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1. Introduction
Divergence measures are basically measures of distance between two or more than two probability distributions 

or it is a measure of discrimination between probability distributions. Any arbitrary divergence measure Ar(Θ, Φ)  
represents a natural distance measure from a true probability distribution Θ to an arbitrary probability distribution Φ. 
Typically, Θ represents an observation or a precisely calculated probability distribution, whereas Φ represents a model, a 
description, or an approximation of Θ.

Divergence measures are used effectively to resolve different problems in probability theory. The primary purpose 
of assessing how much information is contained in data is to quantify the amount of meaningful and useful content 
present in a given set of data. This assessment helps us understand the significance, relevance, and potential insights 
that can be derived from the data. In other words, it allows us to gauge the richness and value of the data in terms of the 
knowledge it can provide.

Divergence measures have been illustrated exceptionally valuable in a assortment of disciplines such as: guess of 
likelihood conveyances [1], choice making [2-3], design acknowledgment [4], examination of possibility tables [5], 
turbulence stream [6], Medical sciences [7-8], fuzzy sciences [9-10], etc.

Let h : (0, ∞) → (－∞, ∞) be a real, differentiable and convex function. Also, γ = {Θ = (θ1, θ2, θ3, ..., θp) : θr > 0, 

1

p
rr

θ
=∑  = 1}, p > 1 be the set of all complete finite discrete probability distributions with the assumption in limiting case 

0h(0) = 0h( )0
0  = 0.
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In 1961 [11], Renyi introduced a divergence measure ( ) 1
1

,  log ,p r
h rr

r
RL h h θθ

φ
−

=

   Θ Φ =    
   

∑  after that in 1967 

Csiszar [12] and Bregman [13] introduced ( ) 1
,  p r

h rr
r

C h θφ
φ=

 Θ Φ =  
 

∑  and Bh(Θ, Φ) = 
1

p

r
h

=∑  (θr) ( )rh φ−  ( )r rθ φ− −  

( ),rh φ′  respectively. Further, Burbea and Rao [14] came with ( ) ( ) ( )
1

,  ,
2 2

p r r r r
h r

h h
BR h

θ φ θ φ
=

+ + Θ Φ = −  
 

∑  then 

in 1994 [15] Miquel Salicru defined the functional divergence ( ) ( ) ( )
2

1
,  .p

h n rr
MS h hφ θ

=
 Θ Φ = − ∑  These all are 

functional or generalized divergence measures for comparing two discrete probability distributions Θ and Φ, at a time, (Θ, 
Φ) ∈ γ × γ.

We can obtain several well known divergences by defining a suitable convex function in one of these generalized 
divergences, like Csiszar's divergence is very useful for generationg different divergences due to its compact formula. 

Such as: For the convex function ( )
( )

21
,

1
u
u
−
+

 we have Triangular discrimination [16], for ( ) ( )11 log ,
2

uu +−  we have 

Relative J-divergence [17], for (u − 1)2, we have Chi square divergence or Pearson divergence [18], similarly for the 

function 1 1log ,
2 2

u u
u

 + +
 
 

 we have Arithmetic-Geometric mean divergence [19], also for ( ) ( )1 2log log ,
2 2 1
u uu

u
++

+
 

we have Jensen-Shannon divergence or Capacitory discrimination [14, 20], for the function ulogu, we have the famous 
Kullback-Leibler divergence or Relative entropy or Directed divergence [21], and many more.

We may say that Csiszar divergence behaves like a generator of divergences by using the appropriate convex 
function as a generating function.

Similarly, in 2013 [22] Jain and Saraswat introduced the following generalized divergence measure:

( )
1

,  ,
2

p
r r

h r
rr

S h θ φφ
φ=

+ Θ Φ =  
 

∑

where θr and rφ  are probability mass functions corresponding to the discrete distributions Θ and Φ, respectively.
The following fundamental properties (theorem 1.1 and 1.2) on Sh(Θ, Φ) can be accessed from the article [22]:
Theorem 1.1 If the given function h is convex and normalized in the interval (0, ∞), i.e., h''(u) ≥ 0 and h(1) = 0, 

then Sh(Θ, Φ) and Sh(Φ, Θ) are both non-negative and convex for the probability distributions Θ, Φ ∈ γ.
Theorem 1.2 Let D = a1h1(u) ± a2h2(u) ± ... ± aphp(u), where h1, h2, ..., hp are the finite number of convex functions 

characterized within the interval (0, ∞). Then SD(Θ, Φ) = a1 1hS (Θ, Φ) ± 
22 ha S (Θ, Φ) ± ... ± 

pp ha S (Θ, Φ), where ar is 
constant for each r = 1, 2, ..., p and (Θ, Φ) ∈ γ × γ.

