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Abstract: This study aims to provide an understanding of the concept of omitted variable bias through the total 
derivative method. This novel approach that is often overlooked could bring a new perspective to statisticians, 
econometricians, or researchers in neighboring disciplines such as social sciences, management, or economics. In order 
to complement this mathematical method, the study also employs graphical representations. By doing so, we provide 
a detailed walkthrough of the total derivative method, its visual depiction, and its application to the omitted variable 
bias. We believe that this approach can enhance the understanding of regression analysis and foster a deeper connection 
between mathematics and econometrics. Overall, this study can contribute to the development of new theoretical 
foundations using the total differential method in this context.
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1. Introduction
In the initial stage of university education, particularly in economics and other social sciences, difference operators

are commonly used to explain various concepts. This phenomenon is evident, for instance, in the introduction to first-
year economics courses, where the concept of elasticity is explained using a difference operator. Subsequently, in the 
second year of study, it is emphasized that these differences converge to zero, resulting in the transition from difference 
operators to derivative operators. At this stage, the derivative formulas for point elasticity are introduced instead of arc 
elasticity. It is noteworthy, however, that a comparable approach is not typically observed in undergraduate statistics or 
econometrics courses.

By highlighting this disparity, our study aims to bridge the gap between the application of difference operators 
in basic economic concepts and their extension to derivative operators in a statistical context. We seek to demonstrate 
the relevance and significance of utilizing the total derivative method in statistical analysis, thereby facilitating a 
deeper understanding of the subject matter. This contribution is particularly valuable as it enhances the integration of 
mathematical principles and statistical techniques in the field of economics and related disciplines.

The total differential or derivative concept is not an analytical tool in statistics or econometrics textbooks. In 

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2024 Tolga Omay, et al.
DOI: https://doi.org/10.37256/cm.5120243135
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

mailto:omay.tolga@gmail.com
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://doi.org/10.37256/cm.4220232500
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0715-8447
https://doi.org/10.37256/cm.5120243135


Volume 5 Issue 1|2024| 493 Contemporary Mathematics

general, statistics or econometrics is taught using algebra at the undergraduate level, while in higher-level courses, 
it is taught with matrix algebra. In order to understand multivariate regression analysis, many algebraic derivations 
are utilized at the undergraduate level. In addition, various examples are given for multivariate regression analysis in 
the undergraduate-level books. The meaning of partial regression parameters is explained with these examples and 
derivations. The primary purpose of these efforts is to explain that each partial regression parameter contributes to 
dependent variables while other parameters are constant. Model misspecification describing multivariate regression and 
omitted variables is analyzed using different analytical techniques at the undergraduate and graduate levels. However, 
there is a lack of explanation of the multiple regression partial parameters or omitted variable bias through the total 
differential or derivative in statistics or econometrics materials in general. It seems that econometrics, or mathematical 
statistics, lacks a critical tool in this respect. This study aims to develop a method for representing omitted variable bias 
with the total derivative, which fills this gap in mathematical statistics. With this contribution, we believe it is evident 
that techniques used in the continuous domain can also provide significant insights into the discrete domain. In addition, 
we provide a graphical representation that enriches the understanding of the relationship between these two theoretical 
relations with each other. This attempt is expected to shed light on other statistics or econometric issues from a different 
perspective and lead to new theoretical foundations. It is far beyond the scope of this article to include all the efforts 
made to understand the information content of the partial regression parameter in multivariate regression analysis. 
For this reason, it is decided to discuss the subject by being limited to the descriptions of Gujarati and Porter [1] at the 
undergraduate level. They have explained the omitted variable bias using algebra techniques. 

The paper is organized as follows: Section 2.1 gives a detailed algebraic explanation of multivariate regression 
and omitted variable bias in line with the definitions of Gujarati and Porter [1]. In Section 2.2, the concept of the 
total differential and derivative is argued in accordance with the Chiang and Wainwright [2] context. In Section 3, 
the concepts of omitted variable bias and total differential/derivative will be discussed. This section provides an 
understanding of obtaining the omitted variable bias with the total derivative. Furthermore, the auxiliary graphic 
developed for a better understanding of the subject is presented. Finally, the concluding section stresses the importance 
of this new proposed method.

