\zeta-\kappa} \\
& =\frac{\kappa \zeta(\log \kappa-\log \zeta)}{\zeta-\kappa}+\frac{(\zeta \log \zeta-\kappa \log \kappa)}{\zeta-\kappa}+\frac{\kappa \zeta[\log (2 \zeta-1)-\log (2 \kappa-1)]}{2(\zeta-\kappa)}+\frac{[\kappa \log (2 \kappa-1)-\zeta \log (2 \zeta-1)]}{2(\zeta-\kappa)} \\
& =\left(\frac{1}{2}+\kappa \zeta\right) L_{-1}(2 \kappa-1,2 \zeta-1)-\kappa \zeta L_{-1}(\kappa, \zeta)+\log e I(\kappa, \zeta)-\frac{1}{2} \log I(2 \kappa-1,2 \zeta-1) .
\end{aligned}
$$

Moreover, by Remark 2 (b), we can conclude that the function $h(u)$ is s-convex for $s \in(0,1]$ since $h(u)>0 \forall u>\frac{1}{2}$. So, we get the desired result (17) by using the inequalities (2) and (9), after a small simplification.

In a similar manner, we have the following results For $u \in\left(\frac{1}{2}, \infty\right)$ and $s \in(0,1]$, by omitting the proofs:
Proposition 3.9 For the function $h(u)=\left(u-\frac{1}{2}\right) \log (2 u-1)-u \log u, u>\frac{1}{2}$, we have

$$
\begin{align*}
& \left(\frac{1}{2}-2 \kappa \zeta\right) L_{-1}(2 \kappa-1,2 \zeta-1)+\log \left[\frac{I(2 \kappa-1,2 \zeta-1)}{I(\kappa, \zeta) \sqrt{e I\left(\frac{1}{2 \kappa-1}, \frac{1}{2 \zeta-1}\right)}}\right] \\
& \geq \frac{1}{2}\left[\sum_{r=1}^{p} \theta_{r} \log \frac{2 \theta_{r}}{\theta_{r}+\phi_{r}}+\sum_{r=1}^{p} \phi_{r} \log \frac{2 \phi_{r}}{\theta_{r}+\phi_{r}}\right] \geq \frac{1}{2 A_{p}}\left[A_{p}^{s}\left\{K_{s}(\Theta, \Phi)-A_{p}\right\} \log \frac{K_{s}(\Theta, \Phi)-A_{p}}{A_{p}}\right] \\
& -\frac{1}{2 A_{p}}\left[K_{s}(\Theta, \Phi) \log \frac{K_{s}(\Theta, \Phi)}{2 A_{p}}\right], \tag{18}
\end{align*}
$$

where $\frac{1}{2}\left[\sum_{r=1}^{p} \theta_{r} \log \frac{2 \theta_{r}}{\theta_{r}+\phi_{r}}+\sum_{r=1}^{p} \phi_{r} \log \frac{2 \phi_{r}}{\theta_{r}+\phi_{r}}\right]$ is the JS divergence measure [14, 20].
Proposition 3.10 For the function $h(u)=\frac{(1-\sqrt{2 u-1})^{2}}{2}, u>\frac{1}{2}$, we have

$$
\begin{equation*}
1+\frac{\sqrt{2 \kappa-1}(1-\zeta)+\sqrt{2 \zeta-1}(\kappa-1)}{\zeta-\kappa} \geq \sum_{r=1}^{p}\left(\sqrt{\theta_{r}}-\sqrt{\phi_{r}}\right)^{2} \geq A_{p}^{s-1}\left(\sqrt{A_{p}}-\sqrt{K_{s}(\Theta, \Phi)-A_{p}}\right)^{2} \tag{19}
\end{equation*}
$$

where $\frac{1}{2} \sum_{r=1}^{p}\left(\sqrt{\theta_{r}}-\sqrt{\phi_{r}}\right)^{2}$ is the Hellinger divergence measure [33].
Proposition 3.11 For the function $h(u)=\frac{8 u(u-1)^{2}}{2 u-1}, u>\frac{1}{2}$, we have

