
Volume 5 Issue 1|2024| 797 Contemporary Mathematics

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2024 Amandeep Singh, et al. 
DOI: https://doi.org/10.37256/cm.5120243192
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Research Article

Solving Nonlinear Fractional Differential Equations by Using Shehu 
Transform and Adomian Polynomials

Amandeep Singh* , Sarita Pippal

Department of Mathematics, Panjab University, Chandigarh, India
E-mail: asangurana@gmail.com

Received: 8 June 2023;  Revised: 26 June 2023;  Accepted: 18 July 2023
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1. Introduction
Non-linearity is a significant challenge in the solution of fractional differential equations (FDEs) that frequently 

arises while addressing many models, such as chaotic models [1, 2], epidemiological model for computer viruses [3] 
and global population growth model [4], because there is no one approach that can be used to solve all non-linear FDEs. 
Thanks to the ground-breaking discipline of fractional calculus, which has a history spanning more than 300 years [5-
8] and is concerned with the study of the integrals and derivatives of fractional-order functions (orders may be real or 
complex). Due to its many applications the study of fractional calculus received a lot of scientific attention, particularly to 
procedures needing memory effects [9], problems in rheology [10, 11], in electrochemistry [12-14], in epidemiology [15, 
16], in chemical physics [17], in fluid mechanics [18], etc.

This certainty makes it more logical to look for an analytical solution given that many situations typically lack 
one. So, it is preferred to use numerical [19-21] or semi-analytical methodologies such as: Adomian decomposition 
method (ADM) [22, 23], new decomposition method (NDM) [24], Sumudu transform and homotopy perturbation method 
(STHPM) [25], Sumudu transform and variation iteration method (STVIM) [26], Sumudu tranform and new iterative 
method (NIM) [27].

One of the greatest methods for solving differential equations is the integral transformation. The main advantage of 
this approach is the transformation of a differential issue into an algebraic one. Researchers have employed a variety of 
integral transforms (such as the Sumudu transform and Laplace transform) as well as other decomposition strategies to 
deal with these kinds of non-linear FDEs, as has already been discussed. The Shehu transform (ST) is another integral 
transformation that was recently presented by Maitama et al. [28], which is a generalization of the Laplace and Sumudu 
integral transforms [29]. Shehu and Zhao [28] used ST to resolve a large number of non-linear ordinary as well as 
partial differential equations of integer order. After this, [30] explained additional ST features and used this trampoline 
to propose fractional order ordinary differential equations’ solutions. Later, ST is utilized to solve numerous non-linear 
FDEs together with many other analytical approaches, such as NIM [31] and ADM [32, 33]. In order to handle integral 
and integro-differential equations that are both linear and nonlinear, Poltem et al. [32] and Yisa et al. [33] recently devised 
the Shehu transform Adomian decomposition method (STADM). A review of the literature reveals that the ST has already 
been integrated with ADM, also known as STADM, and it has been utilized to handle differential equations of integer 
order as well as of fractional order [32, 33]. With the same methodology, we solve nonlinear fractional and non-fractional 
differential equations once more in this paper using STADM and offer the solutions in more detail.

In the end, this work provides an overview of fractional calculus and its applications, emphasises on the challenges 
caused by fractional calculus (FC) nonlinearity, and provides a novel approach to solve non-linear non-integer differential 
equations, in which ST and Adomian polynomials are combined in this algorithm.

	

2. Preliminaries
2.1 ST

Let the set  be the collection of functions as:
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2.2 Inverse Shehu transform (IST)

IST can be defined as: 
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This integral is taken along s = α in the complex plane, i.e., (s = x + iy). Here, α is real constants and s and u are the 
ST variables.

2.3 Basic STs

The ST of function f (t) = t 
n is defined as:
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Γ(.) is the value of gamma at (α + 1). While, ST of ( ), 1,n f t n ≥  can be written as:
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Also, ST of Caputo’s fractional derivative of order β > 0 is given below:
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where F(s, u) is ST of f (t). Also, ST of the Mittag-Leffler function ,
0
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2.4 Fractional derivative (FD)

FD of any function f (t) with order β in Caputo’s sense can be construed as:

1
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and the same in Riemann-Liouville’s sense can be written as:

( )1
0 0

1( ) ( ) ( ) , 1 , .
( )

n tRL n
t n

dD f t t p f p dp n n n N
n dt

β β β
β

− −= − − < ≤ ∈
Γ − ∫ (11)

Also, Riemann-Liouville’s and Caputo derivative are co-related with each other in following manner:
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3. Proposed algorithm
We will explain how to handle nonlinear differential equations in this section. Let’s take a look at the supplied 

differential equation in the following form:
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Where  
ꞵf (t), f (t), f (t) and h(t) are considered as Caputo derivative of function f (t) of fractional order (β), a nonlinear 

part of given FDE and remaining part containing linear order operator terms, respectively. Along with these terms there is 
one more function of t belongs to set . 