2. Theoretical explanation and background
2.1 Model misspecification: Multivariate regression and omitted variable bias

First, the derivation of the omitted variable bias will be shown with the deviation model from the mean. For this 
purpose, the multivariate regression model in which two variables are included is considered as follows:

                                                                         1 2 ,2 3 ,3i i i iY X X uβ β β= + + +                                                                      (1)

                                                     1 2 ,2 3 ,3 1 , 1 ,...i i i p i p p i p iY X X X X uβ β β β β− −= + + + + + +                                                 (1’)

                                                                              
1 ,

2

p

i j i j i
j

Y X uβ β
=

= + +∑
                                                                       

(1’’)

where i denotes the entities or cross-sectional data. Equation (1’) is the generalized version, and equation (1’’) is the 
generalized compact version. For the deviation form, all the variables in the equation are subtracted from their means:

                                   ( ) ( ) ( ) ( ) ( )1 ,0 0 2 ,2 2 , ,...i i i p i p i p p iY Y X X X X X X X u uβ β β− = − + − + + − + −

( ) ( ) ( )1 , 1 1
1

p

i i j j i
j

Y Y X X u uβ − −
=

− = − + −∑

( ) ( ) ( ) ( ) ( )1 ,0 0 2 ,2 2 3 ,3 ,3 3i i i i i iY Y X X X X X X X u uβ β β− = − + − + − + −

                               (2)

Since ( )i iy Y Y= − , ( ),0 0 0 00, 1,1,1...,1 , 1iX X X X− = = = , ( ),2 ,2 2i ix X X= − , and ( ),3 ,3 3i ix X X= − , we obtain the 
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following equation:

                                                    

( )2 ,2 3 ,3i ii iy x x u uβ β += + −

( )
2

,

p

j
i j i j iy x u uβ

=

= + −∑

( ),2 ,2 3 ,3 1 , 1...i p i p ii i p i py x x x x u uβ β β β− − += + + + + −

                                              
(3)

We multiply equation (3) by ,2ix , and then ,3ix  to get the normal equations:
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Get the sum of both sides of the equations:

                     

( )2
,3 2 ,2 ,3 3 ,3 ,3i i i i i i iy x x x x x u uβ β= + + −∑ ∑ ∑ ∑

( )2
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Now, we multiply both sides of the equation by 2
,2

1

ix

                   

( )2
1 , ,2 , ,2,2 2 ,2 3 ,3 ,2 ,2

2 2 2 2 2 2
,2 ,2 ,2 ,2 ,2 ,2

... p i p i p i p ii i i i i i i

i i i i i i

x x x xy x x x x x u u
x x x x x x

β ββ β − −
= + + + + +∑ ∑∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
( )2

1 , 1 ,3 , ,3,3 2 ,2 ,3 3 ,3 ,3
2 2 2 2 2 2
,3 ,3 ,3 ,3 ,3 ,3

... p i p i p i p ii i i i i i i

i i i i i i

x x x xy x x x x x u u
x x x x x x

β ββ β − − −
= + + + + +∑ ∑∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
( )2

, 1 2 ,2 , 1 3 ,3 , 1 1 , 1 , , 1 , 1
2 2 2 2 2 2
, 1 , 1 , 1 , 1 , 1 , 1

...i i p i i p i i p p i p p i p i p i p i

i p i p i p i p i p i p

y x x x x x x x x x u u
x x x x x x

β β β β− − − − − − −

− − − − − −

−
= + + + + +∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
( )2

, 2 ,2 , 3 ,3 , 1 , 1 , , ,
2 2 2 2 2 2
, , , , , ,

...i i p i i p i i p p i p i p p i p i p i

i p i p i p i p i p i p

y x x x x x x x x x u u
x x x x x x

β β β β− − −
= + + + + +∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

( )2
,2 ,2 ,3 ,2 ,2

2 32 2 2 2
,2 ,2 ,2 ,2

i i i i i i i

i i i i

y x x x x x u u
x x x x

β β
−

= + +∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

             (6)

                                                       

( )

( )

( )

, ,2,2 ,2
22 2

2,2 ,2
,2

, ,3,3 ,3
22 2

2,3 ,3
,3

, , 1, 1 , 1
22 2

2, 1 , 1
, 1

.

