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Abstract: Infectious diseases have denied humanity joy and resources over the centuries. Major diseases such as
rabies (1885), whooping cough (1914), flu influenza (1945), and COVID-19 changed the course of life. Hence, a need
for alternative methods of combating infections with optimal cost. The coronavirus has shocked the world and it was
devastating. The human immunodeficiency virus (HIV) epidemic has caused individuals to rethink their sexual lives,
especially in Africa, where the disease has plagued several souls. The authors developed a compartmental model for
co-infection of COVID-19 and HIV infection with optimal control. The following controls were incorporated into
the model: education/sensitization of susceptible populations, use of anti-retroviral therapy, treatment of co-infected
populations, and treatment of the COVID-19-infected population are essential in the fight against HIV and COVID-19
infections. Qualitative and quantitative solutions to the model were determined and analyzed. The HIV-COVID-19-free
equilibrium of the co-dynamics model was found to be locally asymptotically stable whenever the reproductive rate
was less than one and unstable otherwise. The co-dynamic model was extended to include some controls. This was to
establish which strategy is suitable for combating the spread of the COVID-19-infected population. The results of our
numerical simulations revealed that in combating COVID-19 and HIV spread, education of susceptible populations and
treatment of COVID-19-infected populations are the best options. There has been a reduction in COVID-19 infection,
an increase in the COVID-19 recovery population, and a substantial reduction in COVID-19 populations due to this
control strategy. The findings of this study are an important step in the fight against HIV and COVID-19. Hence,
policymakers should place priority on public education on HIV/COVID-19 infections and treatment of the COVID-
infected population when combating these diseases.
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1. Introduction

Infectious disease has been the monster that has plagued humanity with joy and resources over the century. Major
diseases such as rabies (1885), whooping cough (1914), flu influenza (1945), and COVID-19 changed the course of life.
The coronavirus disease has been devastating since it was reported in Wuhan, China. The number of confirmed cases
and deaths reported across the world is alarming. Further, the HIV epidemic has caused individuals to rethink their
sexual lives, especially in Africa, where the disease has plagued several souls.

The viral infection that thrives in the systems of other living organisms, especially humans, was detected in 1981
in the bloodstreams of mostly gay men. HIV accounts for more than 33 million deaths and 37.7 million infected cases
since the disease’s inception [1]. The disease unfolds in three stages: chronic, acute, and full-blown AIDS.

The authors in [2] formulated a model that focuses on the initial stages of an outbreak whenever pathogens have
been observed in a new environment. They provided two methods for determining the risk associated with new cases
leading to prolonged spread as opposed to outbreaks fading with a small number of cases.

Omicron spread has infected approximately 600,000 individuals in Shanghai between March and May 2022.
Coupled with different control mechanisms by countries in different periods, a model was formulated to determine the
impact of medical resources, shelter hospitals, and acrosol transmission generated on the spread of Omicron [3].

HIV and COVID-19 have been in several pieces of literature as academia has sought to find solutions to the
spreading process of these epidemics since their inception. The diseases have been considered separately in different
literature, with most reviews focusing on COVID-19 due to the devastating implications it induces in the host and its
fast-killing effects. Recently, HIV-COVID-19 co-infection has been considered to understand their combined effects in
the host’s body [4]. Persons with HIV and COVID-19 infections have a higher risk of death as a result of the diseases
due to the constant weakening of their white blood cells, which fight other foreign pathogens.

However, people with low CD4 cell counts outnumbered those not receiving anti-retroviral treatment. Those who
have underlying medical issues have been found to have a greater risk of COVID-19 in people with HIV [5].

According to [6], co-infection with HIV-COVID-19 produces devastating complications in the host as a result of
the disease’s ability to significantly decrease the person’s immune system. [7] discovered that HIV infection has the
ability to make the T-cells not function properly in the affected individuals.

A report by the World Health Organization (WHO) showed that co-infections of HIV and COVID-19 have the
ability to produce severe side effects in the infected person and may cause premature death [4].

Smith et al. [8] used a standard kinetic model to investigate the effectiveness of several influenza A virus immune
mechanisms, bacteria co-infection, proteins, and anti-viral actions. The authors sought to further define the kinetic
influenza A virus infection was measured through infected mice as the study measured the level of precision and
frequency of the infection.

