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Abstract: In the current study, a numerical model has been developed to simulate the blood flow characteristics in the
human carotid artery. The data thus generated is analyzed to understand the blood flow variations and predict the flow
characteristics using Machine Learning techniques. In developing the numerical model, the key features of the system,
namely, the blood, is modeled as an incompressible Newtonian fluid, and the artery is an elastic pipe. This model is
simulated using COMSOL software by varying the material properties of the artery. Univariate analysis was performed
to gain insight into the features’ behaviour and target variables. Subsequently, machine-learning regression models were
trained using the data generated from the idealized human carotid artery. Furthermore, the validity of the data was ensured
by comparing it with flow division ratios available in the literature. The evaluation of these models was conducted by
calculating the Mean Absolute Error values for the test dataset, resulting in the following values: polynomial regressor
(0.0106), hyper-tuned support vector regressor (0.0487), decision tree regressor (0.000), random forest regressor (0.0156),
Adaboost (0.0508), gradient-boosting (0.0044), and XGboost (0.0043). A quantile loss function was employed to assess
the prediction uncertainty. According to the theory of loss function, models with low loss values are considered good
predictors. The prediction uncertainty was measured by applying quantile loss function, and it identified that the random
forest regressor as the best predictor model for the data, followed by the polynomial regression of degree 3. Prediction
intervals for the target variable were computed by leveraging the random forest quantile regressor model. Moreover, the
developed polynomial model was utilized to investigate the presence of stenosis in the artery.

Keywords: carotid artery, blood flow, mathematical model, COMSOL multiphysics, ML algorithms, ensemble models,
quantile loss function
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Nomenclature
Term Description
AvgVel Average blood velocity (in each segment)
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CCA Common Carotid Artery

D Blood Density

ECA External Carotid Artery

InPr Inlet Pressure (Blood pressure at the CCA entrance)
InVFR Inlet Volumetric Flow Rate (at the CCA entrance)
MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

OutlVel Blood velocity at outletl, i.e., ICA

OutlVFR Volumetric flow rate at outletl, i.e., I[CA

Out2 Vel Blood velocity at outlet2, i.e., ECA

Out2VFR Volumetric flow rate at outlet2, i.e., ECA
PARDISO Parallel Direct Sparse Solver

RBF Radial Basis Function

RFR Random Forest Regressor

RMSE Root Mean Square Error

SVR Support Vector Regressor

VIF Variance Inflation Factor

Vis Blood viscosity

1. Introduction

Every organ of the human body has a purpose to serve. All these purposes fall under one umbrella: “To maintain and
sustain the functioning of the biological system”. Also, every artery has the ultimate function of supplying oxygenated
blood to the target organ and boosting its functioning.

It is known that carotid arteries supply blood to the face, neck, and brain. There are two carotid arteries, one on the
right and the other on the left side of the human neck. These pairs of arteries are not just for supplying blood to the face,
neck, and brain but also indicate a person’s breathing by pulsating on palpation of the artery. Moreover, the carotid artery
is one of the vital points of the human body, meaning they are extremely sensitive: any trauma to this artery is proven
fatal; the reason that even a brief pause in the blood supply can cause severe problems as brain cells start to die within
no time after this pause. Thus, this paper proposes to work on understanding blood flow in the carotid artery bifurcation
under different flow conditions.

Another reason for the current study is that stroke is the major contributor to deaths worldwide. Furthermore, this
study is believed to be essential, particularly in the current situation where COVID-19 has affected most of the global
population, and recent findings have revealed that COVID-19-affected persons are more at risk for artery and vein
occlusions [1-3]. Secondly, studying flow characteristics in such a crucial artery is beneficial as it would aid medical
practitioners in predicting the reason for the malfunctioning of its targeted organs with some degree of accuracy. Though
this study is not the first of its kind, the novelty lies in computing numerics related to diverse blood flow and blood vessel
conditions.

Briefly, this section brings a new look to the existing literature in the following areas: (I) Experimental, (II) Modeling
approach. While the experimental approach involved invasive and non-invasive methods to understand the blood flow
dynamics, Mathematical, Engineering, and Numerical models are the three modeling approaches. Over the past few
decades, much insightful work has been done in the current field of study. A few works on the experimental methods are:
Uematsu et al. used over 8,000 measurements of the blood flow in 120 normal subjects and 550 patients with neurological
diseases and assessed cerebral blood flow using an ultrasonic volume flow meter [4]. Nigel et al. predicted stenosis in
the Internal Carotid Artery (ICA) by relating it to the blood flow in the Common Carotid Artery (CCA) measured with a
pulsed Doppler duplex scanner [5]. Oktar et al. obtained the values of Blood-Flow Volume (BFV) in the ICA of healthy
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individuals using color Doppler, power Doppler, and B-flow ultrasound techniques. They compared the results with those
from phase-contrast MR imaging [6].