.

.

p

j i j ii i i i
j

i i
i

p

j i j ii i i i
j

i i
i

p

j i j i pi i p i p i
j

i p i p
i p

x xy x x u u
x x

x

x xy x x u u
x x

x

x xy x x u u
x xx

β

β

β

=

=

−− −
=

− −
−

 
− = + 

 
 

 
− = + 

 
 

 
− = + 

 
 

∑∑ ∑∑∑ ∑∑

∑∑ ∑∑∑ ∑∑

∑∑ ∑∑∑ ∑

( ), ,, ,
22 2

2, 1 , 1
, 1

p

j i j i pi i p i p i
j

i p i p
i p

x xy x x u u
x xx

β
=

− −
−

 
− = + 

 
 

∑

∑∑ ∑∑∑ ∑∑

Now, we have the familiar equations:
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Now, let’s take the expectation on both sides of the equation

                                                         

( ) ( ) ( ) ( ),2
12 2 3 32 2

,2

0

i i

i

x u u
E b E E b E

x
β β

 −
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∑
∑

                                                     

(9)

From the properties of the expectation operator and the assumptions of classical linear regression, ( )12 12E b b= , 
( )2 2E β β= , ( )3 32 3 32E b bβ β= , and ( ),2 0,   0i iE x u u= = . Then, omitted variable bias can be shown as follows:

                                                                                   12 2 3 32b bβ β= +                                                                              (10)

                                                    

12 2 3 32 4 42 1 1,2 ,2
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...
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p p p p
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b b b b b
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β β β β β
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− −

− − − − − −

− −

= + + + + +
= + + + + +

= + + + + +
= + + + + +

This derivation can also be represented with matrix algebra (see appendix A for the matrix algebra notations).

2.2 Total differentials and derivative

The partial derivative definition requires that there is no functional dependence between the independent variables, 
such that any independent variable can change without affecting the values of the other independent variables. If 
the independent variable is related to other independent variables, we cannot directly take the partial derivative and 
transfer the change in the related independent variable to the dependent variable. In this case, it will indirectly affect 
the dependent variable through the other related independent variables. Therefore, an operator should be developed that 
can handle this situation more properly than the partial derivative does. In these cases, it is necessary to resort to total 
derivatives instead of partial derivatives. In order to first understand the total differentiation process, originating from 
the concept of total derivative, it is necessary to understand the concept of differential [2]. When we say total derivative, 
we discuss the case where dy or dx are treated as separate. However, we characterize these isolated structures as dy / dx 
derivatives. We can extend this structure to more than one variable. In this case, the concept of differential turns into the 
concept of total derivative.
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Given a function such as y = f(x), the difference division Δy/Δx represents the rate of change of y with respect to 
x. Since Δy = (Δy/Δx)Δx is valid, given the rate of change of Δy/Δx and the change in x, the magnitude of y∆  can be 
found. When x∆  is very small, y∆  will also be very small, and the difference quotient Δy/Δx will turn into the derivative 
of dy/dx. In this case, small changes in x and y will transform y∆  into dy and x∆  into dx. Now, we can represent the 
identity with the following equation:  

                                                                        
' or ( )dydy dx dy f x dx

dx
 = = 
                                                                    

(11)

The symbols dy and dx are called the differential of y and x, respectively. If we divide the identity (11) by dx, we 
obtain:

                                                                   
( )
( )
dy dy dx
dx dx

 =  
  dx

' or ( )dy dxf x
dx

=
dx                                                              (12)

                                                                         
'( )  or ( )

( )
dy dy dy f x
dx dx dx

 = = 
 

In this way, it is seen that the division of differential dy and dx can be interpreted as a derivative. Once the 
derivative of a function is given, the differential dy is immediately obtained. This result can be used to calculate the 
change in y caused by a change in x. However, it should be noted that the dy and dx differentials are only valid for very 
small changes. The concept of differential can easily be extended to include functions with two or more independent 
variables ( ) ( )2 3 ,2 ,3,  or ,t t ty f x x Y f X X= = . Here, the variables have been denoted as in the multiple regression 
estimation to be consistent with the Gujarati and Porter [1] (see p.185). The total change in Yt due to small changes in 
Xt,2 , and Xt,3 is represented by differentials and partial derivatives as follows:

                                                                         
,2 ,3

,2 ,3

t t
t t t

t t

Y Y
dY dX dX

X X
∂ ∂

= +
∂ ∂                                                                  

(13)

                                                                   ( ) ( )' '
,2 ,2 ,3 ,3t t t t tdY f X dX f X dX= +                                                              (14)

The dYt differential is the sum of the change stemming from two sources, changes in Xt,2 and Xt,3. Finding such a 
total differential is called as a total derivative. For example, if any Xt,3 is constant, then dXt,3 will be zero. Then, we have

                                                                                   
,2

,2

t
t t

t

Y
dY dX

X
∂

=
∂                                                                             

(15)

If we divide both sides of equation (15) by dXt,2:

                                                                                

,2

,2 ,2

tt t

t t

dXdY Y
dX X

∂
=
∂ ,2tdX                                                                          (16)

In this case, we can also show that the total differential and the partial derivative are equal. We can generalize this 
into n variables as follows:

                                    
( ) ( ) ( ) ( )' ' ' '

,2 ,2 ,3 ,3 , , , ,
1

...
n

t t t t t t n t n t i t i
i

dY f X dX f X dX f X dX f X dX
=

= + + + = ∑                               
(17)
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Since the concept of differential has explained, the next step is to show the rate of change in Yt with respect to, 
when Xt,2, and Xt,3 are connected or correlated. The methodology used in such cases is multivariate regression analysis. 
Both Gujarati and Porter [1] and Chiang and Wainwright [2] describe exactly the same relationship regarding to the 
subject in the context of multivariate regression. Chiang and Wainwright [2] describes it through a figure, which they 
refer as a channel map on page 190, while Gujarati and Porter [1] explains it through direct and indirect effects. The 
relationship is mathematically explained by Chiang and Wainwright [2] by the help of two functions ( ),2 ,3,t t tY f X X=  
and ( ),3 ,2t tX g X= . They argue that Xt,2 can affect the dependent variable Yt through two separate channels: (1) 
indirectly, through Xt,3 (via the function g and then with the f function), and (2) directly, via the function f. The direct 
effect can simply be represented by the partial derivative fXt,2 while the indirect effect can only be expressed by a 
product of two derivatives. In other words, a total derivative, ,2 ,2 ,3 ,3t t t t tdY fX dX fX dX= +  is needed to express both 
effects together in this case. To get this total derivative, we use differentials and partial derivatives. If both sides of this 
total derivative are divided by the dXt,2 differential:

                                                                      

,2
,2

,2

tt
t

t

dXdY
fX

dX
=

,2tdX
,3

,3
,2

,3
,2 ,3

,2 ,2

t
t

t

tt
t t

t t

dX
fX

dX
dXdY

fX fX
dX dX

+

= +
                                                              

(18)

Since the ratio of two differentials to each other can be interpreted as a derivative, the expression dYt / dXt,2 on the 
left-hand side will be a measure of the rate of change of Yt relative to Xt,2. Moreover, from the above equation, we see 
the indirect effect of how Xt,2 affects Yt through Xt,3.

                                                                              
,3

,3 ,2

tt

t t

dXY
X dX
∂
∂



We have demonstrated the indirect effect with partial derivative and differential operators. In addition, we see 
how to take the total derivative of Yt with respect to Xt,2. We can next represent omitted variable bias by using the total 
derivative method.  

3. A new method to explain omitted variable bias via total differential
We have shown how to take the total derivative of Yt with respect to variable Xt,2. This total derivative when the 

variable Xt,3 is not included in the regression equation, causes a bias in the β2 parameter. Now, we have come to the part 
where we show how omitted variable bias and total derivative are related to each other. For this purpose, we first take 
the total derivative of Yt with respect to Xt,2, and then we show the multivariate regression equivalents of the total and 
partial derivatives. Unlike the partial derivative, a total derivative does not require Xt,3 to remain constant as Xt,2 changes, 
thus allows the predicted relationship.

