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Abstract: This work presents the use of dynamic programming (DP), neuro-dynamic programming (NDP), rollout 
algorithm (RA) and model predictive control (MPC) for optimal control of batch cultivation of the yeast Kluyveromyces 
marxianus var. lactis MC5. DP is a widespread method for solving problems related to optimization and optimal 
process control. To reduce the “curse of dimensionality”, NDP has been implemented as an alternative. In NDP, a 
neural network is used to solve the dimensionality problem. A simpler NDP method, called RA, is used to approximate 
the optimal cost through the cost of a relatively good suboptimal policy, called the baseline policy. RA is a suboptimal 
method for deterministic and stochastic problems that can be solved by DP. In this paper we also present off-line MPC 
technique for tracking of constrained fermentation systems and it overcomes the problem by off-line optimizations prior 
to implementation. MPC is used to provide perturbation feedback and it is developed theoretical on base a controller as 
an illustration how we can avoid disturbances in the process optimisation. The developed control algorithm-combined 
NDP and MPC ensures maximum biomass production at the end of the process and feedback during disturbances and 
process stability and shows that robust stability can be ensured.

Keywords: optimal control, dynamic programming, neuro-dynamic programming, rollout algorithm, model predictive 
control, biotechnological processes

MSC: 49L20, 90C39

1. Introduction
Dynamic programming involves step-wise calculation of the cost-to-go function to arrive at the solution, not only 

for a specific initial state, but also for the general state. Once obtained, the cost-to-go function is a convenient means of 
obtaining a solution for the total condition. In very few cases, the stepwise optimisation to analytically obtain a closed-
form expression for the cost-to-go function has been solved. The conventional approach to the problem involves a state 
space grid, computing and storing the traversal cost for each grid point as one backward march from the first stage to 
the last. Such an approach is rarely practical due to the exponential growth of computing. This is called the “curse of 
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dimensionality”, which must be removed for this approach to be widely used [1].
Neuro-dynamic programming [2] is a relatively new class of DP method for optimal control and further decision 

making under uncertainty. These methods have the potential to address the main problem of DP-the “curse of 
dimensionality”. The name NDP expresses the methods dependence on both DP and neural network concepts. In this 
case, the name reinforcement learning is also used in the artificial intelligence community, where the methods come 
from [3].

A simpler type of DP method called RA [4-5] is used to approximate the optimal price by the price of a relatively 
good suboptimal policy called the base policy. RA is a suboptimal control method for deterministic and stochastic 
problems that can be solved by dynamic programming. RA will also produce a feasible solution whose cost is not less 
than the cost corresponding to the baseline heuristic.

MPC is a general methodology for solving time domain control problems [6-9]. More than 25 years after the 
advent of MPC, a theoretical basis for this technique has begun to emerge in the industry as an effective means of 
dealing with multivariable constrained control problems. A lot of progress has been made in nonlinear systems during 
these years. Many questions remain for practical application, including the reliability and efficiency of the online 
computational scheme. This dynamic programming problem must be solved in order to “rigorously” deal with model 
uncertainty. Approximation techniques proposed for this purpose are very often at a conceptual stage. Among the 
broader research needs, the following areas have been identified: multivariable system identification, performance 
monitoring and diagnostics, nonlinear condition estimation, and batch system control are essential. MPC can be used to 
provide a maximum/minimum value of the chosen optimisation criteria and ensure perturbation feedback. In this way, 
the resistance of the process to disturbances is improved.

The successful application of DP, NDP, RA and MPC for optimal management of biotechnological (fermentation) 
processes has been shown in publications [10-28].

This work presents the use of DP, NDP, RA and MPC methods for optimal control of fed-batch cultivation of yeast 
Kluyveromyces marxianus var. lactis MC5.

2. Materials and methods
The formulation of each optimisation problem focuses on the number of variables and the range of their permissible 

values to be determined. Other compulsory component of the description is the scalar criterion “quality”, the so called 
purpose function. The decision of the optimal control problem concerns the permissible composition of the values of 
variables, defines the optimal meaning of the purpose function.