Srinivasacharya and Madhava Rao developed a mathematical model for the bifurcated artery and studied the blood
flow by modeling blood as a couplestress fluid [7]. They observed an increase in the flow rate with an increase in the
values of the model parameters. However, impedance has decreased with an increase in these values. Chakravarty and
Sen developed a mathematical model to understand the flow of blood in a catheterized bifurcated artery under stenotic
conditions [8]. They considered the geometry of a bifurcated artery with stenosis in the daughter segment. A two-
dimensional mathematical model with blood as a Newtonian fluid has been developed to study the flow, and they solved
it using the finite difference scheme. Their findings revealed that arterial catheterization remarkably influences viscous
dissipation in the parent segment more than in the daughter segments. Ruchi Agarwal et al. developed a mathematical
model coupling the effect between the fluid flow and the elastic deformation of the artery. They calculated the volumetric
flow rate and the impedance due to the pulsatile flow in the carotid artery. They analyzed flow at various locations in CCA
and ICA [9]. Muraca et al. developed a numerical model in COMSOL software that aids in assessing the wall shear stress
in carotid artery bifurcation [10]. Perktold and Rappitsch quantitatively analyzed the flow dynamics due to atherogenesis
in the carotid artery [11]. Onwuzu et al. compared the wall shear stress values computed using a CFD (Computational
Fluid Dynamics) model with those measured using Ultrasound Doppler Velocimetry [12]. Their study revealed that the
computed values are comparable with Doppler velocimetry measurements, thus promising the reliability of numerical or
CFD models in the blood flow study.

Abdi et al. developed a lumped model for the cardiovascular system to study the effect of stenosis in ICA [13, 14].
Onaizah et al. constructed a lumped parameter model for blood flow in the carotid artery [15]. Their study showed that
the reduction in blood flow in ICA was significant only when stenosis was above 70%. Moreover, vascular stiffening
altered the carotid flow or flow waveform.

In the present study, a numerical model has been developed to simulate the blood flow characteristics in the human
carotid artery. The system’s key features, namely, the blood, is modeled as an incompressible Newtonian fluid, and the
artery is an elastic pipe. This model is simulated using the COMSOL software by varying the material properties of the
artery, the blood, and the flow characteristics and conditions. The data thus generated is analyzed to understand the blood
flow variations and predict the flow characteristics using suitable ML models. The novelty of this work is in assessing the
possible prevalence of stenosis in the artery using vitals such as blood pressure and CCA velocity and computed prediction
intervals for the target variable.

This article is organized as follows. Section 2 presents the problem identification and research objectives. Section 3
contains a detailed description of the adopted methodology. Section 4 presents the results of experimental research along
with their interpretation. Section 5 presents the final conclusions of the research, indicating their limitations, practical
application, and future research directions in this field.

2. Problem identification

Most of the studies mentioned in the literature survey are on understanding the blood flow in ICA or CCA under
stenotic conditions in ICA. However, the current study considers the cases where stenotic or atherosclerotic conditions
prevail in either or both the bifurcated segments, ICA and ECA. Thus, the scientific aim of this work is to discuss the effect
of the presence of these conditions in one segment on the other. Further, this study aims to extend the existing research
in carotid artery studies, wherein we intend to fill critical knowledge gaps and provide a comprehensive foundation for
future research endeavors.

The dimension of the present study is translational, wherein we propose to predict blood flow characteristics to
provide accurate information without using invasive or expensive methods like MRI and Ultrasound. Thus, this study
would help solve the need for non-invasive techniques in assessing vascular changes in the carotid artery that Navneet
Singh et al. pointed out in their work [16].
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Further, we propose a quantitative and experimental (using computer-based simulations) study with a descriptive
research question defined as:
Can ML models on simulated data help identify the presence of stenosis in the artery?

2.1 Research objectives

1. To develop and validate a numerical model for the human carotid artery.

+ Simulate the model for healthy and unhealthy conditions.

» Compute appropriate physical quantities and compare their values with the clinical results.

2. To estimate the average blood velocity in the carotid artery using ML algorithms.

* Develop ML models that best fit the data.

» Compute the metrics on the train and test data and identify the most reliable ML prediction model.

3. To use the ML model to assess the blood flow variations in the artery.

* Plot the average blood velocity in CCA as a function of the blood flow characteristics in the carotid artery using
MATHEMATICA software.

2.2 Exposures and outcomes

Fluid (blood) related parameters such as density and viscosity, flow-related parameters such as the inlet pressure
and outlets’ blood velocities, and material parameters such as the artery’s density and Poisson ratio are the independent
variables. The outcomes are the average blood velocity and volumetric flow rate in all three arterial segments.

3. Methodology

The step-by-step procedure from data collection to data analysis to achieve the proposed objectives is presented in
this section.