Researchers in [9] developed a model involving pneumonia-typhoid co-dynamics to better understand the
characteristics of the relationship among the two diseases. The authors conducted an analysis of the model and
determined the reproductive rate in terms of the existence and stability of equilibria.

The authors in [10] formulated, developed, and analyzed a sex co-infection transmission model on the dynamics
of tuberculosis (TB) and human papilloma virus (HPV) within a population to gain insight into factors that lead to the
spread of each disease within the population. Their results showed that whenever the associated reproduction number of
the human papilloma virus (HPV-only sub-model) was less than unity, backward bifurcation was observed in the human
papilloma virus. The authors in [11] considered an SIS-B deterministic model by incorporating fear and treatment
effects. This was done by considering that the disease is transmitted from an infected population to a susceptible
population. After some theoretical analysis and computing basic results such as positiveness and boundedness, the basic
reproduction number R, was computed. The equilibrium points of the model were determined.

Scientists in [12] considered a fractional multi-delay model with control for the co-dynamics of HIV/AIDS and
malaria, as proposed by Carvalho and Pinto. The authors conducted numerical simulations to back up their theoretical
findings. The proposed dynamical model was shown to be more appropriate and general in describing biological
processes. In addition, the model’s dynamics were improved and its complexity raised by combining fractional
derivatives with a time delay and optimum controls.

The study seeks to add knowledge to:

* The existing studies on HIV-AIDS epidemics and their associated controls.
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* The fight against the COVID-19 pandemic and the cost-benefit analysis associated with future preparedness.

* The existing compartmental models that have been formulated in the fight against both HIV-AIDS and COVID-19
diseases.

The study was organized systematically as an introduction to HIV-AIDS, COVID-19, and a review of their
related literature. The model formulation, description, qualitative, and stability analysis The optimal control analysis
and numerical simulations were used to determine the best optimal control strategy for combating HIV-AIDS and
COVID-19.

1.1 HIV-AIDS data

Tables 1, 2, and 3 show the number of people tested for viral suppression, the number of people living with HIV
with a suppressed viral load, the HIV population of new infections, and total deaths, respectively.

Table 1. Number of people tested for viral suppression among those on treatment

Disaggregation 2019 2020 2021 2022
Children (0-14 years) 4,651 4,734 4,827 4,842
Males (15+ years) 21,393 21,778 22,163 22,555
Females (15+ years) 66,969 68,175 69,381 70,597
Total 93,013 94,687 96,371 97,994

Source: Ghana health service

Table 2. Number of people living with HIV with suppressed viral load

Disaggregation 2019 2020 2021 2022
Children (0-14 years) 3,176 3,455 3,734 4,023
Males (15+ years) 14,611 15,891 17,181 18,471
Females (15+ years) 45,739 49,745 53,551 57,367
Total 63,526 69,091 74,466 79,861

Source: Ghana health service

Table 3. HIV population, new infections and total deaths

Year Populations New infections AIDS death
2019 342,054 21,206 15,922
2020 346,120 18,928 12,758
2021 349,362 15,323 9,886
2022 352,498 12,383 6,974

Source: Ghana health service

Volume 5 Issue 3|2024| 2879 Contemporary Mathematics



2. Co-infection model description and formulation

Table 4. Variable description

Variables

Description

Susceptible population.
Exposed HIV individuals.
Exposed HIV and COVID-19 individuals.
Exposed COVID-19 individuals.
Infected HIV individuals.
Infected HIV and COVID-19 individuals.
Infected COVID-19 individuals.
Asymptomatic HIV individuals.
Treated COVID-19 individuals.

Recovered COVID-19 individuals.

Table 5. Parameter description

Parameter

Description

A

B

[

S

0,

[
@,

@,

A

(&5

Recruitment rate of the host population.
Transmission rate.
Rate of progression to HIV.
Recruitment rate into full shown HIV compartment.

Recruitment rate from full blown HIV in co-infection.

Recruitment rate from exposed to HIV and COVID-19 into co-infection.
Recruitment rate from exposed HIV into exposed HIV/COVID-19.

Recruitment rate from exposed COVID-19 into exposed HIV and COVID-19.

Natural death.

HIV related death.

COVID-19 death rate.