Other properties, bounds, inequalities in terms of the different divergences and applications of Sh(Θ, Φ) can be 
found in the articles [23-29].

In addition, the article [27] reveals the following relationship:
Theorem 1.3 Let ( ): 0,  h ∞ →   be a real, convex function on ( ) ( ),  0,  κ ζ ⊂ ∞  with 0 1 ,  .κ ζ κ ζ< ≤ ≤ < ∞ ≠  For 

Θ, Φ ∈ γ, we have

( ) ( ),  ,  ,h hS B κ ζΘ Φ ≤

where

( ) ( ) ( ) ( ) ( )1 1
,  .h

h h
B

ζ κ κ ζ
κ ζ

ζ κ
− + −

=
−

In this work, we will use the following generalized means (m-Logarithmic power mean (4) and Identric mean (5)), 
to summarize the long calculations.

(1)

(2)

(3)
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The Definition 1.1, Remark 1.2 and Theorem 1.4 below can be found in the article [30].
Definition 1.1 Let Z be a linear space and s be a fixed positive real number, i.e., s ∈ (0, ∞). Let B ⊂ Z be a convex 

subset. Then, the mapping :h B →  (Set of real numbers), is desginated as s-convex on B if

( ) ( ) ( ),s sh x y h x h yδ η δ η+ ≤ +

for δ, η ≥ 0 with δ + η = 1 and x, y ∈ B.
Further, for yr ∈ B and δr ≥ 0 ∀ r = 1, 2, 3, ..., p with 

1
1,p

rr
δ

=
=∑  we have

( )
1 1

.
p p

s
r r r r

r r
h y h yδ δ

= =

 
≤ 

 
∑ ∑

Remark 1.1 At s = 1, the convex functions are precisely 1-convex functions or convex functions.
Remark 1.2 Generally, s-convex functions are different from functions that are convex.
(a). There are s-convex mappings in linear spaces which are not convex for some s ∈ (0, ∞) with s ≠ 1 (see 

Example 1.1).
(b). If 0 < s ≤ 1, every non-negative convex function defined on a convex set in a linear space is also an s-convex 

function. If s ≥ 1, every non-positive convex function defined on a convex set in a linear space is also an s-convex 
function.

Example 1.1 Let Z be a normed linear space, also let B = Z and 0 < s < 1, define h(x) = ‖x‖s for all x ∈ B. For each 
x, y ∈ B and δ, η ≥ 0 with δ + η = 1, when ‖δx‖ = 0, either δ = 0 or x = 0, therefore δx = 0, and h(δx + ηy) = h(ηy) = ‖ηy‖s = 
ηs‖y‖s = ηsh(y); when ‖δx‖ ≠ 0, from the increasing behaviour of the function g(u) = 1 + us − (1 + u)s in the interval [0, ∞), 
we have g(u) ≥ g(0) = 0, ∀t > 0, then

( ) ( ) 1
s

ss ss y
h x y x y x y x

x
η

δ η δ η δ η δ
δ

 
+ = + ≤ + = + 

 

( ) ( )1 .
s

s s ss s s s sy
x x y h x h y

x
η

δ δ η δ η
δ

  
 ≤ + = + = + 
   

Hence function h is s-convex on Z but not a convex function on Z with 0 < s < 1.
Theorem 1.4 Let :h B →  be a s-convex function, and 

1

1

p s
p rr

A δ
=

= ∑  with δr ≥ 0, for any 1 ≤ r ≤ p. Then we have

( )
1

1 1

1 1 ,
p p

s
r r r rs

pr rp

h h
AA

δ λ δ λ
= =

 
≥  

 
∑ ∑

(4)

(5)

(6)

(7)

(8)
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for all λr ∈ B ⊂ Z, where Z is linear space.