Step 1: Prepare data collection instrument

As described in the introduction, the carotid artery supplies blood to the face, neck, and brain. The main vessel, CCA,
is bifurcated into the ECA and ICA, as shown in Figure 1. ECA primarily supplies blood to the face and neck, while ICA
supplies blood to the brain.

Common carotid
artery

Carotid artery

Source: Internet

Figure 1. Anatomy of carotid artery
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In this paper, we developed a numerical model to capture the blood flow dynamics in the carotid artery. The key
features of the blood circulatory system, namely, the blood, have been modeled as a Newtonian fluid, and the artery is an
elastic circular pipe with bifurcation. This model was simulated using clinical data on the anatomy of the artery and the
physiological behavior of the blood flow. The COMSOL Multiphysics software is used to model this blood flow problem
in an idealized artery, as shown in Figure 2.

17 4
16.5 4 -
16 4 L
15.5 4 -
154 -
14.5 4 -
14 4 -
13.5 4 -
13 4 -
12.5 4 -

Figure 2. Geometry of the artery in COMSOL

The stationary Navier Stokes equation was considered and implemented using the laminar flow interface in this study.
The viscosity and density values were determined based on available data for human blood. The parameters describing
the elastic behavior of the artery were obtained from anatomical data of the carotid artery. For the discretization of both
velocity and pressure variables, the P1-P1 linear finite element method was employed. A physics-based mesh consisting of
40,637 triangular elements and 4,192 quadrilateral elements was utilized, resulting in a total of 76,758 degrees of freedom
to determine the velocity (51,172) and pressure (25,586) variables. The mesh parameters can be found in Table 1.

Table 1. Parameters of the extremely fine mesh

Parameter Amount
Number of elements 44,829
Number of vertex elements 17
Number of edge elements 2,466
Average element quality 0.8004

Minimum element quality 0.08677
Mesh area 15.76 cm?

The resulting nonlinear flow problem is solved using Newton’s method. Zero initial conditions and no-slip boundary
conditions were imposed on the boundary walls, ensuring the absence of backflow. To solve the system, the PARDISO
solver was employed.

Step 2: Data collection (by performing simulations)

The data on the different input parameters to the COMSOL model builder for modelling carotid arterial blood flow
in humans are displayed in Table 2 [17-20]. The model parameters, density, and viscosity assume values of human blood
since blood is modelled as a Newtonian fluid. According to Table 2, the parameters indicating the carotid artery’s elastic
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nature, density, bulk modulus, and Poisson ratio are given values linked to the human carotid artery. The artery length,
diameter, and dimensions are in accordance with the information provided in the literature. Additionally, the ranges listed
in Tables 2, 3, 4 are used to determine the intake pressure and output velocities needed to create blood flow.

Table 2. Data on characteristics of blood and carotid artery [17-20]

Fluid (blood) properties

Artery properties
Density (kg/m?) 1,060 Density 960
Viscosity (Pa.s) 0.004 Bulk modulus (N/m?) 1.2 x 108
Poisson ratio 0.45
Artery CCA ICA ECA
Diameter (mm)  6.10+0.8 48+0.3 3.0+£0.6
Length (cm) 13.6+1.2 8.6+1.4 8.6+t1.4
Velocity (m/sec) - 0.187-0.295 0.121-0.185

Bifurcation angle (36 + 11)°

The data for carrying out simulations are shown in Tables 3 & 4. The inlet pressure has taken 100-, 120-, and 130-mm

Hg values. The blood velocities at outlets 1 (ICA) and 2 (ECA) are assigned values from the prescribed range (normal or
healthy), as shown in the eighth row (third and fourth columns) in Table 2.

Table 3. Dimensions of the simulated artery

Artery CCA ICA ECA

Diameter (mm) 6.2 4.8 3.0
Length (cm) 14.2 9.0 9.0

Table 4. Data for running simulations

InPr (mm Hg)  Outlvel ICA) (m/s)  Out2vel (ECA) (m/s)  Bifurcation angle (degrees)

100 0.241 0.153
120 0.193 0.122 30°
130 0.1205 0.077

3.1 Review the collected data for quality and completeness

Table 5 presents the information on data types and counts of the numerical model parameters in the segment CCA.
This table shows there is no missing data. Similar observations were noted in the other two segments, ECA and ICA.
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Table 5. Information on numerical model parameters from python code

# Column Non-null count
0 Vis 90 non-null
1 D 90 non-null
2 InPr 90 non-null
3 Outlvel 90 non-null
4 Out2vel 90 non-null
5 AvgVel 90 non-null
6 InVFR 90 non-null
7 Outl VFR 90 non-null
8 Out2VFR 90 non-null

dtypes: float64(9), int64(3)

Exposures:

Vis: Blood viscosity (Pa.s).