$$
\begin{equation*}
\frac{8(\zeta-1)(1-\kappa)[1+2 \kappa \zeta-(\kappa+\zeta)]}{(2 \kappa-1)(2 \zeta-1)} \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}\left(\theta_{r}+\phi_{r}\right)}{\theta_{r} \phi_{r}} \geq A_{p}^{s-2} \frac{\left[K_{s}(\Theta, \Phi)-2 A_{p}\right]^{2} K_{s}(\Theta, \Phi)}{\left[K_{s}(\Theta, \Phi)-A_{p}\right]} \tag{20}
\end{equation*}
$$

where $\sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}\left(\theta_{r}+\phi_{r}\right)}{\theta_{r} \phi_{r}}$ is the Symmetric Chi-square divergence measure [34].
Proposition 3.12 For the function $h(u)=2(u-1) \log (2 u-1), u>\frac{1}{2}$, we have

$$
\begin{equation*}
4(\zeta-1)(1-\kappa) L_{-1}(2 \kappa-1,2 \zeta-1) \geq \sum_{r=1}^{p}\left(\theta_{r}-\phi_{r}\right) \log \frac{\theta_{r}}{\phi_{r}} \geq A_{p}^{s-1}\left[K_{s}(\Theta, \Phi)-2 A_{p}\right] \log \left[\frac{K_{s}(\Theta, \Phi)}{A_{p}}-1\right] \tag{21}
\end{equation*}
$$

where $\sum_{r=1}^{p}\left(\theta_{r}-\phi_{r}\right) \log \frac{\theta_{r}}{\phi_{r}}$ is the JK divergence measure [21,35].
Proposition 3.13 For the function $h(u)=4 \frac{(u-1)^{2}}{\sqrt{2 u-1}}, u>\frac{1}{2}$, we have

$$
\begin{equation*}
\frac{4(\zeta-1)(1-\kappa)}{(\zeta-\kappa)}\left[\frac{1-\kappa}{\sqrt{2 \kappa-1}}+\frac{\zeta-1}{\sqrt{2 \zeta-1}}\right] \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\sqrt{\theta_{r} \phi_{r}}} \geq A_{p}^{s-\frac{3}{2}} \frac{\left(K_{s}(\Theta, \Phi)-2 A_{p}\right)^{2}}{\sqrt{K_{s}(\Theta, \Phi)-A_{p}}} \tag{22}
\end{equation*}
$$

where $\sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\sqrt{\theta_{r} \phi_{r}}}$ is the Jain-Srisvastava divergence measure [36].
Proposition 3.14 For the function $h(u)=\frac{8 u^{2}(u-1)^{2}}{(2 u-1)^{\frac{3}{2}}}, u>\frac{1}{2}$, we have

$$
\begin{equation*}
\frac{8(\zeta-1)(1-\kappa)}{(\zeta-\kappa)}\left[\frac{\kappa^{2}(1-\kappa)}{(2 \kappa-1)^{\frac{3}{2}}}+\frac{\zeta^{2}(\zeta-1)}{(2 \zeta-1)^{\frac{3}{2}}}\right] \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}^{2}-\phi_{r}^{2}\right)^{2}}{\left(\theta_{r} \phi_{r}\right)^{\frac{3}{2}}} \geq \frac{A_{p}^{s-\frac{5}{2}} K^{2}(\Theta, \Phi)\left(K_{s}(\Theta, \Phi)-2 A_{p}\right)^{2}}{\left(K_{s}(\Theta, \Phi)-A_{p}\right)^{\frac{3}{2}}} \tag{23}
\end{equation*}
$$

where $\frac{1}{2} \sum_{r=1}^{p} \frac{\left(\theta_{r}^{2}-\phi_{r}^{2}\right)^{2}}{\left(\theta_{r} \phi_{r}\right)^{\frac{3}{2}}}$ is the Pranesh-Johnson divergence measure [37].
Proposition 3.15 For the function $h(u)=\frac{8 u(u-1)^{2}}{(2 u-1)} \log \frac{u}{\sqrt{2 u-1}}, u>\frac{1}{2}$, we have

