
Contemporary MathematicsVolume 5 Issue 4|2024| 4589

Research Article

Asymptotic Behavior of Trajectories in Some Models of Ecnomic 
Dynamics

S. I. Hamidov1,2

1Department of Mathematic Cybernetics, Baku State University, Baku, Azerbaijan
2Department of Ingeneering Mathematics and Artificial Intelligence, Azerbaijan Technical University, Baku, Azerbaijan
 E-mail: sabir818@yahoo.com

Received: 26 May 2023;  Revised: 17 August 2023;  Accepted: 9 October 2023

Abstract: Asymptotic behavior of trajectories in Neumann type models of economic dynamics with average growth 
rate  is studied. Index set is introduced and the sequence of cones generated by the cone Z of the Neumann-Gale model 
is considered. The concept of quasi rate of the model zi is introduced. The relationship between the concepts of average 
growth rate and quasi rate is found. The relationship between the turnpikes Mα for different values of х and the set Az of 
conic hulls of the sets of all angular distance limit points is examined. Upper and lower estimates for a non-empty turnpike 
are obtained. Under some additional conditions, more accurate lower estimate is obtained which allows to conclude that in 
most cases the set Mα is a subset of the set Az. Algorithm is proposed for constructing a trajectory Xi, which has the point 
x among its angular distance limit points. Theorem on the existence of a turnpike which has the point х among its angular 
distance limit points is proved.
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1. Introduction
Asymptotic behavior of trajectories of various classes is of great interest in Neumann type models of economic 

dynamics. In this work, the asymptotic behavior of trajectories with average growth rate α is studied. These trajectories 
represent both an independent and an applied interest as in many cases they help to describe asymptotic behavior of 
optimal trajectories. A lot of research have been dedicated to related problems [1-5]. The papers study the asymptotic 
properties of solutions of matrix linear models in discrete time. In [6], the limiting behavior of trajectories for some 
classes of Neumann-Gale models is considered. In [7], a theorem on the asymptotic behavior of trajectories in a Leontief-
type nonlinear model under certain conditions was proved. Dynamic systems with trajectories given by the sequences of 
sets are studied [8]. In [9], the behavior of optimal trajectories in economic growth models with Cobb-Douglas production 
functions is studied. In [10], the asymptotic behavior of solutions of linear dynamical models with discrete time was 
studiet. In [11-13], several theorems on the turnpike properties of trajectories for some models of economic dynamics of 
the Leontief type were proved.

R. Radner and L. Mckenzie [13] proved several theorems on the main properties of trajectories for some models of 
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economic dynamics of the Leontief type. In [], the turnpike properties of optimal trajectories of Leontief-type models 
were studied. A theorem is proved that, under certain conditions, the turnpike of the production mapping is a ray.

Similar results were also obtained in [13-15].
First, we give a definition of some concepts and notation used in this paper. Models of the Neumann type of economic 

dynamics are given by multi-valued mappings a(x), which are defined as follows:

( ): n na R Rπ+ +→

so that

,( ) { ( , ) }, n na x y x y Z Z R R+ += ∈ ⊂ ×∣

where nR+ the positive orthant of the space Rn and Z is a polyhedral convex closed cone. The vector  is called the resource 
vector, the vector y is called the output vector.

A sequence of vectors { } 1t tx ∞
=  is called a trajectory of the Z model if ( )1t tx a x+ ∈ .

The purpose of this work is to obtain upper and lower bounds for a non-empty turnpike and propose an algorithm for 
constructing a trajectory that has a point among all limit points of the angular distance.

Definition [6]. The trajectory of the { } 0t tx ∞
=  model Z is said to have an average growth rate α, (α ﹥ 0) if for some

p riQα∈  where { }0 ( )Q p p a pα
′= > ∈∣ ; in other words, if it {xt} is consistent with the trajectory of the dual model Z' of 

the form, for φp = (p, α-1p, ..., α-1p, ...) at p riQα∈ .
Definition [6]. The number α is called the quasi-growth rate of the Neumann-Gale model if there is a process 

( , )x y Z∈  such that x yα ≤  the inequality ( )y y xα′ ′≤ −  has no solution ( ),x y Z′ ′ ∈ .

The set of indices is introduced as follows: a sequence of cones Z1, ..., Zn is constructed in Zi, 1,  i N=  such a way that 
each is a projection of the previous one onto some face of the cone n nZ R R+ +⊂ × .