D: Blood Density (kg/m?).

InPr: Blood pressure at the CCA entrance (mm Hg).

OutlVel: Blood velocity at exit 1, i.e., [ICA (mm Hg).

Out2Vel: Blood velocity at exit 2, i.e., ECA (mm Hg).

Outcomes:

AvgVel: Average blood velocity in each segment (m/s).

InVFR: Volumetric flow rate at the CCA entrance (m?/s).

Outl VFR: Volumetric flow rate at exit 1, i.e., ICA (m?/s).

Out2VFR: Volumetric flow rate at exit 2, i.e., ECA (m’/s).

Step 3: Data management

Data from the numerical model has been collected as per the format shown in Table 6. For each set of exposures, the
outcomes are evaluated using the COMSOL software and noted in the designated columns in the table. The flow division
ratios, the ratio of volumetric flow rate in ICA to CCA, the ratio of the flow rate in ECA and CCA, and that of ECA and
ICA are computed and noted.

Table 6. Data collection format

Exposures Outcomes Flow division ratios

Sl. No Vis D InPr Outlvel Out2vel AvgVel InVFR OutlVFR Out2VFR OutlVFR/InVFR Out2VFR/InVFR Out2VFR/Outl VFR
1

Step 4: Data analysis

The first step is to compute the statistics of exposures to get some basic information on the exposures, as shown in
Table 7.

The next step in the process is data validation, where the reliability of the developed numerical model as a source for
generating data is assessed.
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Table 7. Descriptive statistics of exposure

Statistics ~ Vis D InPr Outlvel  Out2vel
count 90 90 90 90 90
mean 0 1,061.67 112.22 0.17 0.11

std 0 4.74 11.39 0.07 0.04
min 0 1,060 100 0.07 0.05
25% 0 1,060 100 0.12 0.08
50% 0 1,060 120 0.19 0.12
75% 0 1,060 120 0.24 0.15
max 0.01 1,075 130 0.24 0.15

Table 8. Percentage of blood flow from CCA to ICA & ECA

InPr InPr Deviation of blood velocity from the normal range
ICA ECA ICA ECA
X X 71.68 28.32
v X 66.96 33.04
vV X 55.86 44.14
VY X 43.16 56.84
100 X v 76.04 23.96
X Vv 83.41 16.59
X VY 89.38 10.62
v v 71.68 28.32
vV vV 66.68 33.1
VY %4 55.86 44.14
X X 71.75 28.25
v X 67.04 32.96
vV X 55.95 44.05
24 X 43.25 56.75
120 X v 76.11 23.89
X vV 83.46 16.54
X VY 89.42 10.58
v v 71.84 28.16
vV vV 71.62 23.38
VY %4 71.71 28.29
X X 71.68 28.32
v X 66.97 33.03
vV X 55.86 44.14
24 X 43.16 56.84
130 X v 76.05 23.95
X vV 83.42 16.56
X vy 89.38 10.62
v v 71.77 28.23
vV vV 71.55 28.45
224 %4 71.64 28.36
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3.2 Data validation

Table 8§ indicates what percentage of fluid (blood) in CCA flows into ICA and ECA at various inlet pressures.
Generally, around 72% of the blood from CCA enters the ICA under normal conditions. However, atherosclerosis or
stenotic conditions in ICA has reduced this percentage, as shown in Table 8.

The computed flow division ratios of ICA/CCA, ECA/ICA, and ECA/CCA were found to be in the range as reported
by Marshall [17], and the details are in Table 8. Further, it has been observed that stenotic and other unhealthy conditions
in one or both segments had reduced the blood flow in CCA, as shown in Table 8. The current study considers the situation
where the flow in ICA or ECA got reduced due to conditions like atherosclerosis in these arteries. Hence, the states with
a20%, 50%, or 70% reduction in the blood velocity at the outlets have also been discussed and presented in Tables 8 & 9.

Table 9. Percentage decrease in blood flow from CCA to ICA & ECA

. Deviation of blood velocity % Decrease in blood flow % Decrease in blood flow % Decrease in blood flow
Inlet pressure in (mmHg)

from the normal range in CCA in ICA in ECA
ICA ECA - - -
X X - - -
X 14.27 19.92 0
vV X 35.84 50 0
VY x 50.18 70 0
100 X v 5.74 0 20.26
vV 14.07 0 49.67
X 24 19.81 0 69.94
v v 20.02 19.92 20.26
vV vV 49.91 50 49.67
VY VY 69.98 70 69.94

x indicates no deviation from the normal range of blood velocity. v indicates a 20% decrease from the normal velocity.
v'v indicates a 50% decrease from the normal velocity. v'v'v" indicates a 70% decrease from the normal velocity.
Here blood viscosity is 0.004 Pa.s and density = 1,060 kg/m>

4. Results & discussions

This section presents plots of velocity and pressure distribution in the carotid artery for one set of parameters, followed
by data analysis using ML algorithms.