HIV-COVID-19 death rate.

Co-infection recruitment rate.

Recruitment rate from COVID-19 infections into co-infection.

COVID-19 recovery rate.
Recruitment rate from COVID-19 infection into treatment.
Recruitment rate from COVID-19 infection into recovery.
Fully blown HIV related death.

Progression rate from exposed to infectious COVID-19 state.
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A deterministic model for the co-infection of HIV-COVID-19 was formulated. The model is subdivided into 10
compartments based on the status of infections at any given time. Compartments consist of the following: susceptible
(S) population, exposed HIV (E,) population, exposed COVID-19 (E.) population, exposed HIV-COVID-19 (£,.)
population, infected HIV (/) population, infected COVID-19 (/) population, infected HIV-COVID-19 (/) population,
asymptomatic HIV (4,,) population, recovered COVID-19 (R.) population, and treated COVID-19 (7,) population. The
model assumes homogeneous interactions between the populations and is non-linear in nature. The co-infection model
is not a modification of any existing model.

Table 4 and Table 5 show the variables, parameters, and their descriptions used in the model formulation. Table 4
shows a gradual increase in number of people tested for viral suppression among those on treatment. Table 5 shows a
gradual increase in number of people living with HIV with suppressed viral load. Figure 1 shows the schematic diagram
of the co-infection model.

a 4
E, I Ay
) X
(1 +0) Vi nt o,
AN l 9
Al / l . ! I /]
d! \—D T w T
Ec = I, — Re
ﬂ l (u+ (52)1 . i | u
T.
L
p

Figure 1. Schematic diagram of co-infection of model

S=A=B(Io+1,+1,)S—puS—(1-B(I. +1, +1,.)S)+pR.

E, =B +1,+1,.)S—(u+f +a)E,

d
dt
d
dt
d
ZEHC =hEy + [LE. —(u+P)E,.

Ec=(1=B(I.+1, +1,)S)=(u+ f, + ) E,

4
dt
d
EIH :alEH_(ﬂ+51+7+'//l)1H

g (1)
EIHC =yl +PE, .+l + 04, —(1+6;) e

d

EAH =yl —(0+u+6,)4,

d
EIC =a2EC—(u+52+w1+w2+y/2)IC
d

ETC =w,l.—(u+o)T,

d
ZRC =wl.+oT. —(u+p)R,
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(1) shows the system of differential equations obtained from the HIV-COVID-19 co-infection in Figure 1.

3. Co-infection model analysis
3.1 Positivity of solutions
The positivity of variables was proven based on the following theorem.

Theorem 3.1 Let the initial values Sy, Ey;, Epcy, Ecys Ly Lucy Ay Icy Ty @nd R, be positive, then the solution set {S,
E,, Eyc, Ec, Ly Lye, Ay, I, Toand R (£)} of 1 is equally positive and bounded for all 7> 0, if they existed.

Proof.
%=A—ASIH—;¢S—(1—1)IC+,0RC
ds
—>-S(AI, —
dt (A1 = 1)
ds
—2>-A(I, —u)dt

InS>-A(1, —u)t+c
At1=0,S=5,

InS, zc

InS>-A(1, - p)t+InS,

Ast— oo,
§>0
Hence, applying same in the system of differential equation in as t — o0

E,>0,E, 20,E >0,1,>0,1,.20,4,>0,1 >0,T. >0,R >0

HC = HC =
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3.2 Feasibility region

Theorem 3.2 The positively invariant set of the model solution is given by

Volume 5 Issue 3|2024| 2883

A
> ={S,EH,EHC,EC,IH,IHC,AH,IC,TC,RC,eRi" IN<—, u# 0},
M

N=S+E +I.+T +R +E, +1,+ 4, +1, +E

He»>

dN _dS dE, dI, dT, dR_ dE, dl, d4, dl,

dE
+

He

- = 4y —<
dt dt dt dt dt dt dt dt dt dt

Cii—NzA—y(S+EC+IC+TL,+RC+EH+IH+AH+1HC+EHC)
t

—(1=S+AS+8,- )1, -5,4,- 5,1

Hc>

dN
—<A-uN,
dt H

ln(N—A]S—yt+c.
7

Att=0,N=N,

lrl[N0 —AJ <c,
]
ln(N—Aj < —,ut+ln(N0 —Aj ,
H H

dt

>
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Therefore, a positive solution is the invariant set and is given by