                                                                     

,2
,2

,2

tt
t

t

dXdY
fX

dX
=

,2tdX
,3

,3
,2

,2

,2 ,2

t
t

t

tt t

t t

dX
fX

dX
dXdY Y

dX X

+

∂
=
∂ ,2tdX

  

2 12 32 3

,3

,3 ,2

,3

,2 ,2 ,3 ,2

,3

,2 ,2 ,3 ,2

tt

t t

tt t t

t t t t

tt t t

t t t t

b b

dXY
X dX

dXdY Y Y
dX X X dX

dXdY Y Y
dX X X dX

β β

∂
+
∂

∂ ∂
= +
∂ ∂
∂ ∂

= +
∂ ∂

                                                              
(19)
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Finally, omitted variable bias can be expressed as:

                                                                                   12 2 3 32b bβ β= +                                                                               (20)

We complement this structure with Figure 1, which depicts a relationship between omitted variable bias and total 
derivative. The lower right panel of the figure illustrates the function Xt,3 = f(Xt,2), showing the effect of Xt,2 on Xt,3. 
We see that when there is a change in Xt,2, there will be a change in Xt,3. By the help of a mirror graph containing the 
45-degree line in the lower left panel, this change in Xt,3 can be reflected to the upper left 3D panel showing the indirect 
effect of Xt,2 on Yt through Xt,3. The derivations and graphical explanations provided above show the relationship of 
the omitted variable bias with the total derivative. MATLAB code for Figure 1 is provided in Appendix B. We have 
provided a numerical example in Appendix C, which serves as a guide for readers who seek a practical illustration. It 
would ensure that the demonstration in Figure 1 is effectively interpreted and contextualized.
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Figure 1. The flow chart of omitted variable bias via total derivative

4. Concluding remarks
In this study, we try to show how the omitted variable bias problem can be discussed within the context of the total 

derivative method. We argue that discussing the concepts of multivariate regression and the total derivative method 
together would bring the fields of statistics (or econometrics) and mathematics closer together. The application of the 
total derivative method to the omitted bias problem contributes to a better understanding of regression analysis and fills 
an important gap in the field. It may inspire similar explorations of other statistical or econometric issues. Furthermore, a 
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graphical representation of the method provided here may be constructive for mathematics and statistics or econometrics 
researchers in visualizing the concepts of total derivative and omitted variables.

This new approach emerged from the present study and could also be applied to other statistics or econometrics 
issues. Based on the understanding here, cases such as the estimation of regression including the correlation intersection 
set of two correlated variables alone or the model misspecifications that may arise from leaving out such variables 
can be examined with the help of the total differential method in future research. Similarly, model misspecifications 
stemming from a correlation between the error term and the dependent variables could also be explained by the 
total differential method. Multicollinearity, cross-section dependency, unit root methods including covariate, models 
including volatility and covariance, and similar issues in econometrics can be examined in more detail by using the total 
differential method (see Emrimahmutoðlu [3], Hansen [4], Samuilik et al. [5], and Manickam et al. [6]).
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Appendix A
We have shown the omitted variable bias by using matrix algebra for the interested reader [7].

                                                                                      y X uβ= +                                                                               (A.1)

                                                                                      1 1y b X ε= +                                                                                 (A.2)

                                                                                  ( )-1' '
1 1 1b X X X y=                                                                           (A.3)

                                                               ( ) ( )-1 -1' ' ' '
1 1 1 1 1 2 2 1 1 1b X X X X X X X eβ β= + +                                                       (A.4)

                                                                               1 1 12 2E b X Pβ β  = +                                                                       (A.5)

                                                                                ( )-1' '
12 1 1 1 2P X X X X=                                                                        (A.6)

Appendix B
MATLAB code for the Figure 1.

x = [14.9 1.7 0.0 10.9 0.0];
y = [11.3 9.1 23.7 12.8 2.9];
z = [5.32787E-17 2.93234E-16 2.09997E-16 5.45E-17 4.55E-16];
B = [x(:) y(:) ones(size(x(:)))] \ z(:);
xv = linspace(min(x), max(x), 10)’;
yv = linspace(min(y), max(y), 10)’;
[X,Y] = meshgrid(xv, yv);
Z = reshape([X(:), Y(:), ones(size(X(:)))] * B, numel(xv), []);
scatter3(x,y,z, ‘filled’)
hold on
mesh(X, Y, Z, ‘FaceAlpha’, 0.5)
hold off
view(-120, 35)
title(sprintf(’Z = %+.3E\\cdotX %+.3E\\cdotY %+.3E’, B)) 