Now in order to solve above equation, first take ST as:
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Applying IST to equation (15).
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Hence, equation (17) in terms of series solution can be written down as:
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Recursively, the following relationship was found.
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By using above relation, the solution is obtained as sum of series components, i.e.,
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4. Application to FDE numerical problems
In this section, we use the aforementioned technique to solve differential equations, both integer and fractional order.

4.1 Example 1

Consider the following fractional initial value problem.
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Now, taking ST of equation (21).
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Here, [ (y(t))] is the non-linear term of above expression. Now, applying IST on above equation as:
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By dissecting the response into series components and nonlinear terms that may be understood using Adomian 
polynomials, the response is examined.
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Put α = 1 in above equation,
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This is the exact solution to the integer-ordered differential equation considered. The series solution can be expressed in 
the form of a closed form expression or an exact solution, as is seen from the equation above, which is adequate to show 
the suggested algorithm’s validation. The convergence of the suggested algorithms can be verified by plotting a figure, 
therefore in order to take this into consideration, we have plotted Figure 1, for three series terms. However, assume one 
is unable to write down such a closed-form expression of the series solution. This image clearly shows how the estimated 
solution tends to quickly approach the precise answer as we increase the number of iterations or components of a series 
solution.

Figure 1. The closeness of a solution series’ elements to the precise solution by taking three series terms for Example 1
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4.2 Example 2
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Applying ST on both sides on given differential equation.
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Applying IST to above equation.
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Analyzing the answer by breaking it down into series components and non-linear terms that can be understood using 
Adomian polynomials.
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Now, we can simply extract the terms of the series as:
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 
 

=

 







=

    

    

4 .... 0.= =
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13 5 5
2 2 21 3 1

1 0 0

13 5 5
2 2 21 3 2 1 4

13 13
2 2

2 3

4! [ ( )] [ ] ,
15
2

4! [ ( )] [ ] ,
15
2

4! 4! 0.
15 15
2 2

t u uy y t A
s s

t u uy t t
s s

t t

y y y

− −

− −

   
      = − −           Γ     

 

 
    = − −         Γ   

 

= − =
   Γ Γ   
 

 
 

=

 







=

    

    

4 .... 0.= = (30)

Here, 15
2

 Γ 
 

 is the value of gamma at 15 .
2

 Hence,

0 1 2 3
2

( ) ( ) ( ) ( ) ( ) ......

.

y t y t y t y t y t

t

= + + + +

= (31)

Therefore, same as previous we also obtained an exact solution in this problem as well. Now, Figure 2 shows the plotting 
of this solution in t, y(t)-plane.

Figure 2. The exact solution for considered (Example 2) fractional order differential equation

4.3 Example 3: Logistic equation [34]

The fractional logistic equation has shown a comparable phenomenon, see [26].

0
1( ) ( )(1 ( )), (0) , 0, 0, 0 1.
2

C
t y t ry t y t y t rα α= − = > > < ≤ (32)

Applying the ST on both sides of the equation (32):

2
0

1

[ ( )] [ ( )] [ ( )]

( , ) , (0) [ ( )] [ ( ( ))],

1( , ) [ ( )] [ ( ( ))].
2

C
t y t ry t ry t

s sF s u y r y t r y t
u u

u u uF s u r y t r y t
s s s

α

α α

α α

−

= −

   − = −   
   

     = + −     
     

   

  

  
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Using the IST to solve the above equation on both sides as:

1 11( ) [ ( )] [ ( ( ))] .
2

uy t r y t r tu y
s s

α α
− −
    = + −    


 
 
       

     (33)

Dividing the solution into series components and nonlinear terms with Adomian polynomials as decomposers:

1 1

0 0 0

1( ) ( ) ( ) ( ) .
2i i i

i i i

u uy t y t r y t r A t
s s

α α∞ ∞ ∞
− −

= = =

        = = + −                
∑ ∑ ∑   

Let 0
1 .
2

y  The following is the recurrence formula for other terms in the series solution.