A
z :[S,EH,EHC,EC,IH,IHC,AH,IC,TC,chRj :NS—j.
U

3.3 HIV-COVID-19 free equilibrium

The HIV-COVID-19 free equilibrium of model system (1) is given by

A
Df :(SO’EIIO’Enco’Ec[,,lnoalncoa Anoa[coaTcoaRco ) :(;:0: 0,0,0,0,0,0,0, O)

3.4 HIV-COVID-19 reproductive rate

Considering state equation (1), the infection compartments can be deduced as:
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d
dt

4
4

d
E[H =oE,

—1
dr "

1 =,k

a’

_tTC =w,

Eye = flEH +f2

E.—(u+@)E,,

—(u+o,+y+y)l,

=yl +PEc +y . +04,

—(u+6,+o,+w,+y,)I,

d
EAH =yl, —(0+u+06,)4,

I.—(u+o)T,

From (2), the matrices F and ) are separated as follows:

Blo+1,+1,.)S

=]

—_~

oS O o o O

Thus, the matrix F becomes

I
S O O O O o o O

Evaluating F at the disease-free equilibrium

(Sor Eny» Enc,» Bey o Ly » Tuc,» Ay Ly Tey s Re, ) = [ ,o,o,o,o,o,o,o,o,oj.
7

Thus, the matrix F becomes
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1=B(I.+1,+1,.)S)

S O O O O o o O

S O O O o O o O

BS BS 0 BS
0 0 0 0
BS BS 0 BS
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(u+o)T. —w,l,

—E, =pU.+1,+1,)S—(u+fi+a)E,

=(=pUc+1, +1,)S)—(u+ f,+a)E:

_(ﬂ+53)IHC

(u+fi+a)E,

(u+PEyc = hEy — FLEc

(u+ fy+a,)E.

(1+6, +}/+1//1) -a,E,
(+8) Ly ~PEyc -
(0+u+5,)4, }/I

(+6,+o +o,+y,)1, —a,E,

S O O O o O o o

1.-64,

2

3)
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0 0 O ,HA pg— 0 ﬂé 0
JZ”
000 O 0O 0 0 O
0 00 pg— ,6’A 0 ﬂé 0
JZ” )z
7= 000 O o 0 0 of )
000 O 0O 0 0 0
000 O 0O 0 0 O
000 O 0O 0 0 0
000 O 0O 0 0 O
In the same way, the Jacobian of the ) gives
(u+f+a) 0 0 0 0 0 0 0
-1 (u+9) -£ 0 0 0 0 0
0 0 (u+f,+a,) 0 0 0 0 0
o, 0 0 zZ 0 0 0 0
V= (5)
0 —¢ 0 ¥, (u+96;) -0 ¥, 0
0 0 0 -y 0 @+u+s,) 0 0
0 0 -a, 0 0 0 zZ, 0
0 0 0 0 0 0 -0, (u+o0)

wherez, =(u+ 6, +y+y),z, =+, + o, + o, +y,).

A
Evaluating V at the disease-free equilibrium (SO, Ey By, Ecy o Ly s Lye,» Any s Lo, Te, s Re, ) = (—, 0,0,0,0,0,0,
U
0,0, Oj gives
(u+fi+oa) 0 0 0 0 0 0 0
£ (u+9) -/ 0 0 0 0 0
0 0 (u+f,+a,) 0 0 0 0 0
Q 0 0 z, 0 0 0 0
V= (6)
0 —¢ 0 ¥, (u+3,) -0 Y, 0
0 0 0 -7 0 @+u+o,) 0 0
0 0 -a, 0 0 0 zZ, 0
0 0 0 0 0 0 -0, (u+0)