2.1 Formulation of optimisation problem of fermentation processes

Multitude problems connected to the optimisation and optimal control (OC) of dynamic objects and in particular to 
the fermentation process (FP) can be examined in the following way:

[ ]( ), ( ), )d f t t t
dt

=
X X U

where X(t) is n-dimensionally vector of the systems state, U(t) is m-dimensionally vector of the control, f is a known 
function of the system state X(t) and the control variables u(t), X is a continuous and differentiate vector-function, t is 
time.

Let U(t) be the multitude of the permissible values of the control variable u(t):

( ) ( ) for each t t t=u U

Control variables that satisfy the conditions (2) are called admissible. t0 marks the starting point in time regarding 
the start of the system check. The state of (1) at time t = t0 can be known:

(1)

(2)
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where Х0 is a known vector of the initial conditions.
It is useful in solving an optimal control problem to include this vector (Х0) in the control effects vector. In this 

way, the optimal values of the initial conditions can be determined off-line.
The examination of the system has finished at tf -marked as final time moment. tf can be known predictably or to be 

unknown. For the other hand tf can be one of the optimisation variables. It has been supposed that:

( )ft M t∈

where the multitude M(t) contains the permissible values of t and it is usually given by algebraic equations and 
inequalities.

The constrains can also be imposed on the vector of state:

( ) ( )t θ∈X X

in particular: X(tf) ∈ θ(X).
J(u) the criterion of quality has been noted by the demanded aim as follows:

0

( ) [ ( ), ( ), ]
ft

t

J L t t t dt= ∫u X u

where L[X(t), u(t), t] is a scalar, continuous and continuously differentiates from the function of X(t), u(t) and t.
The optimal control problem can be formulated as follows: to find such an optimal control vector u*(t) that 

maximizes (6) while satisfying (2)-(6).

2.2 Optimisation criteria

The main criteria of quality that are used for optimal control of biotechnological/fermentation processes are shown 
in [28-31].

In this work, we use only one of these criteria, namely productiveness of biomass [29]:

min max 0

1max ( ) ( )
ft

t

J F t X t dt
≤ ≤

= ∫
u u u

where: t0-initial time, tf -final time of the process, umin and umax-vectors with minimal and maximal values of control 
variables.

2.3 Constrains and final conditions

The total substrate quantity QS in the bioreactor has been imposed and it should be restricted [29]. For the main 
substrate, quantity in the bioreactor (regulated for the fermentation) can be written:

0 0 0S IQ S V S V= +

where V0 is the volume of the fermentation medium at the moment t0; VI is the volume of the feeding solution at the 
beginning of the process.

If the FP is a fed-batch and the feeding solution has a feeding flow rate (F) then the following can be written:

(3)

(4)

(5)

(6)

(7)

(8)
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0
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ft

I
t

F t dt V=∫

According to the fact that F(t) = dV/dt, than:

0 0

0( )
f f f

o

t t V

f
t t V

dVF t dt dt dV V V
dt

= = = −∫ ∫ ∫

where: Vf is the volume of the fermentation medium at the end of the process; VI = Vf − V0.
If the final conditions are known then:

0 0 0 0(0) , (0) , (0) , (0) , ( )f fX X S S P P V V V t V= = = = =

3. Methods for optimal control of biotechnological processes
3.1 Dynamic programming

DP algorithm block-scheme is shown on Figure 1.

Figure 1. DP algorithm block-scheme

In general, the optimal control task includes the following elements [1, 4]:

(9)

(10)

(11)

Begin

End

Optimization criteria, J

Choice of control variables

Steady state vector values and control variables

Discretisation of the time and control variables

Computing of the Bellman function for each
stage from the end to begging of the discrete time

Storing of the Bellman function and
determined control variables for each stage

Passing of the discrete time from the beginning to 
the end and the steady state values determination
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-Selection of the optimisation criteria J;
-Mathematical model of the process;
-Selection of control variables and their limits;
-Constraints on phase coordinates.
The choice of optimal control criteria and the choice of optimisation model determine each case.