 
1 1

1 1 1[ ] [ ( )] ,   0,1, 2, ...n n n
uy nur y r A

s
t

s

α α
− −

+ − −

    
 

= − =   
  





    

   

Hence, other series terms can be written as:

1 1
1 0 0

2
0 0 0

1

[ ] [ ( )] ,

( ( ))

.
4 ( 1)

,

u uy r y r A t
s s

A y t y

r ty

αα

α

α

− −
     = −           

= =

=
Γ +

   



(34)

1 1
2 1 1

1 0 1

2

[ ] [ ( )] ,

2
0.

,

u uy r y r A t
s s

A y y
y

α α
− −

     = −           
=
=

   

1 1
3 2 2

2
2 0 2 1

3 3

3 2

[ ] [ ( )]

2

(2 1)
16 (3 1)( 1)

... .....

,

,

u uy r y r A t
s s

A y y y

r ty

α α

αα
α

− −
 
 

    = −        

= +

Γ



+
= −

Γ +Γ +
=

 
   

(35)

Therefore, the series solution can be written as:

0 1 2 3
3 3

2

( ) ( ) ( ) ( ) ( ) ...

1 (2 1) ...
2 4 ( 1) 16 (3 1)( 1)

y t y t y t y t y t

r t r tα αα
α α

= + + + +

Γ +
= + − +

Γ + Γ +Γ +
(36)

Put 1
2

r =  and α = 1 in above equation, then
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2

0 2

,( )( ) lim
1

t
n

tn i
i

ey t
e

y t
→∞

=

= =
+

∑
 				                 

(37)

which represent exact solution of considered example. Similar to Figure 1, Figure 3 illustrates a comparison between an 
executable solution and a series solution by using three series terms. This image clearly shows how the estimated solution 
tends to quickly approach the precise answer as we increase the number of iterations or components of a series solution. 

Figure 3. The proximity of solution series components toward the exact solution (Example 3)

4.4 Example 4: Van der Pole equation [35]
2

0 ( ) ( ) (1 ) , 0, 0 2, (0) 0, (0) 1.C
t y t y t y y t y yα µ α= − + − ′ ≥ < ≤ = ′ = (38)

Similar to before, we must first take ST on both sides of the equation.

2
0

1 2

1 2

[ ( )] [ ( )] [ ] [ ( )],

( , ) (0) (0) [ ( )] [ ] [ ( ( ))],

( , ) (0) (0) [ ( )] [ ] [ ( ( ))],

( , )

C
t y t y t y y y

s s sF s u y y y t y y t
u u u

s s sF s u y y y t y y t
u u u

F s u

α

α α α

α α α

µ µ

µ µ

µ µ

− −

− −

= − + − ′

     − − ′ = − + −     
     

     − − ′ = − + −     
     

     

    

    

2

[ ( )] [ ] [ ( ( ))].u u u uy t y y t
s s s s

α α α

µ µ       = − + −       
       

    

Applying IST on both sides to above equation.

1 1 1( ) [ ( )] [ ] [ ( ( ))] .u u uy t t y t y y t
s s s

α α α

µ µ− − −
        = − + −        

 

 

     


      

       

Exact sol.
y0+y1
y0+y1+y2
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The solution is divided into series components and nonlinear terms that are decomposed by Adomian polynomials as:

1 1 1

0 0 0 0
( ) ( ) ( ) ( ) ( ) .i i i i

i i i i

uy t y t t y t y t Au t
s

u
s s

αα α

µ µ
∞ ∞ ∞ ∞

− − −

= = = =

        
              

       = = − + −                  
∑ ∑ ∑ ∑      

Let y0 = t. The recurrence formula for terms is as follows.

1 1 1
1 [ ( )] [ ( ( ))] [ ( )] ,  0,1, 2, ...n n n n

u u uy y t y t A t n
s s s

α α α

µ µ− − −
+

      = − −


   
  + =      

      


     
      

Therefore, using the aforementioned method, it is possible to calculate the other series terms as:

1 1 1
1 0 0 0

1 1 1
0

1

[ ( )] [ ( ( ))] [ ( )]

[ ] [ ( )] [ ( ]

(

)

2) (

u u uy y t y t A t
s s s

u u ut t y
s s s

t t

α α α

α α α

α α

µ µ

µ µ

µ
α α

− − −

− − −

+

          = − + −          
               

        = − + −        
           

= − +
Γ + Γ +

 
 
  

      

       