Hence, finding the V' gives
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i 0 0 0 0 0 0 0
a]
% RS 44 0 0 0 0 0
a,a, a, a,ds
0 0 S 0 0 0 0 0
as
) % 0 o L 9 0 0
a,a a,a a
. 147 147 7 (7
j2 % j2 PR LR
3
' (asb,) : b (bby) (bb,)
—(a6b4) 0 0 b4 0 i 0 0
(a,a,b5) (a,b5) b,
0 0 be 0 0 0 oy
(a5b7) b,
b.b b 1
0 0 68 0 0 0 L
(asb,b,) (b,b,) b,

with
a=(u+fita)), ay=—f, ay=(u+9),
a,=—f,, as=(u+ fy+a,), a; =,
a; =z, ay ==, a4y ==Y,

b

(/u+§3)9 bz :_99 b3 =Y,, b4 =7
b, :(9+y+54), by, =-a,, b, =z,,
by =-,, by =(u+o0),

—(a,asa,b; — a,a,ab, + asagh,b, )

b= )
1 (a1a3a7b11b5)
b= (a4a8b7 +a3b3b(,) b= (agb5 +b2b4)
= Dy =
: (ayasbb,) (a,b,b,)
Hence, the reproductive rate is given by
Ry=F,+F,+FP +F, ®)

where
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_ Pay, A
ﬂ(,u"'ﬂ +0‘1)21‘9’

aa

o Bl
ou(u f ) (urg)o’

_ Blu+ p)ayh
Cp(pfira)(utd)(0+p+6,)z,

p ___ Par
“ ﬂ(ﬂ"‘f]"‘al)zl.

3.5 Local stability HIV-COVID-19 free equilibrium

Local stability of model system (1) was examined at HIV-COVID-19 free equilibrium:
A
(Sor Eny» Enc,» Eey o Ly » T, » Ay » Lo, Ty » Re, ) =| =50,0,0,0,0,0,0,0,0 |.
U

Hence, Jacobian of model system (1) is given by

C, 0 0 0O pgS 0 0 pS 0 P
C,, G, 0 0 0 0 0 0 0 0
0 i —(u+o) f, 0 0 0 0 0 0
a-mi. 0 0 Cs O 0 0 0 0 0
0 o, 0 0o ¢, O 0 0 0 0 ©)
0 0 ¢ 0 v, G 0 w, 0 0
0 0 0 0 /4 0 G O 0 0
0 0 0 a, 0 0 0 C 0 0
0 0 0 0 0 0 0 o —(u+o) 0
0 0 0 0 0 0 0 o) o —(u+p)
with
U, = _ﬂ([c +IH +IHC)’
Co=P(Ic+1;+1)—p—(1-2),
Cp=B(Io+1,+1,),
Gy, :_(,U‘*'fl +a1)a
C44 :_(/J+§1 +7/+l//1),
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Cs =—(u+6,+o,+o,,),

Ces :_(,U"'fz"'az)a

¢, z_(ﬂ+53)»

Css :_(9""/1"‘54),

when matrix (9) is evaluated at the disease-free equilibrium

(So’ EHO > EHCO S Eg

The Jacobian matrix is given by

Now, J(4 — pI) becomes

|
"
I
A

S O O O O O o o O
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|
N

S O O O O O o o O

0
G
A
0

@

R

S O O o O

0 0
0 0

~(u+9)  f,
0 C66
0 0
@ 0
0 0
0 a,
0
0

0 0

0 0

Vi=p

0 Vo=p

0 0

@ 0

0

0 a,

0 0

0 0

AS
0
0
0

C44

vy, C

S O O R

S O O o O

)
)

S O o O

®

OOOmQ%OOOOO

S O O O O

oS O o O

O O O O O

S O O O O o o o

—(u+o)

o —(u+p)

S O O O o o o

(=]

S O O O O o o O

1 IHCO’ AHO’ICO’TCO’RCO ) =(%’0, 0’ 07 05 0’ O; 0’ 09 0]

0’ " Hy?

S O O O O o o o

Vie—pP
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Vll = _(ﬂ+¢),

Vs :_(ﬂ"‘fz"'O‘Q)a

Vis =_(/U+53)s
Via :_(9+ﬂ+54)
VIS :—(/J+O'),

V]s =—(u+p).