3.2 Neuro-dynamic optimal control

The objective of the NDP for optimal control is to bring the bioreactor from a steady state of low product 
concentration to a desired high product concentration. NDP uses a neural network to approximate the cost-to-
go function. The method is found to be robust to approximation errors. Both deterministic (step changes in kinetic 
parameters) and stochastic problems (random variations in kinetic parameters and substrate composition) are 
investigated [2].

The NDP algorithm block-scheme is shown in Figure 2 [12, 13].

Figure 2. Block-scheme of NDP algorithm

The simulation involves computing the converged approximation of the profit to move offline. The scheme of the 
NDP algorithm is as follows [2]:

1. Process simulation with selected suboptimal policies for all representative operating conditions. Starting with 
a given policy (some rule for choosing a vector of decision u at each possible state i). Approximate assessment of this 
policy.

2. The solution of one-stage-ahead cost plus cost-to-go problem results in the improvement of the cost values [11].
3. Cost-to-go function is calculated using the simulation data for each state made during the simulation, as well as 

for each closed loop simulation (simulation part).
4. A new policy is determined by minimizing the Bellman equation. The optimal cost is replaced by the calculated 

point function and the process is repeated.
5. Approximate the neural network function to the data to approximate the cost-to-go function to a smooth state 

function.
6. Sometimes a policy update may be needed to increase state space coverage.

3.3 Rollout optimal control algorithm

Rollout algorithms were first proposed for the approximate solution of discrete optimisation problems [3-5].
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Generally, rollout algorithms are capable of magnifying the effectiveness of any given heuristic algorithm through 
sequential application. This is due to the policy improvement mechanism of the underlying policy iteration process. 
Scheme of the algorithm is shown in Figure 3 [5].

Figure 3. Rollout algorithm scheme

3.4 Model predictive control

MPC is used to forecast process output within a forecast horizon [6-9]. The control impacts are calculated for a 
control horizon in such a way that the predicted result is as close as possible to the desired one and the first control 
action is successively applied in each step (Figure 4).

Figure 4. Internal model predictive control

The Figure 5 the notations used in the description are adapted from [6, 7].
The first part of the MPC algorithm is the specification of the reference trajectory which may be as simple as a step 

change to a new set point or as it is common for batch processes-a trajectory that the system must follow. At the present 
time k, the reference trajectory has a value r(k).

Also at k, consider the predicted process output over a future prediction horizon p. A suitable controller model of 
the process is used to obtain the projected behavior of the output over the prediction horizon by simulating the effects of 
the past inputs applied to the actual process (value ˆ( )y k  at the current time) [8].
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Figure 5. MPC algorithm scheme

The same controller model is used to compute a sequence of m current and future manipulated variable motions to 
satisfy a specified objective function. Here m is the motion horizon. The objective function is to minimize the sum of the 
squares of the deviations of the predicted values of a controlled variable from a time-varying reference trajectory over 
the forecast horizon based on the available system information at the current time k, subject to imposed constraints. At 
the next time instant k + 1, the process measurement is taken again and the horizon is shifted forward by one step. The 
optimisation is carried out again based on this new horizon and using the updated systems information and the process 
continues. Since the horizon recedes at the next time step, it is also known as a receding horizon control problem [6].