2. New inequality on jain-saraswat’s divergence
Now, we will derive the following new inequality on Sh(Θ, Φ) for s-convex functions. This inequality will further 

illustrate the relations in terms of different information divergences.
Theorem 2.1 Let h : (0, ∞) → (−∞, ∞) be a s-convex function. For (Θ, Φ) ∈ γ × γ, we have

( ) ( )1,  ,  ,
2

s
h p s

p
S A h K

A
 

Θ Φ ≥ Θ Φ 
 

where ( ) ( )
1

1
,  .

sp s
s r r rr

K φ θ φ
−

=
Θ Φ = +∑

Proof: By taking δr as ϕr and λr as 
2

r r

r

θ φ
φ
+  for r = 1, 2, 3, ..., p in inequality (8), we get the desired relation (9).

Remark 2.1 If function h is normalized, i.e., h(1) = 0, then at s = 1 the inequality (9) will convert into Sh(Θ, Φ) ≥ 0.

Remark 2.2 We denote ( ) ( )
1

1
,  

sp s
s r r rr

K φ θ φ
−

=
Θ Φ = +∑  to summerize the calculations.

3. Some special results
By using the inequalities (2) and (9) together, we may have the significant results in terms of the different 

divergences, like: Proposition 3.1 gives the result in terms of the Triangular Discrimination.
Case I For u ∈ (0, ∞) and s ∈ (0, 1]:
Proposition 3.1 For Θ, Φ ∈ γ and 0 < κ  ≤ 1 ≤ ζ < ∞, κ  = ζ, we have

( )( ) ( )

( )

2

2
1

1

1 ,  122 1 1 ( ) 4 .
,  

sp
psr r

p
r rr s

KA
A

K
ζ κ θ φ

κζ θ φ
+

=

 
Θ Φ − − − −  ≥ ≥

+ Θ Φ∑

Proof: Let ( ) ( ) ( ) ( )
( )

( )
2 2

2 3

2 12 1 4,  0,  ,   and .
uu

h u u h u h u
u u u

−−
′ ′′= ∈ ∞ = =  The function is strictly convex by 

definition because h′′(u) > 0 ∀ u > 0. Also, for the function ( ) ( )22 1
,

u
h u

u
−

=  we have ( )
2

1

( ),  ,p r r
h r

r r
S θ φ

θ φ=

−
Θ Φ =

+∑  
which is the famous triangular divergence measure [16] and

( )
( )( ) ( )( )

( )( ) ( )( )
2 22 1 1 2 1 1

2 1 1 2 1 111,  .hB

ζ κ κ ζ
ζ κ ζ κκ ζ ζκκ ζ

ζ κ ζ κ κ ζ κζ

− − − −
+ − − − −− −= = − = − −  

Moreover, by Remark 1.2 (b), we can conclude that the function h(u) is s-convex for s ∈ (0, 1] since h(u) ≥ 0 ∀ u > 0. 
So, we get the desired result (10) by using the inequalities (2) and (9), after a small simplification.

Proposition 3.2 For Θ, Φ ∈ γ and 0 1 ,  ,κ ζ κ ζ< ≤ ≤ < ∞ ≠  we have

( )( ) ( ) ( ) ( ) ( )1
1

1

,  
2 1 1 ,  log ,  2 log .

2 2

p
ssr r

r r p s p
r pr

K
L A K A

A
θ φζ κ κ ζ θ φ

φ
−

−
=

Θ Φ + − − ≥ − ≥ Θ Φ −         
∑

Proof: Let h(u) = 2(u − 1)logu, u > 0, ( ) ( ) ( ) 2
1 1 12 1 log  and 2 .h u u h u
u u u

 ′ ′′= − + = + 
 

 The function is strictly 
convex by definition because h′′(u) > 0 ∀ u > 0. Also, for the function h(u) = 2(u − 1)logu, we have 

(9)

(10)

(11)
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( ) ( )
1

,  log ,
2

p
r r

h r r
rr

S θ φθ φ
φ=

+ Θ Φ = −  
 

∑

which is the Relative J-divergence measure [17] and

( ) ( )( ) ( )( )2 1 1 log 2 1 1 log
,  hB

ζ κ κ κ ζ ζ
κ ζ

ζ κ
− − + − −

=
−

( )( ) ( ) ( )( ) ( )1
2 1 1

log log 2 1 1 ,  .L
ζ κ

κ ζ ζ κ κ ζ
ζ κ −

− −
= − = − −

−

Moreover, by Remark 1.2 (b), we can conclude that the function h(u) is s-convex for s ∈ (0, 1] since h(u) > 0 ∀ u > 0. 
So, we get the desired result (11) by using the inequalities (2) and (9), after a small simplification.