Our work is based on the construction method presented in [6, 11]. We describe it below.
Let Z be a  convex cone in n nR R+ +×  such that int n

rP Z R+∩ ≠ ∅. By Neumann growth rate of the cone Z we mean a 
number

( , )
( , ) 0

sup min
i

i I ix y Z
x y

y
x

α ∈
∈
≠

=

where I = {1, 2, ..., n}.
The sequence (xk, yk) of elements of the cone Z is called a Neumann sequence if

min
i
k

i I i
k

y
x

α∈ →

Consider the set of indices ZI I⊂ . The relation Zi I∈  is true if and only if there exists a Neumann sequence (xk, yk) 
such that 0 ( 1,  2,  )i

ky k> = … .
Let Z be a Neumann-Gale model. The cone generates the finite sequence of cones Z1, Z2, ..., Zn in the following way. 

Let Z1 = Z, denote 1
nR K+ = . So, 1 1 1Z K K⊂ × . If I1 = IZ1 = I, then the process is over; if I1 ≠ I, then we consider the face 

K2 of the cone nR+, stretched on the unit vectors with the numbers from I \ I1, and define Z2 as a projection of the cone K1 
onto the face K2 × K2 of the cone n nR R+ +×

If 
2

2 1\ZI I I I= = , then the process is over; if otherwise, we consider the face K3 of the cone nR+, stretched on the 
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unit vectors with the numbers from ( )1 2\I I I∪ , and denote by Z3 the projection of Z2 onto the face K3 × K3 of the cone. 

n nR R+ +× . If ( )3
3 1 2\ZI I I I I≡ = ∪ , the we construct the cone Z4, etc.

This process will be over after some step N.
As a result, we will have constructed the cones Zj and the sets of indices I j ( j = 1, 2, ... N), with ( )1 1,  

j
jj j

ZI I I I j j∩ =∅ ≡ ≠ 
( )1 1,  

j
jj j

ZI I I I j j∩ =∅ ≡ ≠  Denote by αj the Neumann growth rate of the cone Zj. The numbers αj will be called the growth quasi 
rates of the model. It is known [9] that αj - 1 ﹥ αj.

Throughout this paper, we will use the terminology of [6, 16].

2. Main part

The triple ( ,  ( ,  ),  )x y pα , where α is a positive number, ( , )x y Z∈ , and ( )*np R+∈  is a positive functional, is called 
an equilibrium state of the model Z, if the following conditions hold:

( ) ( )   ( ,  ) ,  

( ) 0.

x y

p y p x for every x y Z

p y

α

α

≤

≤ ∈

>

，,

( ,  ( ,  ),  )x y pα ( ,  ( ,  ),  )x y pα for every

The number α, appearing in the definition of the equilibrium state, is called a growth rate of the model . Every growth 
rate of the model is a quasi rate, the opposite is not true [6].

The trajectory X is said to have an average growth rate α, if there exists a trajectory φα of the dual model of the form 

( )1,  ,  ,  ,  np p pαϕ α α− −= … …

coordinated wtih x.
As is known [6], if for some α there exists a trajectory with an average growth rate α, then α is a growth quasi rate 

of the model.
Obviously, for the growth rate α there always exists a trajectory with an average growth rate α.
By turnpike Mα we mean [22] a conical hull of the set of all angular distance limit points of all trajectories with av-

erage growth rate . Angular distance between the points  and  is defined as  ,x y
x y‖‖ ‖‖

.

Denote by Az the conical hull of the set of all angular distance limit points of all optimal trajectories.
The conditions which provide zM Aα ⊂  and even zM Aα ⊂  are stated in [8, 9].
In this work, we continue studying the relationship between the sets Ma and Az for different values of a. We obtain 

upper and lower estimates for a non-empty turnpike (Corollary of Lemma 1, Lemma 2). Also, under some conditions we 
get a more precise lower estimate, which allows us to conclude that in a fairly large range of cases the relation zM Aα ⊂  
is true not only when  is a quasi rate, but also when  is a gowth rate of the model. (Corollary of Theorem 2).

Besides, we show Theorem 1 that if Maj and Mak are non-empty, then for j ﹥ k

.jM Mα αµ⊂

Let’s introduce the following notations:
R j is a space stretched on the unit vectors with the numbers from the set of indices J.

JR+  is a positive orthant of the space R j.
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We consider the Neumann-Gale model n nZ R R+ +⊂ × , which has  quasi rates, and its dual model Z'.
Lemma 1 For every quasi rate αj, every number λ ﹥ αj, every index N

ji Iµ∈


 and every trajectory X = (xt) there 
exists a limit 

lim 0t i
tλ χ− = ,

Proof. Assume that there exist a trajectory X = (xt), the quasi rates aj, a number λ0 = αj and an index N
ji Iµ∈



 such 
that the above lemma is not true, i.e. 0

0lim 0it
tx cλ− = > .