$$
D(\kappa, \zeta) \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}+\phi_{r}\right)\left(\theta_{r}-\phi_{r}\right)^{2}}{\theta_{r} \phi_{r}} \log \frac{\theta_{r}+\phi_{r}}{2 \sqrt{\theta_{r} \phi_{r}}}
$$

$$
\begin{equation*}
\geq \frac{A_{p}^{s-2} K_{s}(\Theta, \Phi)\left(K_{s}(\Theta, \Phi)-2 A_{p}\right)^{2}}{\left(K_{s}(\Theta, \Phi)-A_{p}\right)} \log \left[\frac{K_{s}(\Theta, \Phi)}{2 \sqrt{A_{p}} \sqrt{K_{s}(\Theta, \Phi)-A_{p}}}\right] \tag{24}
\end{equation*}
$$

where $\sum_{r=1}^{p} \frac{\left(\theta_{r}+\phi_{r}\right)\left(\theta_{r}-\phi_{r}\right)^{2}}{\theta_{r} \phi_{r}} \log \frac{\theta_{r}+\phi_{r}}{2 \sqrt{\theta_{r} \phi_{r}}}$ is the Pranesh-Chhina divergence measure [38] and

$$
D(\kappa, \zeta)=\frac{8(\zeta-1)(1-\kappa)}{(\zeta-\kappa)}\left[\frac{\kappa(1-\kappa)}{(2 \kappa-1)} \log \frac{\kappa}{\sqrt{2 \kappa-1}}+\frac{\zeta(\zeta-1)}{(2 \zeta-1)} \log \frac{\zeta}{\sqrt{2 \zeta-1}}\right]
$$

Proposition 3.16 For the function $h(u)=\frac{2(u-1)^{2}}{u} \log \frac{u}{\sqrt{2 u-1}}, u>\frac{1}{2}$, we have

$$
\begin{equation*}
E(\kappa, \zeta) \geq \sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\left(\theta_{r}+\phi_{r}\right)} \log \frac{\theta_{r}+\phi_{r}}{2 \sqrt{\theta_{r} \phi_{r}}} \geq \frac{A_{p}^{s-1}\left(K_{s}(\Theta, \Phi)-2 A_{p}\right)^{2}}{K_{s}(\Theta, \Phi)} \log \left[\frac{K_{s}(\Theta, \Phi)}{2 \sqrt{A_{p}} \sqrt{K_{s}(\Theta, \Phi)-A_{p}}}\right] \tag{25}
\end{equation*}
$$

where $\sum_{r=1}^{p} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}}{\left(\theta_{r}+\phi_{r}\right)} \log \frac{\theta_{r}+\phi_{r}}{2 \sqrt{\theta_{r} \phi_{r}}}$ is the Pranesh-Hunter divergence measure [39] and

$$
E(\kappa, \zeta)=2(\zeta-1)(1-\kappa)\left[\left(\frac{1}{2 \kappa \zeta}-1\right) L_{-1}(2 \kappa-1,2 \zeta-1)+L_{-1}(\kappa, \zeta)-\frac{1}{\kappa \zeta} \log \left\{e^{\frac{3}{2}} I\left(\frac{1}{\kappa}, \frac{1}{\zeta}\right) \sqrt{\left.I\left(\frac{1}{2 \kappa-1}, \frac{1}{2 \zeta-1}\right)\right\}}\right] .\right.
$$

Case III For $s \in(0,1]$:
Proposition 3.17 For $\Theta, \Phi \in \gamma$, we have

$$
\begin{equation*}
\log e I\left(\frac{1}{\kappa}, \frac{1}{\zeta}\right)-L_{-1}(\kappa, \zeta) \geq \sum_{r=1}^{p} \phi_{r} \log \frac{2 \phi_{r}}{\theta_{r}+\phi_{r}} \leq A_{p}^{s} \log \left[\frac{1}{2 A_{p}} K_{s}(\Theta, \Phi)\right] . \tag{26}
\end{equation*}
$$