Figures 3(a) & (b) depict velocity and pressure contours when InPr is 100, outlvel = 0.241, out2vel is 0.077, D =
1060 and Vis = 0.0045.

Further analysis of the collected (simulated) data using ML algorithms is now presented, with a step-by-step process
being depicted in the flow chart in Figure 4.
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Figure 3. (a) Velocity contour, (b) Pressure contour

This section provides the detailed description of the data analysis process: To begin with, univariate analysis was
performed to explore the features in the data set, where the range and central tendency were examined. The descriptive
statistics of features were also analyzed for the presence of outliers. It was observed that the maximum and 75% exposure
(features) values were not significantly different, indicating no outliers in the data.
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Input data on- Features -Vis, D,
InPr, Outlvel, Out2vel, and
Target-AvgVel

Y

Generated descriptive statistics

!

Performed univariate analysis to
understand the distribution of the
parameters and fixed skewness

v

Checked Multi-collinearity using VIF
score & observed no strong correlation
between the features

v

Developed Multivariate Linear
Regression Model- Randomness not
seen in Residual plots

!

Developed Non-Linear Regression
Models- Polynomial, SVR, RFR,
Ada Boost, Gradient Boost
and XG Boost

|

Computed
Quantile Losses

!

RFR & Polynomial are the best
suitable prediction models

Figure 4. Flow chart

Then, a univariate analysis on the target variables was performed through bar charts, and no skewness in the data
was observed. Subsequently, the next step of performing a multivariate analysis was undertaken, which involved multiple
dependent variables or features resulting in one outcome or target variable.

The VIF score was computed for each feature to determine the extent of correlation among them. It was observed that
they are not correlated, as the VIF score of each feature was less than 5. Consequently, the first model, namely, the linear
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regression model with Vis, D, InPr, Outlvel, and Out2vel as the features and AvgVel as the target, was developed. The
metrics, namely, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), RZ, and adj -R? scores were calculated
for the train and test data. It was noted that the RMSE and MAE for the train and test data set are almost similar (as per
Table 10), indicating a good fit of the model to the data. However, patterns were observed in the residual plots, leading
to the adoption of nonlinear models, namely, Polynomial, SVR, Decision Tree, RFR, Adaboost, Gradient Boosting, and
XGBoost. An overview of these models is provided below.

A polynomial model is a basic linear regression model with a higher degree that can capture the complex relationship
between the features and the targets. For instance, a two-feature quadratic (polynomial of degree 2) model has 6 terms
as shown: z = ax? + bxy+ cy> + dx+ ey + f. Here x and y are the features, and z is the target variable. In general, a

k
polynomial model of degree n with k features has (n : ) terms. Thus, a polynomial model of a higher degree is usually

very complex but gives us more flexibility and higher accuracy as it utilizes multiple variables and their combinations in
the same equation. However, the choice of the degree of the polynomial is crucial, as it is a hyperparameter that needs
to be selected wisely. A higher-degree polynomial may result in overfitting the data, whereas lower-degree models may
lead to underfitting.

Table 10. Metrics of regressor models

Regressor models ~ Dataset RMSE  MAE R? Adj-R>  MAPE

Train 0.0394  0.0314 0.9984  0.9983 -

Test 0.0422  0.0341 0.9984  0.9977 -

Train 0.0097  0.0055  0.9999  0.9995 -

Test 0.0179  0.0106  0.9997  1.0001 -

Train 0.1396  0.1032 09780 0.9760  4.0573
Test 03154  0.2249 09177 0.8981  2.5274
Train 0.0582  0.0480 0.9962  0.9958  2.6915
Test 0.0593  0.0487 0.9971  0.9964  0.2094
Train 0.0000  0.0000  1.0000  1.0000  0.0000
Test 0.0000  0.0000 1.0000 1.0000  0.0000
Train 0.0068  0.0051  0.9999  0.9999  0.1703
Test 0.0226  0.0156  0.9995  0.9992  0.4461
Train 0.0445  0.0360 0.9980 0.9978  2.9066
Test 0.0626  0.0508 0.9962 0.9941  3.5796
Train 0.0005  0.0003  1.0000  1.0000  0.0205
Test 0.0065  0.0044 0.9999  0.9999  0.4254
Train 0.0008  0.0006  0.9999  0.9999  0.0211
Test 0.0064  0.0043  0.9999  0.9999  0.4406

Linear

Polynomial degree 3

Support vector

Support vector tuned

Decision tree

Random forest

Ada boost

Gradient boosting

XG boost

The decision tree is a classifier that adopts a tree-like structure, where features of a dataset are represented by
internal nodes, decision rules are depicted by branches, and each leaf node corresponds to an outcome. It serves as a
graphical representation to derive possible solutions or decisions based on provided conditions. The key challenge lies in
determining the attribute for the root node at each level, a task known as attribute selection. Two widely used measures
for attribute selection are Information Gain and Gini Index.