By using the same procedure, we have the following results For u ∈ (0, ∞) and s ∈ (0, 1], by omitting the proofs:
Proposition 3.3 For the function h(u) = 2|u − 1|, u > 0, we have

( )( ) ( )1

1

4 1 1
,  2 ,

p
s

r r p s p
r

A K A
ζ κ

θ φ
ζ κ

−

=

− −
≥ − ≥ Θ Φ −

− ∑

where 
1

p
r rr

θ φ
=

−∑  is the Variational divergence measure [31].
Proposition 3.4 For the function h(u) = 4(u − 1)2, u > 0, we have

( )( ) ( )
2

22

1

( )4 1 1 ,  2 ,
p

sr r
p s p

rr
A K Aθ φζ κ

φ
−

=

−
− − ≥ ≥ Θ Φ −  ∑

where 
2

1

( )p r r
r

r

θ φ
φ=

−∑  is the Chi-square divergence measure [18].

Proposition 3.5 For the function ( )
( )24 2 11 ,  0,

3
u u

h u u
u
− +

= >  we have

( ) ( )
( )

2 22 2
1

1

,  ,  2 1 ,
3 ,  

p
p s psr r r r

p
r rr s

K A K A
A

K
θ θ φ φκζ κ ζ

κζ θ φ
−

=

 Θ Φ − Θ Φ ++ ++ + − ≥ ≥  + Θ Φ  
∑

where 
2 2

1
2
3

p r r r r
r

r r

θ θ φ φ
θ φ=

+ +
+∑  is the Centroidal mean divergence measure [32].

Proposition 3.6 For the function ( ) 22 2 1,  0,h u u u u= − + >  we have

( ) ( ) ( )2 2 1 2 2

1
,  ,  2 ,  2 ,

p
s

r r p p s p
r

C A K A K Aκ ζ θ φ −

=

≥ + ≥ Θ Φ − Θ Φ +∑

where 
2 2

1 2
p r r
r

θ φ
=

+∑  is the Root mean square divergence measure [32] and  

( ) ( ) ( )2 21 2 2 1 1 2 2 1
,  .C

ζ κ κ κ ζ ζ
κ ζ

ζ κ
− − + + − − +

=
−

Proposition 3.7 For the function ( )
22 2 1,  0,u uh u u
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1
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∑

(12)

(13)

(14)

(15)

(16)
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where 
2 2

1

p r r
r

r r

θ φ
θ φ=

+
+∑  is the Contra harmonic mean divergence measure [32].

Case II For u ∈ (1
2, ∞) and s ∈ (0, 1]:

Proposition 3.8 For Θ, Φ ∈ γ and 1 1 ,  ,
2

κ ζ κ ζ< ≤ ≤ < ∞ ≠  we have
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Proof: Let ( ) ( ) ( )
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2

2
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 The function is 

strictly convex by definition because h′′(u) > 0 ∀ u > 0. Also, for the function ( ) log ,
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u

=
−

 we have Sh (Θ, Φ) = 

1
log ,

2 2
p r r r r
r

r r

θ φ θ φ
θ φ=

+ + 
 
 

∑  which is the AGM divergence measure [19] and
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Moreover, by Remark 2 (b), we can conclude that the function h(u) is s-convex for s ∈ (0, 1] since h(u) > 0 ∀ u > 12. 
So, we get the desired result (17) by using the inequalities (2) and (9), after a small simplification. 

In a similar manner, we have the following results For u ∈ (1
2, ∞) and s ∈ (0, 1], by omitting the proofs:

Proposition 3.9 For the function ( ) ( ) ( )1 1log 2 1 log ,  ,
2 2

h u u u u u u= − − − >  we have
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where 
1 1

2 21 log log
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r r r r
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∑ ∑  is the JS divergence measure [14, 20].
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where ( )2

1
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−∑  is the Hellinger divergence measure [33].
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∑  is the Symmetric Chi-square divergence measure [34].
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( )( ) ( ) ( ) ( ) ( )1
1

1

,  
4 1 1 2 1,  2 1 log ,  2 log 1 ,

p
ssr

r r p s p
r pr

K
L A K A

A
θζ κ κ ζ θ φ
φ

−
−

=

Θ Φ 
− − − − ≥ − ≥ Θ Φ − −    

 
∑

where ( )1
logp r

r rr
r

θθ φ
φ=

−∑  is the JK divergence measure [21, 35].