Proof: Let $h(u)=-\log u, u>0, h^{\prime}(u)=-\frac{1}{u}$ and $h^{\prime \prime}(u)=\frac{1}{u^{2}}$ The function is strictly convex by definition because $h^{\prime \prime}(u)>0 \forall u>0$. Also, for the function $h(u)=-\log u$, we have $S_{h}(\Theta, \Phi)=\sum_{r=1}^{p} \phi_{r} \log \frac{2 \phi_{r}}{\theta_{r}+\phi_{r}}$, which is Adjoint of the Relative JS divergence measure [21] and

$$
B_{h}(\kappa, \zeta)=\frac{-(\zeta-1) \log \kappa-(1-\kappa) \log \zeta}{\zeta-\kappa}=-\left[\frac{\zeta \log \kappa-\log \kappa+\log \zeta-\kappa \log \zeta}{\zeta-\kappa}\right]=\log e I\left(\frac{1}{\kappa}, \frac{1}{\zeta}\right)-L_{-1}(\kappa, \zeta)
$$

Moreover, by Remark 1.2 (b), we can conclude that the function $h(u)$ is s-convex for $s \in(0,1]$ if $h(u) \geq 0 \forall u \leq 1$ and it is s-convex for $s \in[1, \infty)$ if $h(u) \leq 0 \forall u \geq 1$. So, we get the desired result (26) by using the inequalities (2) and (9), after a small simplification.

Similarly we have the following cases for $s \in(0, \infty)$ by skipping the detail proof:
Proposition 3.18 For the function $h(u)=u \log u, u>0$ and taking into consideration the Remark 1.2 (b), the function $h(u)$ is s-convex for $s \in(0,1]$ if $h(u) \geq 0 \forall u \geq 1$ and it is sconvex for $s \in[1, \infty)$ if $h(u) \leq 0 \forall u \leq 1$. So, we have the result

$$
\begin{equation*}
\log e I(\kappa, \zeta)-\kappa \zeta L_{-1}(\kappa, \zeta) \geq \sum_{r=1}^{p}\left(\frac{\theta_{r}+\phi_{r}}{2}\right) \log \frac{\theta_{r}+\phi_{r}}{2 \phi_{r}} \geq \frac{A_{p}^{s-1}}{2} K_{s}(\Theta, \Phi) \log \frac{K_{s}(\Theta, \Phi)}{2 A_{p}} \tag{27}
\end{equation*}
$$

where $\sum_{r=1}^{p}\left(\frac{\theta_{r}+\phi_{r}}{2}\right) \log \frac{\theta_{r}+\phi_{r}}{2 \phi_{r}}$ is adjoint of the Relative AG divergence measure [19].
Proposition 3.19 For the function $h(u)=(2 u-1) \log (2 u-1), u>\frac{1}{2}$ and taking into consideration the Remark 1.2 (b), the function $h(u)$ is s-convex for $s \in(0,1]$ if $h(u) \geq 0 \forall u \geq 1$ and it is s-convex for $s \in[1, \infty)$ if $h(u) \leq 0 \forall \frac{1}{2}<u \leq 1$. So, we have the result

$$
\begin{equation*}
F(\kappa, \zeta) \geq \sum_{r=1}^{p} \theta_{r} \log \frac{\theta_{r}}{\phi_{r}} \geq A_{p}^{s-1}\left[K_{s}(\Theta, \Phi)-A_{p}\right] \log \left[\frac{K_{s}(\Theta, \Phi)}{A_{p}}-1\right] \tag{28}
\end{equation*}
$$

where $\sum_{r=1}^{p} \theta_{r} \log \frac{\theta_{r}}{\phi_{r}}$ is the KL divergence measure [21] and

$$
F(\kappa, \zeta)=(1-4 \kappa \zeta) L_{-1}(2 \kappa-1,2 \zeta-1)+\log \left[\frac{e I^{2}(2 \kappa-1,2 \zeta-1)}{I\left(\frac{1}{2 \kappa-1}, \frac{1}{2 \zeta-1}\right)}\right]
$$