Support Vector Regressor (SVR) is an ML algorithm used for regression analysis. Unlike the Support Vector Machine
(SVM) algorithm used for classification, SVR seeks a hyperplane that fits the data in a continuous space. This is attained
by mapping the input variables to a high-dimensional feature space and finding the hyperplane that maximizes the distance
between the hyperplane and the data points closest to it, while minimizing the prediction error. Nonlinear relationships
between the features and targets can be addressed by SVR through the use of a kernel function that maps the data into a
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higher-dimensional space. model, the hyperparameters include the hyperplane, C, which controls the error, and the choice
of the kernel.

Random Forest Regressor (RFR) is an ensemble learning method that enhances predictive accuracy by combining
predictions from multiple ML algorithms to create a more robust and accurate predictive model. This algorithm uses
multiple decision trees and a technique called Bootstrap and Aggregation, commonly called bagging. Bootstrap refers
to the random sampling of a small subset of data from the data set with replacement, which allows to understand
bias and variance within the data. Bagging is a procedure used to reduce variance, and it makes each decision tree
model run independently and then aggregates the outputs at the end without preference for any model. The important
hyperparameters are n_estimators representing the number of trees to be built, max features for the maximum number
of features that the algorithm considers in splitting a node; mini_sample leaf for determining the minimum number of
leaves for splitting an internal node; criterion for how to split the node in each tree, entropy, Gini, impurity or Log Loss
and max_leaf nodes for fixing the maximum leaf nodes in each tree.

Adaboost (short for Adaptive Boosting) is a boosting algorithm combining multiple weak classifiers to create a more
robust classifier. It works by training multiple weak classifiers on different subsets of the training data and then combining
their predictions to make a final prediction.

Gradient Boosting is another boosting algorithm that combines multiple weak learners to create a strong learner. It
works by sequentially adding weak learners to the model and updating the weights of the training examples based on the
residual errors of the previous models.

XGBoost (short for Extreme Gradient Boosting) is a highly optimized implementation of the Gradient Boosting
algorithm. This algorithm is similar to Gradient Boosting but includes additional features such as regularization (both L1
and L2) and tree pruning to improve performance.

Train data Test data
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Figure 5. Graphs depicting MSE vs. degree of the polynomial

Returning to the data analysis using these nonlinear models, the polynomial model will be explored first. A Python
code has been developed to determine the metrics of the polynomial regressors with different degrees. In order to identify
the best-fit polynomial, the graph for MAE vs. the degree of the polynomial was depicted for training and testing data,
as shown in Figure 5. It can be inferred from these graphs that a third-degree polynomial serves as a superior nonlinear
prediction model for this data. Subsequently, the model was constructed, and it is presented in the Appendix.
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Moving forward, the SVR, RFR, Adaboost, Gradient boosting, and XG boost algorithms were employed, and the
corresponding metrics were computed as presented in Table 10. According to the table, the metrics computed on the train
and test data sets revealed a high MAE for SVR, although R? and adj-R? were closer to unity. Hence, it can be concluded
that SVR is not a good predictor model.

However, the hyper-tuned model, built using the Radial Basis Function (RBF) kernel with the parameters C = 1,000
and gamma = 0.001, demonstrated a significant reduction in MAE. Moreover, upon reviewing the MAE values from
Table 9, it was evident that the Decision Tree, RFR, and boosting algorithms exhibited lower MAE values on our dataset.
While MAE serves as a useful metric for identifying acceptable regressor models, it is essential to consider the quantile
loss function to make a more comprehensive evaluation and determine the most suitable regressor models [21, 22]. This
allows us to account for prediction uncertainty and obtain a more robust understanding of the models’ performance.

Quantile loss per quantile

H Decision Tree Reg
B XGBoost

M Grad Boosting

B AdaBoost Reg

B Random Forest Reg
M SVR tuned

B SVR

B Polynomial Reg

I Linear Reg

Quantile

0.9

T T T T
0 0.2 0.4 0.6 0.8

Quantile loss

Figure 6. Quantile loss per quantile for the ML models

In the last and most crucial step, the focus was directed towards quantifying the prediction uncertainty associated
with these models. The Quantile loss function was employed to provide insights into the level of uncertainty surrounding
point estimation. Figure 6 illustrates the results for the 0.1, 0.5, and 0.9 quantiles, offering a comprehensive view of the
models’ performance in terms of uncertainty. Analysis of the plot reveals that RFR exhibits the minimum quantile loss,
indicating its ability to capture the prediction uncertainty effectively. Following closely behind, the polynomial regressor
model emerges as the second-best option in terms of quantile loss. A Python code was developed for the quantile random
forest regressor model, enabling the computation of interval estimates for the target variable. The results of these interval
estimates were presented in Table 11.