Proposition 3.13 For the function ( ) ( )21 14 ,  ,
22 1

u
h u u

u
−

= >
−

 we have

( )( )
( )

( ) ( )( )
( )

22
3
2

1

,  24 1 1 11 ,
2 1 2 1 ,  

p
s s pr r
p

r r r s p

K A
A

K A

ζ κ θ φζκ
ζ κ κ ζ θ φ

−

=

  Θ Φ −− − −−− + ≥ ≥ − − − Θ Φ −  
∑

where 
( )2

1

p r r
r

r r

θ φ

θ φ=

−
∑  is the Jain-Srisvastava divergence measure [36].

Proposition 3.14 For the function ( ) ( )
( )

22

3
2

8 1 1,  ,
22 1

u u
h u u

u

−
= >

−
 we have

( )( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )( )
( )( )

52 22 2 22 2 2

3 3 3 3
12 2 2 2

,  ,  28 1 1 1 1
,

2 1 2 1 ,  

s
p

r r p s p

r
r r s p

A K K A

K A

θ φζ κ κ κ ζ ζ
ζ κ κ ζ θ φ

−

=

  − Θ Φ Θ Φ −− − − − + ≥ ≥
 − − − Θ Φ − 

∑

where 
( )
( )

22 2

31
2

1
2

r rp

r

r r

θ φ

θ φ
=

−
∑  is the Pranesh-Johnson divergence measure [37].

Proposition 3.15 For the function ( ) ( )
( )

28 1 1log ,  ,
22 1 2 1

u u uh u u
u u
−

= >
− −

 we have

( ) ( )( )2

1
,  log

2

p
r r r r r r

r rr r r

D
θ φ θ φ θ φκ ζ

θ φ θ φ=

+ − +≥ ∑

(19)

(20)

(21)

(22)

(23)
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( ) ( )( )
( )( )

( )
( )

22 ,  ,  2 ,  
log ,

,  2 ,  

s
p s s p s

s p p s p

A K K A K
K A A K A

−  Θ Φ Θ Φ − Θ Φ
 ≥

Θ Φ −  Θ Φ − 

where 
( )( )2

1
log

2
p r r r r r r
r

r r r r

θ φ θ φ θ φ
θ φ θ φ=

+ − +∑  is the Pranesh-Chhina divergence measure [38] and  

( ) ( )( )
( )

( )
( )

( )
( )

8 1 1 1 1
,  log log .

2 1 2 12 1 2 1
D

ζ κ κ κ ζ ζ ζκκ ζ
ζ κ κ ζκ ζ

 − − − −
= + 

− − −− −  

Proposition 3.16 For the function ( ) ( )22 1 1log ,  ,
22 1

u uh u u
u u
−

= >
−

 we have

( ) ( )
( )

( )( )
( )

( )
( )

22 1

1

,  2 ,  
,  log log ,
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p s pr r sr r

r r r sr r p s p
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E

K A K A

θ φ θ φκ ζ
θ φ θ φ

−

=
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where 
( )
( )

2

1
log

2
p r r r r
r

r r r r

θ φ θ φ
θ φ θ φ=

− +
+∑  is the Pranesh-Hunter divergence measure [39] and

( ) ( )( ) ( ) ( )
3
2

1 1
1 1 1 1 1 1,  2 1 1 1 2 1,  2 1 ,  log ,  ,  .