4. Results and discussion
4.1 Process model of yeast Kluyveromyces marxianus var. lactis MC5

The process of cultivation the yeast Kluyveromyces marxianus var. lactis MC5 from a natural substrate (whey) is 
not well studied. The system of nonlinear differential equations includes the biomass concentration depending on the 
two main substrates: lactose and oxygen. The experimental studies were carried out in a laboratory bioreactor with a 
magnetic drive and a maximum volume of 2 L. The cultivation conditions of the process are described in detail in [34].
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where: 
X-biomass concentration, g/L;
S -substrate concentration, g/L;
CL-oxygen concentration, g/L;
CL

*-equilibrium oxygen concentration, g/L;
Sin-feed concentration of substrate g/L;
V-working volume, L;
kla-volumetric mass-transfer coefficient, h-1;
φG-volume fraction of gas in the bioreactor, vol. %;
Y1, Y2-yield coefficients, g/g;
μ-specific grown rate of the biomass, h-1;
μm-maximal grown rate of the biomass, h-1;
kS, kC-Monod saturation constants, g/L;
ki-inhibition constant.
The mass-transfer coefficient (kla), power (PG and PL) and gas-hold up (φG) are determined by the following 

dependences [35]:
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where: 
PG-power input with aeration, W;
PL-power input without aeration, W;
D-bioreactor diameter, m;
d-impeller diameter, m;
n-rotation speed, s-1;
QG-gas flow rate, m3/s;
Re-Reynolds number;
ρ-liquid density, kg/m3; 
υ -liquid dynamic viscosity, Pa/s.
The initial conditions of the model (12)-(21), constructive and regime parameters and the kinetics model 

coefficients have the following values (mean values):

(16)
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30.2 g/L; 44.0 g/L; 6.5 10 g/L;(0)   (0)   (0)  in LX S S C −= = == ×

1(0) 0.0 L/h;  (0) 1.164 L;  13.3 s ;  0.057 m;  0.114 m.F V n d D−= = = = =

1 30.89 h ;  1.64 g/L;  1.74 10  g/L;  0.91;m S C ik k kµ − −= = = × =

1 20.45 g/g;  308.64 g/g.Y Y= =

4.2 NDP for optimal control of yeast Kluyveromyces marxianus var. lactis MC5

In this part of our work, by applying NDP, the optimal feed flow rate (F) of a fed-batch process was determined 
for the yeast Kluyveromyces marxianus var. lactis MC5 (12-21) to increase biomass at the end of the process, criteria J1. 
See eq. (7).

The goal of optimal control is to bring the bioreactor from a low product (biomass) state to a desired high level.
The simulation-based approach involves computation of the converged profit-to-go approximation off-line.
Further values of F are examined: F ∈ [0.01, ..., 0.8] × 10-3 g/L which can cover the possible rang of variations.
Improvement to the cost-to-go function is obtained through the iterations of the Bellman equation. This method is 

known as a value iteration.
The converged cost-to-go function is used in solving the one-stage-ahead problem. The choice for switch over the 

one-stage-ahead is calculated by:

6

( )

( ) ( )
( ) arg max , , ( )k k

k
k k

J t J t
k f B k

t t
     = +    
     u

u u u

where: u is the vector of control variables, k is the optimisation stages; B is Bellman equation; J(tk) represents cost-to-go 
values for a stage k;  J~ represents functional approximation of cost-to-go, the superscript j represents the iteration index.

A MATLAB 7.0 program was developed to solve the problem of optimal process control in the cultivation of yeast 
Kluyveromyces marxianus var. lactis MC5.

The optimal profile of feed flow rate is shown in Figure 6. The biomass production before and after the optimisation 
are shown in Figure 7.

Figure 6. Optimal profile of feeding flow rate received through NDP
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Figure 7. Model and optimised biomass production with NDP

Through the determined optimal feeding rate profile (Figure 6) an increase in biomass production by 39.41% was 
obtained.

4.3 Rollout optimal control of yeast Kluyveromyces marxianus var. lactis MC5

The task of optimal control by rollout method is the same as for optimal control by NDP. Control variable is 
feeding flow rate (F), and the criterion is maximum biomass production (7).

The process duration is divided in 14 time intervals:

0
0 1 2, , , ..., ( ),  1 h,  14 h.N

N f
t t

t t t t t t N
N
−

∆ = = =

Admissible values for feeding flow rate are taken in the interval 0 ≤ F ≤ 10 × 10-3, (L/h) with discrete steps ΔF = 0.01 
× 10-3, (L/h).