2

2 .
1) ( 3)

tαµ
α

+

−
Γ +

1 1 1
2 1 1 1

1 1 1 2
1 1 0 1 1

2

[ ( )] [ ( ( ))] [ ( )]

[ ( )] [ ( ( ))] [2 ]

(

u u uy y t y t A t
s s s

u u uy t y t y y t y
s s s

α α α

α α α

µ µ

µ µ

µ α

− − −

− − −
     
     
 

          = − + −          
               

     = − + − + ′


    
     

Γ
=

       

      

      

2 1 2

2 2 2
2 1

) 1 ( 1) ( 1)
( 1) (2 ) (2 1) ( 2) (2 )

1 2 ( 2) ( 2) 2 ( 2) ( 2)
(2 2) ( 3) (2 2) ( 1) (2 2) ( 1) (2 2)

2 2 ( 3) ( 1) ( 3)
(2 3) ( 2) (2 3)

t t

t

α α

α

α α αµ
α α α α α

µ α α µ α µ α α
α α α α α α α

µ µ α µ α α
α α α

−

+

 + Γ +
− + Γ + Γ Γ + Γ + Γ 

 + Γ + Γ + Γ +
− + + + Γ + Γ + Γ + Γ + Γ + Γ + Γ + 

Γ + + Γ +
+ + +

Γ + Γ + Γ + Γ
2 2

2
2 3

( 2) (2 3)

4 ( 4) 2 ( 2) ( 4)
( 3) (2 4) ( 3) (2 4)

... .....

t

t

α

α

α α

µ α µ α α
α α α α

+

+

 
 + Γ + 

 Γ + + Γ +
+ + Γ + Γ + Γ + Γ + 

=

Thus, the solution series has obtained as follows:
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0 1 2
1 2 2

2 1

2

2 2 2

( ) ( ) ( ) ( ) ...

( )2
( 2) ( 1) ( 3) ( 1) (2 )

1 ( 1) ( 1)
(2 1) ( 2) (2 )

1 2 ( 2) ( 2) 2 ( 2) ( 2)
(2 2) ( 3) (2 2) ( 1) (2 2) (

y t y t y t y t

t t tt t

t

α α α
α

α

µ α αµ µ
α α α α α

α αµ
α α α

µ α α µ α µ α α
α α α α α

+ +
−

= + + +

Γ
= − + − +

Γ + Γ + Γ + Γ + Γ

 + Γ +
+ Γ + Γ + Γ 

+ Γ + Γ + Γ +
+ − − −

Γ + Γ + Γ +

−

Γ + Γ + Γ
2 1

2 2

2
2 3

1) (2 2)

2 2 ( 3) ( 1) ( 3)
(2 3) ( 2) (2 3) ( 2) (2 3)

4 ( 4) 2 ( 2) ( 4) ...
( 3) (2 4) ( 3) (2 4)

t

t

t

α

α

α

α α

µ µ α µ α α
α α α α α

µ α µ α α
α α α α

+

+

+

 
 + Γ + 
 Γ + + Γ +

+ + + Γ + Γ + Γ + Γ + Γ + 
 Γ + + Γ +

+ + + Γ + Γ + Γ + Γ + 

For α = 2 and μ = 0 in above series solution then series solution becomes:

3 5

( ) ... sin
3! 5!
t ty t t t= − + − = (39)

When nine iterations are considered, the approximate solutions for several values of α, i.e., 0.5, 1, 1.5, and 2, have also 
been visually shown (see Figure 4). This graphic demonstrates how the approximate solution y(t) grows as the value of 
α increases.

Figure 4. When μ = 0, this figure illustrates the approximate solution obtained by considering nine iterations for various values of α

4.5 Example 5

0 ( ) ( ) 0,  0,   0 1,  (0) 0.C
t y t y t t yα λ α− = ≥ < ≤ = (40)

Applying ST to given equation.
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0
1

[ ( )] [ ( )],

( , ) (0) [ ( )],

( , ) [ ( )].

C
t y t y t

s sF s u y y t
u u

u uF s u c y t
s s

α

α α

α

λ

λ

λ

−

=

   − =   
   

   = +   
   

  





Now applying IST as: 

1( ) [ ( )] .uy t c y t
s

α

λ −
  = +   
   

  (41)

Decomposing the solution into series components and nonlinear terms with Adomian polynomials as decomposers.

 
 

1

0 0
( ) ( ) .i i

i i

uy t c A t
s

α

λ
∞ ∞

−

= =

   = +          
∑ ∑ 

Let y0 = c. Additionally, the following is the formula for series terms՚ recurrence.