2 2 1 2 1
E L L e I Iκ ζ ζ κ κ ζ κ ζ

κζ κζ κ ζ κ ζ− −

        = − − − − − + −       − −         

Case III For s ∈ (0, 1]:
Proposition 3.17 For Θ, Φ ∈ γ, we have

( ) ( )1
1

21 1 1log ,  ,  log log ,  .
2

p
sr

r p s
r r pr

eI L A K
A

φκ ζ φ
κ ζ θ φ−

=

   − ≥ ≤ Θ Φ   +   
∑

Proof: Let h(u) = −logu, u > 0, h'(u) = 1
u

−  and h''(u) = 2
1

u
 The function is strictly convex by definition because 

h′′(u) > 0 ∀ u > 0. Also, for the function h(u) = −logu, we have ( ) 1

2,  log ,p r
h rr

r r
S φφ

θ φ=
Θ Φ =

+∑  which is Adjoint of the 
Relative JS divergence measure [21] and

( ) ( ) ( ) ( )1
1 log 1 log log log log log 1 1,  log ,  ,  .hB eI L

ζ κ κ ζ ζ κ κ ζ κ ζκ ζ κ ζ
ζ κ ζ κ κ ζ −

− − − − − + −   = = − = −  − −   

Moreover, by Remark 1.2 (b), we can conclude that the function h(u) is s-convex for s ∈ (0, 1] if h(u) ≥ 0 ∀ u ≤ 1 
and it is s-convex for s ∈ [1, ∞) if h(u) ≤ 0 ∀ u ≥ 1. So, we get the desired result (26) by using the inequalities (2) and (9), 
after a small simplification.

Similarly we have the following cases for s ∈ (0, ∞) by skipping the detail proof:
Proposition 3.18 For the function h(u) = ulogu, u > 0 and taking into consideration the Remark 1.2 (b), the 

function h(u) is s-convex for s ∈ (0, 1] if h(u) ≥ 0 ∀ u ≥ 1 and it is sconvex for s ∈ [1, ∞) if h(u) ≤ 0 ∀ u ≤ 1. So, we 
have the result

( ) ( ) ( ) ( )1

1
1

,  
log ,  ,  log ,  log ,

2 2 2 2

sp
spr r r r

s
r pr

KA
eI L K

A
θ φ θ φκ ζ κζ κ ζ

φ

−

−
=

Θ Φ+ + − ≥ ≥ Θ Φ 
 

∑

(24)

(25)

(26)

(27)
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where 1
log

2 2
p r r r r
r

r

θ φ θ φ
φ=

+ + 
 
 

∑  is adjoint of the Relative AG divergence measure [19].

Proposition 3.19 For the function h(u) = (2u − 1)log(2u − 1), u > 1
2 and taking into consideration the Remark 1.2 

(b), the function h(u) is s-convex for s ∈ (0, 1] if h(u) ≥ 0 ∀ u ≥ 1 and it is s-convex for s ∈ [1, ∞) if h(u) ≤ 0 ∀ 12 < u ≤ 1. 
So, we have the result
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1
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,  log ,  log 1 ,

p
ssr

r p s p
r pr

K
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θκ ζ θ
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≥ ≥ Θ Φ − −    

 
∑

where 
1

logp r
rr

r

θθ
φ=∑  is the KL divergence measure [21] and
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F L
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κ ζ
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 
 − −
 = − − − +
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Proposition 3.20 For the function ( ) ( ) ( )1 1log ,  0
2 2

u uh u u
u

+ += >  and taking into consideration the Remark 1.2 (b), 

the function h(u) is s-convex for s ∈ (0, 1] if h(u) ≥ 0 ∀ u ≤ 1 and it is s-convex for s ∈ [1, ∞) if h(u) ≤ 0 ∀ u ≥ 1. So, we 
have the following result
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∑  is the Jain-Chhabra divergence measure [27] and
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( )( ) ( ) 1 11 11 log 1 log2 2 2 2
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ζ ζκ κζ κ
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κ ζ
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+ + + +− + −  
 =

−

4. Verification of the results
In order to be sure that the obtained results are authentic, it is necessary to take appropriate data. Also, we cannot 

take into account all 20 results for this process, so we will take only three results from each case. The remaining results 
can be verified using the same procedure. Also, it is not possible to validate the outcomes at each value of s for the given 
domain, so we fix the value of s as 12. Of course, a similar procedure can be used for other values of s.

Let us have two discrete probability distributions Θ (Binomial) and Φ (Poisson), with finite number of trials (N = 
10), probability of success of one trial (θ = 0.7). So the probability of failure of one trial will be ϕ = 1 − θ = 1 − 0.7 = 0.3 
and the Poisson parameter will be Nθ = 10 × 0.7 = 7. The Binomial distribution represents real information, while the 
Poisson distribution shows its approximated form. Now, by using the probability mass function of Binomial distribution 

( ) N r N r
r r rT t r Cθ θ φ − Θ = = = =  and Poisson distribution ( ) ( )

,
!

rN

r r
e N

T t r
r

θ θ
φ

− 
Φ = = = = 
  

 we have the following 

evaluation for the random variable T:

(28)