The optimal biomass production profile is shown in Figure 8.
Using this profile 40% increasing of biomass quantity in the end of the process (Figure 8) is achieved in 

comparison to the fermentation with constant feeding rate.
However, the optimisation algorithm (NDP and Rollout) does not have a feedback and it does not guarantee 

robustness to process disturbances. Therefore a MPC will be developed that will guarantee robustness to process 
disturbances.

4.4 MPC of yeast Kluyveromyces marxianus var. lactis MC5

In the previously investigation methods did not guarantee robustness of the process disturbances. Because of that, 
we developed a method, based on MPC. The optimisation is off-line in theoretical investigations in our process. The 
main investigations in this point is to develop an off-line MPC algorithm to a non-liner fermentation systems that can 
deal with both persistent disturbance and time-varying scheduling parameter.

An algorithm for application of MPC for the investigated process is developed for MPC off-line optimized control 
strategy. The results are shown in Figure 9.
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Figure 8. Model and optimised biomass with Rollout method

Figure 9. MPC to yeast Kluyveromyces marxianus var. lactis MC5
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The 5th hour is chosen as a first control point. As it may be noted that there is a diversion from the reference 
profile marked on the figure by “-”, accordingly the optimal profile is changed-NDP profile. The second point is at the 
8th hour. The third point is at the 10th hour. The obtained control guarantees the robustness and stability of the biomass 
production.

The control of fermentation processes focuses on an open-loop operation owing to their highly nonlinear 
and inherently difficult dynamic behaviour. The optimisation is carried out off-line and the bioreactor is fed by the 
determined optimal feed profile.

Updating the disturbance estimate and solving the optimisation at each time step compensates the unmeasured 
disturbances and model inaccuracy (which causes actual system outputs to be different from the model outputs). Usually 
the problem is formulated so that the objective is minimized subject to certain system constraints, for example bounds 
on the magnitude of current and future inputs or outputs. This ability to handle constraints in an optimal way is the 
primary advantage of the model predictive control over other design schemes. The primary disadvantage of this MPC 
off-line optimized control strategy relative to other techniques is its inability to deal with model uncertainty.

5. Conclusions
In this paper, we have presented some approaches for optimal control of fermentation processes for a whey 

fermentation by yeast Kluyveromyces marxianus var. lactis MC5 fed-batch fermentation.
At the first time, we developed and applied a method based on the optimal control approach based on NDP for 

the examined biotechnological process. The results showed that the quality of biomass was increased at the end of the 
process. 

Second, a method for application of DP with the purpose of optimisation of fermentation process named Rollout 
was also developed and presented. Using Rollout control method an effective algorithm for process optimisation was 
synthesized. An optimal profile of feeding rate was obtained. Investigation showed that in this case, it was particularly 
simple to implement a Rollout approach and it should be applied for an on-line replanting and in situations when the 
problem parameters changed the fermentation processes over time.

These developed optimisation methods did not have a feedback and it did not guarantee robustness to process 
disturbances. MPC was developed to guarantee robustness of the process disturbances. This optimisation was carried 
out off-line, theoretical on base developed investigations an illustration how we can control of disturbance of the optimal 
control variable (feeding rate). Also this off-line MPC was technique for tracking of constrained fermentation systems. 
The NDP algorithm was applied for local optimisation of choice optimisation hour in order to find an optimal profile of 
the control variable. The developed control algorithm-combined NDP and MPC ensured maximal biomass production at 
the end of the process and guaranteed a feedback on disturbance as well as robustness to process disturbances. This off-
line MPC optimisation to a non-linear fermentation system can lead with both persistent disturbance and time-varying 
parameters. Also this presented MPC optimal control strategy overcame the problem by off-line optimizations prior to 
implementation and shown that robust stability can be ensured.
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