Choose ( )1 1
1 0 ,  jλ λ α− −∈ . Using the results of [6, 16], it is not difficult to show the existence of prices p satisfying 

the following conditions:

( )1,  ,p p Zλ ′∈

1
10 for every ,  jip i Iµ
−= ∈



0 for every . i N
jp i Iµ> ∈



In fact, by Theorem 2 of [6], the numbers 1

jα
 (and only them!) are the growth quasi rates of the dual model Z'. On 

the other hand, by Lemma 1 of [6], for every 
1

1 1:
j j

α α
α α −

< <  there exists a functional ( )*np R+∈  such that

( ,  )p p Zα ′∈

1
10 for every ,jip i Iµ
−= ∈∪

0 for every . i N
jp i Iµ> ∈



Taking into account that 
0

1 1

jα λ
<  and, we obtain the existence of the prices p for λ1 with the above properties.

Consider the sequence φ = (pt), where p0, pt = λ1pt-1. It is clear that ptxt does not increase monotonically with the 
growth of t.

On the other hand, assuming that the lemma is not true, we obtain

0 0 0 0 0 01
1 00 01

0

t
i i i i i it t

t t t t t tp x p x p x p x
λ

λ λ
λ

−
−

 
≥ = =   

 
，

where 1
1

0
1

λ

λ−
> , 0

0 0it
tx cλ− = > . Consequently, 0

0lim 0it
tx cλ− = > , which is impossible. This contradiction proves the lemma.

Corollary. For every angular distance limit point x of any trajectory X with average growth rate αj-1 for 1 for 1i j Nα − < ≤ , the 
following relation is true:

0 for every . i N
jx i U Iµ= ∈

Proof. As the quasi rates are decreasing monotonically with the growth of j, applying the theorem for 1jλ α −=  we 
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get the validity of the corollary.
Lemma 2 If the turnpike Mαj is non-empty, then every point x of the form

1
10 for every ,  jix i Iµ
−> ∈



0 for every i N
jx i Iµ= ∈



(1)

lies on the turnpike Mαj.

Proof. Let nx R+∈  be an arbitrary point satisfying (1). Let’s construct the trajectory X = (xk) with average growth rate ,

for which nx R+∈ will be an angular distance limit point.
Recall that 1j jα α− > . Choose the number ( )1,  j jλ α α −∈  and consider the sequence of positive numbers βk which 

converges monotonically to +∞.
As 1jλ α −> , from the definition of a quasi rate it follows that there exists a point nx R+∈  which satisfies (1) and. 

( ,  )x x Zλ ∈ .
The points x and nx R+∈ have the same non-zero coordinates. Consequently, for some θ1, θ2 the inequality

2 1x x xθ θ< < (2)

holds.
Choose ( ),  jλ α λ∈ . For every βk there exists a positive integer mk such that

2
km

k
λθ β
λ

  > 
 

Let’s construct the trajectory X1 = (yk) such that nx R+∈ is one of its angular distance limit points. Describe the first step of 
constructing such trajectory. Let

                                                                        0
,y x=

1 1 for every 1,  2.t ty y mλ −= −

Obviously, ( )1t ty a y −∈ , because ( ,  )x x Zλ ∈ . Further, let

1
1

1
1

1
1 1

2 .

m
m

m
m

y x

y x

θ λ

θ λ

−
− =

=

In view of (2), we have 

( ) ( )1 1 1 11 2 1 and m m m my a y y a y− − −∈ ∈ .

Describe the k-th step of construction. Let
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1
1 1 1  1 2k k

t t l ly y for m mλ −
−= + ≤ −∑ ∑

1
1 2 1 for 1,k t k

t ly x t mθ θ λ−= = −∑

2 1 for . k t k
t ly x t mθ λ= = ∑

,for

As the point yt is proportional to x for 1
1
k

lt m−= ∑ , it is obvious that 1( )t ty a y −∈  for

1

1 1
1 2

k k

l lm t m
−

+ ≤ ≤ −∑ ∑

Then, as (2) is satisfied, we have 1( )t ty a y −∈  for 1
1 1k

lt m−= −∑  and 1( )t ty a y −∈  for 1
1
k

lt m−= ∑ .
Thus, we have constructed the trajectory X, which (it is not difficult to see) has the point x among its angular distance 

limit points.
Now let ( )2 tX y=  be an arbitrary trajectory with average growth rate. As shown in [17], the sequence ∨( )3 tX y=  

with

1
10 for every ,  ji

ty i Iµ
−= ∈



∨

                                                                       
 for every i N

t jty y i Iµ= ∈



is also a trajectory of the model with average growth rate aj.
Construct the trajectory X = (xt) letting

 for , i i N
t t jx y i Iµ= ∈



∨

                                                                     
1

1 for ,ji i
t tx y i Iµ

−= ∈


or, which is the same thing,

t t tx y y= +∨

Obviously, X has an average growth rate aj. As jλ α> , it follows from Lemma 1 that

lim 0 for every . t i N
t jx i U Iµλ − = ∈

On the other hand, for 1 1k
lt m= −∑  we have
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1 1 1
1 2 2