The developed polynomial degree 3 regressor model is now being deployed to investigate the presence of stenosis in
the artery. The model presented in the Appendix was utilized to predict variations in blood flow in the two carotid artery
segments based on a given set of features (exposures). Contour plots of AvgVel (CCA velocity) as a function of Outlvel
(ICA) and Out2vel (ECA) were generated using MATHEMATICA software, as shown in Figures 7 to 9. These graphs
indicate that the maximum velocity, which represents that of a healthy individual, falls within the range of 30-40 cm/s.
These findings align with the values reported by the authors in reference [23].
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Table 11. Interval estimates for the target variable, avgvel

Features Target (True value) Interval estimate of target variable
Vis D InPr  Outlvel Out2vel AvgVel 0.1 Quantile 0.5 Quantile 0.9 Quantile
0.0045 1,075 120  0.1205 0.153 0.232483 0.17894559  0.23229798  0.23873813
0.0045 1,075 120  0.0723 0.153 0.179428 0.17894559  0.17894559 0.1829619
0.0045 1,075 120 0.241 0.122 0.342363 0.29123726  0.34279391  0.35336791
0.0045 1,075 120 0.241 0.077 0.31443 0.30300203  0.31470395  0.32619867
0.0045 1,075 120 0.241 0.046 0.295083 0.29524845  0.29524845  0.31470395
0.0045 1,075 120 0.193 0.122 0.291094 0.29123726  0.29123726  0.32041498
0.0045 1,075 120  0.1205 0.077 0.184646 0.18419325  0.18419325  0.23229798
0.0045 1,075 120  0.0723 0.046 0.1116 0.11073822  0.11073822  0.11275982
0.004 1,060 130 0.241 0.153 0.372377 0.32396078  0.37297629  0.37297629
0.004 1,060 130 0.193 0.153 0.320109 0.30056721  0.32041498  0.37297629
0.004 1,060 130  0.1205 0.153 0.238887 0.18407012  0.23873813  0.23873813
0.004 1,060 130  0.0723 0.153 0.183422 0.17232702 0.1829619 0.23873813
0.004 1,060 130 0.241 0.122 0.352878 0.32396078  0.35336791  0.35336791
0.004 1,060 130 0.241 0.077 0.324027 0.30386354  0.32435475  0.32725607
0.004 1,060 130 0.241 0.046 0.30365 0.29524845  0.30386354  0.32435475
0.004 1,060 130 0.193 0.122 0.300372 0.29963422  0.30056721  0.32435475
0.004 1,060 130  0.1205 0.077 0.189463 0.18419325 0.1890368 0.23873813
0.004 1,060 130  0.0723 0.046 0.113611 0.11073822  0.11275982  0.11275982
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Figure 7. Contour plot for AvgVel (m/s) as a function of Outlvel & Out2vel when Vis = 0.004, D = 1,050, and InPr = 120
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Figure 8. Contour plot for AvgVel (m/s) as a function of Outlvel & Out2vel when Vis = 0.004, D = 1,050, and InPr = 125
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Figure 9. Contour plot for AvgVel (m/s) as a function of Outlvel & Out2vel when Vis = 0.004, D = 1,050, and InPr = 130
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Based on Figure 7, further observations can be noted. When the blood pressure is 120 mm Hg, the normal (healthy)
CCA velocity range predicted by the ML model falls between 33.5 and 36 cm/s. If the blood velocity in CCA is 33 cm/s,
there is a 2.5% decrease in the velocity of ICA, which reduces from 0.241 m/s to 0.235 m/s. Additionally, a decrease in
CCA velocity results in reduced blood velocity in both ICA and ECA. For instance, if the CCA velocity is 31 cm/s, the
ML model predicts a reduction in blood velocity of up to 69% in ICA and 80% in ECA, suggesting the potential presence
of stenosis in both segments. Similar interpretations can be drawn from Figures 8 & 9. However, it is important to note
that these observations are based on a numerical model of an idealized carotid artery developed with certain assumptions,
as mentioned in the methodology section of this paper. Therefore, further investigation is required to validate the results.
Nonetheless, this work introduces a novel approach to assessing the potential prevalence of stenosis in the human carotid
artery using vital indicators such as blood pressure and CCA velocity. This approach offers a less expensive and non-
invasive alternative compared to other procedures mentioned in reference [5].

4.1 Limitations of this study

The model presented in this paper specifically pertains to an idealized carotid artery. In order to achieve numerical
tractability, certain assumptions have been made, including the assumption that the blood behaves as a Newtonian fluid,
the arterial segments are circular elastic pipes with a constant radius, and the blood flow is steady.