Proposition 3.20 For the function $h(u)=\left(\frac{u+1}{2}\right) \log \left(\frac{u+1}{2 u}\right), u>0$ and taking into consideration the Remark 1.2 (b), the function $h(u)$ is s-convex for $s \in(0,1]$ if $h(u) \geq 0 \forall u \leq 1$ and it is s-convex for $s \in[1, \infty)$ if $h(u) \leq 0 \forall u \geq 1$. So, we have the following result

$$
\begin{equation*}
G(\kappa, \zeta) \geq \sum_{r=1}^{p}\left(\frac{\theta_{r}+3 \phi_{r}}{4}\right) \log \left[\frac{\theta_{r}+3 \phi_{r}}{2\left(\theta_{r}+\phi_{r}\right)}\right] \geq \frac{A_{p}^{s-1}\left(K_{s}(\Theta, \Phi)+2 A_{p}\right)}{4} \log \left[\frac{K_{s}(\Theta, \Phi)+2 A_{p}}{2 K_{s}(\Theta, \Phi)}\right] \tag{29}
\end{equation*}
$$

where $\sum_{r=1}^{p}\left(\frac{\theta_{r}+3 \phi_{r}}{4}\right) \log \left[\frac{\theta_{r}+3 \phi_{r}}{2\left(\theta_{r}+\phi_{r}\right)}\right]$ is the Jain-Chhabra divergence measure [27] and

$$
G(\kappa, \zeta)=\frac{(\zeta-1)\left(\frac{\kappa+1}{2}\right) \log \frac{\kappa+1}{2 \kappa}+(1-\kappa)\left(\frac{\zeta+1}{2}\right) \log \frac{\zeta+1}{2 \zeta}}{\zeta-\kappa}
$$

4. Verification of the results

In order to be sure that the obtained results are authentic, it is necessary to take appropriate data. Also, we cannot take into account all 20 results for this process, so we will take only three results from each case. The remaining results can be verified using the same procedure. Also, it is not possible to validate the outcomes at each value of s for the given domain, so we fix the value of s as $\frac{1}{2}$. Of course, a similar procedure can be used for other values of s.

Let us have two discrete probability distributions Θ (Binomial) and Φ (Poisson), with finite number of trials ($N=$ $10)$, probability of success of one trial $(\theta=0.7)$. So the probability of failure of one trial will be $\phi=1-\theta=1-0.7=0.3$ and the Poisson parameter will be $N \theta=10 \times 0.7=7$. The Binomial distribution represents real information, while the Poisson distribution shows its approximated form. Now, by using the probability mass function of Binomial distribution $\left[\Theta\left(T=t_{r}=r\right)=\theta_{r}={ }^{N} C_{r} \theta^{r} \phi^{N-r}\right]$ and Poisson distribution $\left[\Phi\left(T=t_{r}=r\right)=\phi_{r}=\frac{e^{-N \theta}(N \theta)^{r}}{r!}\right]$, we have the following evaluation for the random variable T :

Table 1. Evaluation of discrete probability distributions for $N=10, \theta=0.7, \phi=0.3$

t_{r}	0	1	2	3	4	5	6	7	8	9	10
$\theta_{r} \approx$	0.0000059	0.000137	0.00144	0.009	0.036	0.102	0.200	0.266	0.233	0.121	0.0282
$\phi_{r} \approx$	0.000911	0.00638	0.022	0.052	0.091	0.177	0.199	0.149	0.130	0.101	0.0709
$\frac{\theta_{r}+\phi_{r}}{2 \phi_{r}}$	0.503	0.510	0.532	0.586	0.697	0.788	1.002	1.392	1.396	1.099	0.698

Since $(\kappa, \zeta) \subset(0, \infty)$ with $0<\kappa \leq 1 \leq \zeta<\infty, \kappa \neq \zeta$, also $\frac{1}{2}<\kappa \leq \frac{\theta_{r}+\phi_{r}}{2 \phi_{r}} \leq \zeta<\infty$, so we can conclude from the Table 1 that the values of κ and ζ will be 0.503 and 1.396 , respectively. Also, by using the data from the Table 1 above, we have the following illustrations:

$$
\begin{gather*}
\sum_{r=1}^{11}\left|\theta_{r}-\phi_{r}\right|=\left|\theta_{1}-\phi_{1}\right|+\left|\theta_{2}-\phi_{2}\right|+\ldots+\left|\theta_{11}-\phi_{11}\right| \\
=|0.0000059-.000911|+|0.000137-0.00638|+\ldots+|0.0282-0.0709| \approx 0.4844 . \tag{30}\\
\begin{aligned}
& \sum_{r=1}^{11} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}\left(\theta_{r}+\phi_{r}\right)}{\theta_{r} \phi_{r}}= \frac{\left(\theta_{1}-\phi_{1}\right)^{2}\left(\theta_{1}+\phi_{1}\right)}{\theta_{1} \phi_{1}}+\frac{\left(\theta_{2}-\phi_{2}\right)^{2}\left(\theta_{2}+\phi_{2}\right)}{\theta_{2} \phi_{2}}+\ldots+\frac{\left(\theta_{11}-\phi_{11}\right)^{2}\left(\theta_{11}+\phi_{11}\right)}{\theta_{11} \phi_{11}} \\
&= \frac{(0.0000059-0.000911)^{2} \times(0.0000059+0.000911)}{0.0000059 \times 0.000911}+\ldots \\
&+\frac{(0.0282-0.0709)^{2} \times(0.0282+0.0709)}{0.0282 \times 0.0709} \approx 1.5558 . \\
& \sum_{r=1}^{11}\left(\frac{\theta_{r}+3 \phi_{r}}{4}\right) \log \left[\frac{\theta_{r}+3 \phi_{r}}{2\left(\theta_{r}+\phi_{r}\right)}\right]=\left(\frac{\theta_{1}+3 \phi_{1}}{4}\right) \log \left[\frac{\theta_{1}+3 \phi_{1}}{2\left(\theta_{1}+\phi_{1}\right)}\right]+\ldots+\left(\frac{\theta_{11}+3 \phi_{11}}{4}\right) \log \left[\frac{\theta_{11}+3 \phi_{11}}{2\left(\theta_{11}+\phi_{11}\right)}\right] \\
&=\left(\frac{0.0000059+3 \times 0.000911}{4}\right) \log \left[\frac{0.0000059+3 \times 0.000911}{2 \times(0.0000059+0.000911)}\right]+\ldots
\end{aligned} \\
\\ \tag{31}
\end{gather*}
$$

Now, at $s=\frac{1}{2}$, we also have the following evaluations:

$$
\begin{align*}
K_{s=\frac{1}{2}}(\Theta, \Phi) & =\sum_{r=1}^{11} \phi_{r}^{\frac{1-\frac{1}{2}}{\frac{1}{2}}}\left(\theta_{r}+\phi_{r}\right)=\sum_{r=1}^{11} \phi_{r}\left(\theta_{r}+\phi_{r}\right)=\phi_{1}\left(\theta_{1}+\phi_{1}\right)+\ldots+\phi_{11}\left(\theta_{11}+\phi_{11}\right) \\
& =0.000911 \times(0.0000059+0.000911)+\ldots+0.0709 \times(0.0282+0.0709)=0.2825 . \tag{33}\\
\left(A_{p}\right)_{s=\frac{1}{2}} & =\sum_{r=1}^{11} \phi_{r}^{\frac{1}{1 / 2}}=\sum_{r=1}^{11} \phi_{r}^{2}=\phi_{1}^{2}+\ldots+\phi_{11}^{2}=(0.000911)^{2}+\ldots+(0.0709)^{2}=0.1367 . \tag{34}
\end{align*}
$$

Now, put the data from the equations (30), (33) and (34), together with the values of κ and ζ, into the inequality (12) at $s=\frac{1}{2}$, we have

$$
0.881576\left(=\frac{4(\zeta-1)(1-\kappa)}{\zeta-\kappa}\right) \geq 0.4844\left(=\sum_{r=1}^{11}\left|\theta_{r}-\phi_{r}\right|\right) \geq 0.02461
$$