Appendix C: Application of the method
For illustration purposes, let us take the example from Gujarati [8] (see p.203). The yearly data for the time period 

1970-1978 for the United States is considered to estimate a Philips curve relationship. We extend the implementation 
period and repeat the same analysis by incorporating the years 2010-2022 for the US. We collect the data from from 
the Federal Reserve Bank of St. Louis. This inclusion allowed us to incorporate the dynamics of the Philips curve 
relationship into our applied study, assessing whether it continues to hold. We use the t subscript since the variables are 
time series.



Contemporary Mathematics 502 | Tolga Omay, et al.

Table B1. Actual inflation rate Yt(%), unemployment rate Xt,2(%), expected inflation rate Xt,3(%), USA, 1970-1982/2010-2022

Year Yt* Xt,2 Xt,3

1970 5.92 4.90 4.78

1971 4.30 5.90 3.84

1972 3.30 5.60 3.13

1973 6.23 4.90 3.44

1974 10.97 5.60 6.84

1975 9.14 8.50 9.47

1976 5.77 7.70 6.51

1977 6.45 7.10 5.92

1978 7.60 6.10 6.08

1979 11.47 5.80 8.09

1980 13.46 7.10 10.01

1981 10.24 7.60 10.81

1982 5.99 9.70 8.00

2010 1.64 9.30 1.49

2011 3.16 8.96 1.83

2012 2.07 8.08 1.53

2013 1.46 7.36 1.47

2014 1.62 6.16 1.69

2015 0.12 5.28 1.39

2016 1.26 4.88 1.60

2017 2.13 4.36 1.84

2018 2.44 3.89 2.01

2019 1.81 3.68 1.75

2020 1.23 8.09 1.16

2021 4.70 5.37 2.04

2022 8.00 3.64 3.25

Notes: The data set for the years 1978-1982 is sourced from Gujarati [8] where Yt and Xt,2 
data are collected from a data source of Business Statistics, 1982, from various pages of the 
US Department of Commerce Bureau of Economic Analysis; Xt,3 data are collected from the 
various pages of the Economic Review, Federal Reserve Bank of Richmond. The data for 
the years 2010-2022 is authors’ own calculations and is sourced from the Federal Reserve 
Bank of St. Louis.
* shows the percentage change in the Consumer Price Index.

Gujarati [8] used this example to illustrate omitted variable bias:

                                                                          1 2 ,2 3 ,3 ,1t t t tY X X uβ β β= + + +                                                                (B1)

Yt is the actual inflation rate in period t, Xt,2 is the unemployment rate in period t, and Xt,3 is the expected inflation 
rate in period t. Extended Phillips curve with expectations will be obtained by the above regression analysis. According 
to macroeconomic theory, the effect of β2 is negative. In addition, the effect of β3 is positive and β3 = 1.0. 

                                                                      
,2 ,3( 2.380) (10.788)(2.587)

3.045 0.442 1.550t t tY X X
−

= − +
                                                            

(B2)

                                                                                        2 0.914R =
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MATLAB code

num = xlsread('data.xlsx') % read data from Excel
y =num(:,1)   % Column Vector
x1 = num(:,2) % Column Vector
x2 = num(:,3) % Column Vector
x3 = num(:,4) % Column Vector
x =[x1 x2 x3] % create 3*3 matrix
B = inv(x'*x)*x'*y % use OLS formula
k=3; % use this for degrees of freedom and calculate the variance 
error=y-x*B %obtain residuals for t-value
A=inv(x'*x); % obtain variance covariance matrix of error term
SSR=(error'*error); % obtain residual sum of squares
sigma2=SSR/(length(y)-k); % obtain variance
tvalue=B./sqrt(sigma2*diag(A)) % obtain t-value for the estimates