5. Conclusions

The present work focused on developing a numerical model for the blood flow in the carotid artery and simulating
it under different medical conditions arising from stenotic or atherosclerotic situations. Appropriate ML models were
developed for the simulated data and used to predict the blood flow characteristics in the artery. By utilizing the quantile
loss function, the prediction uncertainty was measured, revealing that the Random Forest Regressor performed as the
best model, followed by the polynomial regression of degree 3 as the second best. Through the implementation of the
random forest quantile regressor model, prediction intervals were computed for the average blood velocity in CCA. A
novel approach was discussed to identify the prevalence of stenosis in ICA and CCA, utilizing vital indicators such as
blood pressure and CCA velocity. It should be noted that certain limitations exist in this study concerning the assumptions
made to ensure numerical tractability for the problem. Therefore, the future scope of our work involves extending it to a
patient-specific model to enhance its reliability as a reference source for the medical fraternity.
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Appendix

AvgVel [Vis, Den, InPr, Outlvel, Out2vel]

0.265409" + 0.078564 (—0.0022750283" + 0.00022381376682196116 (—1061.666667 + Den)

— 0.0001739537517079976 (—1061.666667 + Den)? — 0.0002993633491530194" (—1061.666667 + Den)?

+0.00004733892608231857 (—112.22222" + InPr) +

0.0010605483376810376 (—1061.666667 + Den) (—112.22222 + InPr) —

0.000029206853427527918  (—1061.666667 + Den )? (—112.222222 + InPr) —

0.00011584581222704803" (—112.22222" + InPr)? —

2.65533629192115 * 10" —6 (—1061.666667 + Den) (—112.22222 + InPr)? +

6.75610566985723" * 10" —6 (—112.22222" + InPr)® —

1.8627033751462465 (—0.17356 + Outlvel) +

0.0045760073610361212 (—1061.666667 + Den) (—0.17356 + Outlvel) +

0.007451128321580791" (—1061.666667 + Den)? (—0.17356" + Outlvel) +

0.0016609074228502178  (—112.22222" + InPr) (—0.17356 + Outlvl) —

0.03905508812992131" (—1061.666667 + Den) (—112.22222" + InPr) (—0.17356 + Outlvel) +

0.00485949913843544  (—112.22222" + InPr)? (—0.17356 + Outlvel) —

0.11547011867167774 (—0.17356 + Outlvel)® + 0.02821675144718525 (—1061.666667 + Den) (—0.17356" +
Outlvel)? +

2.0686448767661743" (—112.22222" + InPr) (—0.17356 + Outlvel)® —

31.337060662417937 (—0.17356 + Outlvel)® +

2.732267903950571 (—0.1102" + Out2vel) +0.03404275083163098 (—1061.666667 + Den) (—0.1102" + Out2vel)

0.0027749030173769623 (—1061.666667 + Den)? (—0.1102" + Out2vel) +
0.04328394858196776 (—112.22222" + InPr) (—0.1102" + Out2vel) —
20.490957022893234  (—112.22222" + InPr) (—0.004222" + Vis) +

18.15090721567112 (—1061.666667 + Den) (—112.22222" + InPr) (—0.004222" + Vis) —
0.03625887596798143" (—112.22222" + InPr)? (—0.004222" + Vis) +

82.87927764043116  (—0.17356  + Outlvel) (—0.004222" + Vis) +

0.840759008506112" (—1061.666667 + Den) (—0.17356 + Outlvel) (—0.004222" + Vis) —
755.0195150460552" (—112.22222" + InPr) (—0.17356 + Outlvel) (—0.004222" + Vis) +
759.2899113664167 (—0.17356 + Outlvel)? (—0.004222" + Vis) +

15.551147953584664 (—0.1102" + Out2vel) (—0.004222" + Vis) +

88.6694445323135  (—1061.666667 + Den) (—0.1102" + Out2vel) (—0.004222" + Vis) —
32.184121934536016 (-112.22222" + InPr) (—0.1102 + Out2vel) (—0.004222" + Vis) +
648.1344731201417 (—0.17356 + Outlvel) (—0.1102" + Out2vel) (—0.004222" + Vis) —
14756.086901041232" (—0.1102" + Out2vel)? (—0.004222" + Vis) +

8246.650374304616 (—0.004222" + Vis)? + 6823.624803736039% (—1061.666667 + Den) (—0.004222" + Vis)? +
350868.2941984279 (—112.22222" + InPr) (—0.004222" + Vis)? +

318305.1010880145 (—0.17356 + Outlvel) (—0.004222" + Vis)® —

1.6730246957202835 * 7 (—0.1102" + Out2vel) (—0.004222" + Vis)? +
0.00047500789762314384  (—0.004222" + Vis)?)
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