And, put the values from the equations (31), (33) and (34), together with the values of κ and ζ, into the inequality (20) at $s=\frac{1}{2}$, we have

$$
74.0059\left(=\frac{8(\zeta-1)(1-\kappa)[1+2 \kappa \zeta-(\kappa+\zeta)]}{(2 \kappa-1)(2 \zeta-1)}\right) \geq 1.5558\left(=\sum_{r=1}^{11} \frac{\left(\theta_{r}-\phi_{r}\right)^{2}\left(\theta_{r}+\phi_{r}\right)}{\theta_{r} \phi_{r}}\right) \geq 0.003174
$$

Also, put the values from the equations (32), (33) and (34), together with the values of κ and ζ, into the inequality (29) at $s=\frac{1}{2}$, we have

$$
0.03180(=G(\kappa, \zeta)) \geq .01154\left(=\sum_{r=1}^{11}\left(\frac{\theta_{r}+3 \phi_{r}}{4}\right) \log \left[\frac{\theta_{r}+3 \phi_{r}}{2\left(\theta_{r}+\phi_{r}\right)}\right]\right) \geq-0.006103
$$

Thus, validate the results (12), (20), and (29).

Remark 4.1

a. The results can be verified at other values of the number of trials (N) and probability of success of one trial (θ).
b. The results can be verified by taking other discrete probability distributions.

5. Conclusion

Several articles have defined the information inequality using divergence measures on different convex functions, but in this article the inequality is defined on s-convex functions and novel results are found in terms of different wellknown divergence measures. The author believes that these results have significant implications for information theory at different levels. These implications include signal processing, statistical data analysis, pattern recognition, analysis of contingency tables, testing of statistical hypotheses, and others.

Conflict of interest

The author declares no competing financial interest.