(29)
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Table 1. Evaluation of discrete probability distributions for N = 10, θ = 0.7, ϕ = 0.3

tr 0 1 2 3 4 5 6 7 8 9 10

θr ≈ 0.0000059 0.000137 0.00144 0.009 0.036 0.102 0.200 0.266 0.233 0.121 0.0282

ϕr ≈ 0.000911 0.00638 0.022 0.052 0.091 0.177 0.199 0.149 0.130 0.101 0.0709

2
r r

r

θ φ
φ
+

0.503 0.510 0.532 0.586 0.697 0.788 1.002 1.392 1.396 1.099 0.698

Since ( ) ( ),  0,  κ ζ ⊂ ∞  with 10 1 ,  ,  also ,
2 2

r r

r

θ φκ ζ κ ζ κ ζ
φ
+< ≤ ≤ < ∞ ≠ < ≤ ≤ < ∞  so we can conclude from the 

Table 1 that the values of  and κ ζ  will be 0.503 and 1.396, respectively. Also, by using the data from the Table 1 above, 
we have the following illustrations:

11

1 1 2 2 11 11
1

 ... r r
r

θ φ θ φ θ φ θ φ
=

− = − + − + + −∑

0.0000059 .000911 0.000137 0.00638  ... 0.0282 0.0709 0.4844.= − + − + + − ≈

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 211
1 1 1 1 2 2 2 2 11 11 11 11

1 1 2 2 11 111
 ... r r r r

r rr

θ φ θ φ θ φ θ φ θ φ θ φ θ φ θ φ
θ φ θ φ θ φ θ φ=

− + − + − + − +
= + + +∑

( ) ( )20.0000059 0.000911 0.0000059 0.000911
 ... 

0.0000059 0.000911
− × +

= +
×

( ) ( )20.0282 0.0709 0.0282 0.0709
1.5558.

0.0282 0.0709
− × +

+ ≈
×

( ) ( ) ( )
11

1 1 1 1 11 11 11 11

1 1 1 11 11

3 3 3 3 3 3log log  ... log
4 4 42 2 2

r r r r
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θ φ θ φ θ φ θ φ θ φ θ φ
θ φ θ φ θ φ=

     + + + + + +     = + +          + + +          
∑

( ) ( )
0.0000059 3 0.000911 0.0000059 3 0.000911log  ... 

4 2 0.0000059 0.000911
 + × + ×= + × + 

( ) ( )
0.0282 3 0.0709 0.0282 3 0.0709log 0.01154.

4 2 0.0282 0.0709
 + × + ×+ ≈ × + 

Now, at s = 12, we also have the following evaluations:
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1 111
2 1 1
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A φ φ φ φ
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= = = + + = + + =∑ ∑

(30)

(31)

(32)

(33)

(34)
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Now, put the data from the equations (30), (33) and (34), together with the values of  and κ ζ , into the inequality (12) 
at s = 12, we have

( )( ) 11

1

4 1 1
0.881576 0.4844 0.02461.r r

r

ζ κ
θ φ

ζ κ =

− −   
= ≥ = − ≥   −   

∑

And, put the values from the equations (31), (33) and (34), together with the values of  and κ ζ , into the inequality 
(20) at s = 12, we have

( )( ) ( )
( )( )

( ) ( )211

1

8 1 1 1 2
74.0059 1.5558 0.003174.

2 1 2 1
r r r r

r rr

ζ κ κζ κ ζ θ φ θ φ
θ φκ ζ =

  − − + − +  − +   = ≥ = ≥    − −   
∑

Also, put the values from the equations (32), (33) and (34), together with the values of  and κ ζ , into the inequality 
(29) at s = 12, we have

( )( ) ( )
11

1

3 30.03180 ,  .01154 log 0.006103.
4 2

r r r r

r r r
G θ φ θ φκ ζ

θ φ=

  + + = ≥ = ≥ −    +    
∑

Thus, validate the results (12), (20), and (29).
Remark 4.1 
a. The results can be verified at other values of the number of trials (N ) and probability of success of one trial (θ). 
b. The results can be verified by taking other discrete probability distributions.

5. Conclusion
Several articles have defined the information inequality using divergence measures on different convex functions, 

but in this article the inequality is defined on s-convex functions and novel results are found in terms of different well-
known divergence measures. The author believes that these results have significant implications for information theory 
at different levels. These implications include signal processing, statistical data analysis, pattern recognition, analysis of
contingency tables, testing of statistical hypotheses, and others.
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