The numbers in parentheses give the t values. If Xt,2 and Xt,3 are held constant during the sample period, the 
average actual inflation will be around 3.04 percent. The partial regression coefficient of -0.442 means that, holding 
Xt,3 (expected inflation rate) constant, the actual inflation rate will increase (decrease) by an average of 0.44 percent for 
each unit (here one percentage point) decrease (increase) in the unemployment rate over the period 1970-1982/2010-
2022. Likewise, the coefficient of 1.15 shows that, keeping the unemployment rate constant, for every one percent 
increase in the expected inflation rate, the actual inflation rate will increase by 1.15 percent on average. In the context 
of preliminary expectations, both variables bear the expected signs. According to the classical linear regression model 
assumptions, the regression model used in the analysis is correctly established. So, there is no model specification error 
or deviation. Now, let’s examine the situation where we did not include the Xt,3 variable, that is, the expected inflation 
rate, into the model by creating a model-specification deviation.

                                                                              1 12 ,2 ,2t t tY b b X u= + +                                                                        (B3)

In this case, we will try to show that the variable Xt,2 contains the effects of the variable Xt,3, which was not included 
in the model, that is, the variable b32 carries the effects of the variable Xt,3. It will be shown that the β2b32 parameter 
makes a biased estimate due to the effects of Xt,3. Therefore, an important question arises: how to calculate the amount 
of this bias? We have already shown this bias in equations (9) and (10).

                                                                                 12 2 3 32( )E b bβ β= +                                                                          (B4)

So, we know that 12 2b β≠  is not equal to each other. Here, the numerical amount of this bias will be shown within 
the sample framework in question. The estimation of equation (B3) according to the sample is as follows:  

                                                                              ,2(1.480) (0.334)
4.183 0.143t tY X= +                                                                        (B5)

                                                                                       2 0.068r =
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MATLAB code

num = xlsread('data.xlsx') 
y =num(:,1)   
x1 = num(:,2) 
x2 = num(:,3) 
x =[x1 x2]
B = inv(x'*x)*x'*y
k=2;
error=y-x*B
A=inv(x'*x);
SSR=(error'*error);
sigma2=SSR/(length(y)-k);
tvalue=B./sqrt(sigma2*diag(A))

As can be seen, b12 = 0.143 has a positive sign and is statistically insignificant. However, from equation (B2), it is 
estimated as 12 2 0.442b β≠ = − , where it has a negative sign and is statistically significant. We have obtained a biased 
estimation since the effects of the Xt,3 variable are reflected in the b12 parameter estimation. Now, in order to calculate 
this bias, namely β2, let us estimate the regression equation for the following variables Xt,3 and Xt,2 to obtain b32. β2 and β3  
parameters are already obtained in equation B2.

                                                                             ,3 ,2(0.440) (1.496)
0.988 0.508t tX X= +

                                                                     
(B6)

                                                                                      2 0.292r =

MATLAB code

num = xlsread('data.xlsx')
y =num(:,4)   
x1 = num(:,2) 
x2 = num(:,3) 
x =[x1 x2]
B = inv(x'*x)*x'*y
k=2;
error=y-x*B
A=inv(x'*x);
SSR=(error'*error);
sigma2=SSR/(length(y)-k);
tvalue=B./sqrt(sigma2*diag(A))

As can be seen from the regression equation (B6), b32. is estimated as b32 = 0.508. The b12 omitted variable bias can 
now be calculated.

                                                          12 2 3 32
ˆ̂ 0.442 1.150 0.508 0.143b b xβ β= + = − + =12 2 3 32

ˆ̂ 0.442 1.150 0.508 0.143b b xβ β= + = − + =                                                   (B7)

As seen from equation (B7), the bias in β3b32 value is added to the β2 parameter, and the b12 parameter is found. 
Indirect and direct effects are clearly explained.

For the total differentiation we can use the below MATLAB codes for computations:
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MATLAB code

syms y x2 x3

y=3.045-0.442*x2+1.115*x3;

x3=0.988+0.508*x2;
B2 = diff(y(x2,x3),x2);
B3 = diff(y(x2,x3),x3);
b32 = diff(x3(x2),x2);
b12 = B2+B3*b32  % Total Differentiation for x2