2 21
.

lt mk
t i k

t k
l

x x x x
θ θλ λ λ λλ θ θ θ

λ λ
β

λ θ λ θ
−

=

    = =   >   
     

∏

Then, in view of kβ → +∞ and 1
1lim  for jt i

tx i U Iµλ −− = +∞ ∈  for 1
1lim  for jt i

tx i U Iµλ −− = +∞ ∈ , x is an angular 
distance limit point for the trajectory. The lemma is proved.

Theorem 1 If the turnpikes Mαj and Mαμ are non-empty and j < μ, then

.
j

M M
µα α⊂

Proof. Let X = (xt) be an arbitrary trajectory with average growth rate αj. Also let ( )1 tX x= , where

1
10 for every , i u

t li Iχ −= ∈


 for every .i i N
t t lx i Iµ

µ
χ = ∈



Obviously, X1 is also a trajectory with average growth rate αj

Let x be an arbitrary point in Mαj. By the definition of Mαj, there exists a trajectory X3 = (yt) with average growth rate  
αj such that the point x is among its angular distance limit points.

Consider the trajectory X4 = X1 + X3. Obviously, X4 has an average growth rate αμ. Let .t t ty x y= +  By the corollary 
of Lemma 1,

1lim 0 for every . t i N
j t j ly i Iα−

+= ∈


And, as 
j

x Mα∈ , we have

lim 0 for every : 0.t i i
j ty i xα− > >

Taking into account that 

1
10 , for every  and , i

t lx i I t jµ µ−= ∀ ∈ <


we obtain j
x Mα∈ . The theorem is proved.

Theorem 2 Let Z be a Neumann-Gale model, and let there exist a trajectory X and an infinite set of time moments τ 
such that the sets of indices I = {1, 2, ..., n} can be divided into three subsets J1, J2, J3 as follows:

10 for every ,  ,i
tx i J t τ= ∈ ∈

1 2 20  for every ,  , i
tc x c i J t τ< ≤ ≤ < ∞ ∈ ∈

3lim  for every . i
tx i J= +∞ ∈

(4)

(5)

(3)

Then, for every point nx R+∈  satisfying the conditions
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1 20 for every , ix i J J= ∈ ∪

30 for every ,ix i J> ∈ (6)

there exists a trajectory X1, which satisfies the conditions (3)-(5) and has the point x among its angular distance limit 
points.

Proof. Let x be an arbitrary point in nx R+∈  satisfying the conditions (6). To prove the theorem, it suffices to construct 
the trajectory X1 with the properties (3)-(5), which has the point x among its angular distance limit points. Introduce the 
following notations:

x∨ is a projection of nx R+∈  onto RJ1,

x  is a projection of nx R+∈  onto RJ2,

x  is a projection of nx R+∈  onto RJ3.

Consider the sequence of positive numbers ψk < 1 such that 

1 0t t cψ∞
= = >∏

Select the subset τ1 = {t1, ..., tm...}⊂ τ of the set of moments τ such that

1  for every 
m m mt t t mx x tϕ τ+ ≥ ∈ 

1 1:
m m m mm t t t tt x x xτ λ λ +∀ ∈ ∃ ≤ ≤

(7)

(8)

The existence of such a set follows from (4) and (5). In fact, as lim i
tx = +∞ and the points 

mtx  and x  have the same 
non-zero coordinates, there exists τ τ′ ⊂  such that the relation (8) is true for every t τ ′∈ . The condition of the theorem 
implies that the sequence (x t), where t τ ′∈ , has a thickening point in 2JR+ . But then we can choose 1τ τ ′∈  such that the 
relation (7) is satisfied for every t τ ′∈ .

To construct our trajectory, we start with the trajectory X = (xt) appearing in the theorem.
Step 1. Let
a) yt = xt for every t < t2;

b) 
2 2 2 2 10,  ,  t t t ty y x y xλ= = = 

∨

Obviously, ( )2 2 1t ty a y
−

∈ , because yt2 < xt2

Step 2. From the properties (6) and (7) of the trajectory X it follows that

2 1 2 21 ,  t t t ty x y xψ≥ ≥  .