 
1

1 [ ( )] ,  0,1,2,...n n
uy A t n
s

α

λ −
+

  = =  
   

  (42)

Hence, the series terms can be written as:

 
1 1

1 0

3
3

3

[ ( )] [ ] .
( 1)

(3 1)
.... ....

u u ty A t c c
s s

ty c

α α α

α

λ λ λ
α

λ
α

− −
      = = =       Γ +         

=
Γ +

=

   

Hence,

2 3
2 3

0 1 2( ) ( ) ( ) ( ) ... ...
( 1) (2 1) (3 1)

t t ty t y t y t y t c c c c
α α α

λ λ λ
α α α

= + + + = + + + +
Γ + Γ + Γ +

(43)

The solution series has obtained in terms of the Mittag-Leffler function by taking an infinite sum.
 

,( ) ( )y t c t α
α α λ=  (44)

5. Application to ordinary differential equation (ODE)
Let’s restate the preceding approach to solve ODEs as follows.

( ) ( ) ( ) ( ),   1.n f t f t f t h t n+ + = ≥   (45)

0( ) | , 0,1, 2... 1.k
t kf t c k n= = = − (46)

In order to demonstrate the better methodology, all example problems were solved using ST utilising the same steps as 
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before.

1
0 ( ) .

n

f t cu
s

−  
=  

 




 



 (47)

1 1 1
1 1( ) [ ( )] [ ( )] [ ( )] , 1.

n n n

n n n
u u uf t h t f t t n
s s s

− − −
− −

          = − − ≥          
               

       (48)

The solution is obtained by adding the elements of the series or by applying the relation shown above.

0 1 2
0

( ) ( ) ( ) ( ) ... lim ( ).
n

in i
f t f t f t f t f t

→∞
=

= + + + = ∑ (49)

5.1 Example 6

Consider ODE, whose exact solution is 1 .
1 t−

2 ,   (0) 1.dy y y
dt

= = (50)

Applying ST to above ODE.
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Applying IST.

1( ) 1 [ ( ( ))] .uy t y t
s

−   = +     
   (51)

Dividing the solution into series components and nonlinear terms with Adomian polynomials as decomposers as:

1

0
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uy t A
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∞
−

=
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∑   (52)

Let y0 = 1. The recurrence formula for terms is as follows.
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  (53)

By using above recurrence relation and Adomian polynomials, the series terms can be obtained as follows.
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(54)

When the approximate solution is thought of as the sum of four terms, Figure 5 illustrates the approximate solution’s 
progress toward the precise solution graphically. 

 

Figure 5. When four iterations are taken into consideration, the closeness of solution series elements to the precise solution (Example 6)
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5.2 Example 7: Non-linear Bratu type equation

( ) 2 0,  (0) (0) 0.yy t e y y′′ ′− = = = (55)

Applying ST to given equation.
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Applying IST on both sides to above equation.
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Decomposing the solution into series components and non-linear term decomposed by Adomian polynomials as:

2
1

0 0
( ) 2 .i i

i i

uy t A
s

∞ ∞
−

= =

   =          
∑ ∑  (58)

Let y0 = 0. The recurrence formula for terms is as follows.
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Now, series terms can be obtained as:
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Consequently, 
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Figure 6 shows the comparison of series solution with exact solution for three series terms and considered algorithms.

 

Figure 6. The proximity of solution series components toward the exact solution (Example 7)

Exact sol.
y1
y1+y2
y1+y2+y3

0 0.2 0.4
t

0.6 0.8 10.1 0.3 0.5 0.7 0.9

1

0.8

0.6

0.4

0.2

y 

0

1.2

1.4



Contemporary Mathematics 814 | Amandeep Singh, et al.

6. Conclusion and future work
STADM is used in this article to provide a detailed analysis of the solution of non-linear ODEs of fractional and non-

fractional order in series forms. These techniques have previously been used to resolve a very small number of ordinary 
and FDEs as well as some simple differential equations of integer order. The logistic equation, the Van der Pole equation, 
and other non-fractional order differential equations like the non-linear Bratu type equation are among the well-known 
FDEs that are taken into consideration by the Caputo’s operator. The convergence of the approximative solution towards 
the closed form solution is shown by establishing the graph for various series terms of the series solution. In terms of 
future development, this technique may be utilized to resolve both integer and non-integer differential equations with 
ease. The suggested approach may also be used to resolve fractional models in a variety of domains, including physics, 
engineering, etc.
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