References

[1] Gkelsinis T, Karagrigoriou A. Theoretical aspects on measures of directed information with simulations. Mathematics. 2020; 8(4): 1-13.
[2] Garg H. Multi-criteria decision making method based on prioritized Muirhead mean aggregation operator under neutrosophic set environment. Symmetry. 2018; 10(280): 1-25.
[3] Joshi R, Kumar S. An exponential Jensen fuzzy divergence measure with applications in multiple attribute decision-making. Hindawi Mathematical Problems in Engineering. 2018; 2018: 4342098.
[4] Kadian R, Kumar S. Renyi's-Tsallis fuzzy divergence measure and its applications to pattern recognition and fault detection. Journal of Intelligent and Fuzzy Systems. 2020; 39(1): 731-752.
[5] Miguel AR, Rajeev KA. Generalization of entropy based divergence measures for symbolic sequence analysis. Plos One. 2014; 9(4): e93532: 1-13.
[6] Carlos GBC, Roux SG, Garnier NB. Kullback-Leibler divergence measure of intermittency: Application to
turbulence. Physical Review E. 2018; 97(1): 013107.
[7] Abdel BM, Mohamed M. A novel and powerful framework based on neutrosophic sets to aid patients with cancer. Future Generation Computer Systems. 2019; 98: 144-153.
[8] Hung KC, Tuan HW. Medical diagnosis based on intuitionistic fuzzy sets revisited. Journal of Interdisciplinary Mathematics. 2013; 16(6): 385-395.
[9] Gahlot S, Saraswat RN. A new fuzzy information inequalities and its applications in establishing relation among fuzzy f-divergence measures. Tamkang Journal of Mathematics. 2022; 53(2): 109-126.
[10] Umar A, Saraswat RN. Novel divergence measure under neutrosophic environment and its utility in various problems of decision making. International Journal of Fuzzy System Applications. 2020; 9(4): 82-104.
[11] Rényi A. On measures of entropy and information. Proceedings of the Fourth Berkeley Symposium. Mathematical Statistics and Probability. 1961; 4(1): 547-561.
[12] Csiszar I. Information type measures of differences of probability distribution and indirect observations. Studia Scientiarum Mathematicarum Hungarica. 1967; 2: 299-318.
[13] Bregman LM. The relaxation method to find the common point of convex sets and its applications to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics. 1967; 7(3): 200-217.
[14] Burbea J, Rao CR. On the convexity of some discriminating measures based on entropy functions. IEEE Transactions on Information Theory. 1982; 28: 489-495.
[15] Salicru M. Measures of information associated with Csiszar's divergences. Kybernetika. 1994; 30(5): 563-573.
[16] Dacunha Castelle D, Heyer H, Roynette B. Ecoled'Ete de Probabilites de Saint Flour VII-1977. Berlin: Springer; 1978.
[17] Dragomir SS, Gluscevic V, Pearce CEM. Approximation for the Csiszar's f-divergence via midpoint inequalities. In: Cho YJ, Kim JK, Dragomir SS. (eds.) Inequality Theory and Applications. Huntington, New York: Nova Science Publishers; 2001. p.139-154.
[18] Pearson K. On the Criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonable supposed to have arisen from random sampling. Journal of Science Series 5. 1900; 50(302): 157-172.
[19] Taneja IJ. New developments in generalized information measures. Advances in Imaging and Electron Physics. 1995; 91: 37-135.
[20] Sibson R. Information radius. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete [Probability Theory and Related Fields]. 1969; 14: 149-160.
[21] Kullback S, Leibler RA. On information and sufficiency. The Annals of Mathematical Statistics. 1951; 22(1): 7986.
[22] Jain KC, Saraswat RN. Some bounds of information divergence measure in terms of relative arithmetic-geometric divergence measure. International Journal of Applied Mathematics and Statistics. 2013; 32(2): 48-58.
[13] Jain KC, Chhabra P. New information inequalities in terms of Relative Arithmetic-Geometric divergence and Renyi's entropy. Palestine Journal of Mathematics. 2017; 6(2): 314-319.
[24] Jain KC, Chhabra P. New information inequalities in terms of variational distance and its application. Journal of New Results in Science. 2016; 11: 30-40.
[25] Jain KC, Chhabra P. New generalized divergence measure for increasing functions. International Journal of Information and Coding Theory. 2016; 3(3): 197-216.
[26] Jain KC, Chhabra P. New information inequalities on new generalized f-divergence and applications. Le Mathematiche. 2015; 70(2): 271-281.
[27] Jain KC, Chhabra P. New information inequalities in terms of one parametric generalized divergence measure and application. Journal of Mathematics and Computer Science. 2015; 15(1): 1-22.
[28] Jain KC, Chhabra P. New information inequalities on new f-divergence by using Ostrowski's inequalities and its application. International Journal of Current Research. 2015; 7(3): 13836-13853.
[29] Jain KC, Chhabra P. New information inequalities and its special cases. Journal of Rajasthan Academy of Physical Sciences. 2014; 13(1): 39-50.
[30] Chen X. New convex functions in linear spaces and Jensen's discrete inequality. Journal of Inequalities and Applications. 2013; 472: 1-8.
[31] Kolmogorov AN. On the approximation of distributions of sums of independent summands by infinitely divisible distributions. Sankhya. 1965; 25: 159-174.
[32] Taneja IJ. Inequalities among logarithmic mean measures. arXiv:1103.2580 [cs.IT]. 2011. Available from: http://
arxiv.org/abs/1103.2580v1.
[33] Hellinger E. Neue begrundung der theorie der quadratischen formen von unendlichen vielen veranderlichen. Journal Für Die Reine Und Angewandte Mathematik. 1909; 136: 210-271.
[34] Dragomir SS, Sunde J, Buse C. New inequalities for Jeffreys divergence measure. Tamusi Oxford Journal of Mathematical Sciences. 2000; 16(2): 295-309.
[35] Jeffreys H. An invariant form for the prior probability in estimation problem. Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences. 1946; 186(1007): 453-461.
[36] Jain KC, Srivastava A. On symmetric information divergence measures of Csiszar's fdivergence class. Journal of Applied Mathematics, Statistics and Informatics. 2007; 3(1): 85-102.
[37] Kumar P, Johnson A. On a symmetric divergence measure and information inequalities. Journal of Inequalities in Pure and Applied Mathematics. 2005; 6(3): 1-13.
[38] Kumar P, Chhina S. A symmetric information divergence measure of the Csiszar's f-divergence class and its bounds. Computers and Mathematics with Applications. 2005; 49: 575-588.
[39] Kumar P, Hunter L. On an information divergence measure and information inequalities. Carpathian Journal of Mathematics. 2004; 20(1): 51-66.