As 2 1
0t ty x= =∨ ∨  and ψ1 < 1, we have 2 1 1ty xψ≥ . But then ( )11 ta xψ ⊂ ( )2ta y . This inclusion allows constructing the  

t2 + s2-th piece of X1 letting
a) [ ]2 11 2 for 1,  1 ;t ty x sτ τψ τ+ += ∈ −

b) 
2 2 2 2 2 21 2 10, ,t s t s t t sy y x y xψ λ ψ+ + += = =  ,

http://ojs.wiserpub.com/index.php/SCE/
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where s2 = t3﹣t1.
Step k. Repeating the method of Step 2, let
a) 1

1  for 1 3
k k

k
t l t ky x s kτ τψ τ−
+ += ≤ ≤ + −∏ ;

b) 1 1
1 1 10,  ,  ,

k k k k k k k
k k

t s t s l t t s k ly y x y xψ λ ψ− −
+ + + += = =∏ ∏ 

where sk = tk + 1﹣t1 + k﹣2.
Thus, we have constructed the trajectory X1 = (yt). From construction it follows that the point x is one of the angular 

distance limit points of X1. It also follows that X1 possesses the properties (3)-(5). The theorem is proved.
Corollary If there exists the trajectory X with average growth rate αj satisfying the conditions

10 for every  and , i
tx i J t τ= ∈ ∈

1 2 20  for every  and , t i
j tc x c i J tα τ−< ≤ ≤ < ∞ ∈ ∈

3lim  for every ,t i
j tx i Jα− = +∞ ∈

(9)

(10)

(11)

then 3
j

JR Mα+ ⊂ .

Proof. Without loss of generality, by virtue of the homogeneity of Neumann-Gale model we can assume αj = 1. Then, 
applying Theorem 2, we obtain the desired result. The corollary is proved.

Let’s make some remarks to clarify the meaning of the conditions (9)-(11). If there exists the trajectory with average 
growth rate αj, then it is obvious that

1 1UN
j I Jµ+ ⊂

                                                                                      3 1 .jJ Iµ⊂ ∪

The set J1 can be empty.
From the point of view of corollary, it doesn’t matter at all whether αj is a growth rate or not. The only thing that 

matters is the satisfaction of conditions (9)-(11). In case where 3 1
rJ U Iµ= , the corollary to Theorem 2 gives us nothing 

new compared to the result of Lemma 2.
It is obvious that when αj is a growth rate and there exist the equilibrium prices p:pi ﹥ 0 for every ri I∈ , then the 

following relation is always true:

1
3 1 .jJ Iµ

−= ∪

It can be shown that when αj is not a growth rate and there exists the trajectory with average growth rate αj, then the 
following relation is always true:

3 .jJ I∩ ≠ ∅ (12)

In case where αj is a growth rate with no corresponding positive pries in Jj, the satisfaction of (9) depends on the 
properties of the considered model. Let’s mention a rather typical case, where the conditions (9)-(11) and (12) hold. For 
example, a two-dimensional model Z, consisting of two processes:

(1,  0) (1,  0) and (1,  1) (2,  1)→ →
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So, we have obtained an upper estimate for a non-empty turnpike Mαj

1int ri , where , 
j

jJR M J Iα µ
′ ′

+ ⊃ = ∪

a lower estimate

1
1,  where ,

j
jJR M J Iα µ

′′ −′′
+ ⊂ =



and a more precise lower estimate under conditions (9)-(11):

3
j

JR Mα+ ⊂

It is clear that the validity of the inclusion

3J
zR A+ ⊂

requires some special properties of the model, for example, 3 jJ I∩ ≠ ∅ or the condition that the intersection 3jI J∩  
consists of one or the other indices, i.e. the turnpike in general can be “great”, namely, it can be j zM Aα ⊂/  regardless of 
whether  is a growth rate or not.

3. Results
The cone set Zi and the index set Ii  are constructed.
The relationship between the set of turnpikes Mα for different values of α and the sets Ai of conic hulls of the sets of 

all angular distance limit points of optimal trajectories is examined.
Upper and lower estimates for a non-empty turnpike are obtained. Under some additional conditions, more accurate 

lower estimate is obtained. 
Algorithm is presented for constructing a trajectory X, which has the point x among its angular distance limit points.

4. Conclusions
The main result of the study is the construction of an algorithm for constructing trajectories with an average growth 

rate having a point among all points limiting the angular distance. The obtained results can be used to construct highways 
in models of economic dynamics of the Neumann type with discrete time, which have an average growth rate, and can 
also be useful in studying the asymptotic properties of trajectories on an infinite time interval.
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