According to the Gershgorin circle theorem, the co-infection model system in (1) is unstable at HIV-COVID-19-free
equilibrium since the matrix is not diagonally dominant. Thus, |-z — p |3 (8S + BS + p), |V13 - p| >+ (¢ +y, +0+y, )

3.6 Existence of endemic equilibrium

Model system (1) has unique endemic equilibrium and is given by C,, = (S*, E, E.. E.,

where

*

S =

H

IHC

s

AII

Contemporary Mathematics

A+pRZ

BI+ 1y + L )+ (1= I+ 1y + 1))

5

a4 Ey
(/”+§1+7+‘V1)’

_ ‘//11;1 +¢I;IC 'H//zlé +9A;1

(u+0,)

_
O+u+s,’

b

1,1,

* * * *
H> I[C’AII’IC’TC’RC)
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. o,E,.
I.= s
(/‘+52+w1+wzl//2)

. ol
c= P
(u+0)

R - ol +oT, .
(u+p)

3.7 Global stability of HIV-COVID-19 free equilibrium

Using approaches in [9, 13, 14] on the model system (1), we established global stability.

dk,

E:W(kl’ k)
dk
7[2:14(](1, k2)

k, and k, denote the numbers of uninfected and infected individuals, respectively. k, = (S) € R and p, = (E;, Eyes Ecly,
Ly, Ay, 1o, To) € R®. The disease-free equilibrium D;, for the model system (1) is given by D, = (k!, 0). Thus, the global
stability at D, exists based on these conditions:

dk,
* Given d_tl = Y(k{, 0), z{ is globally asymptotically stable.

* O(ky, k) = Gx, — a(kl, k,) where (A?(kl, ky) > 0 for (k, k) ee.

G = Hy,C(z/, 0) is an M-matrix with a +ve off-diagonal, and 7 is a feasible biological region of model (1).
Whenever these conditions are met by system (1), then this underlying theorem holds.

Theorem 3.3 Whenever R, < 1 and these two conditions are met by model (1), then equilibrium point D, = k), 0)
is said to be globally asymptotically stable.

Proof. Referring to model system (1), we can deduce

dk,

;_Y(kl, k)

o, (U® (10)
dt \al.+0T.—(u+p)R.)

where
U)=A-PBUc+1;+1,c)S—uS—(1-BUc+1,;+1,:)S)+pR..

Hence, Y(k,, 0) becomes

H (3.0 A= B(Lg, + 1, + L, ) So = 1S, = (1= B(Le, + 1, + 1, ) Sy )+ PR, ’
ol +0Te, =1+ p)Rey
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Blo+1;+1,)S—(u+ fi+a))E,
JEy + LB —(u+PEyc
(1=B(Ie+1,+1,0)S)=(u+f,+a,) E.
aE, —(u+6+y+y,)1,

Wil +PE,c +w,l.+ 04, —(1+6,) 1,0
vl —(49+,u+54)AH

E. —(u+6,+o,+w,+y,)I,

Q(kl’kZ):

w,1 . —(u+o)T,

The Jacobian of Q(k,, k,) is given by

-U, 0 0 ps BS 0 pBS 0
5 ~u+d) S, 0 o 0 0 0
0 0 -U, -pBS -pS 0 -pB8 0
a, 0 0 0 -U, 0 0 0 0
Ty, = (11)
0 ¢ 0 vy, —(u+dy) 0 ¥, 0
0 0 0 /4 0 -U, 0 0
0 0 a, 0 0 0 -U 0
0 0 0 0 0 0 0w, —(u+o)
where
U =(u+fi+a), Uy=(u+ fi+a,), Uy =(u+6,+y+y,),
U,=(0+u+38,), Uy =(u+6,+o +o,+y,).
Hence, using the expression
O(pi» ) =G, =W (k. k), (12)

we deduce the following Q(k,, k,) is given by

-U, 0 0 BS, BS, 0 BS, 0 E, Dyw(k, k)
Lo —(u+d) Sy 0 0 0 0 0 Eye D,w(k,,k,)
0 0 -U, -pS, -85S, 0 =B, 0 E. Dk, k)
a, 0 0 0 -U, 0 0 0 0|1, D,w(k,,k,)
0 @ 0 v, —(u+o,) 0 v, 0 . Dk, k)
0 0 0 14 0 -U, 0 0 A, Dk, k,)
0 0 a, 0 0 0 -U; 0 1. D,w(k,,k,)
0 0 0 0 0 0 o, —(u+o) T. Dok, k,)

Applying the equation (12), and solving for the expression w(k,, k,) gives T is equal to
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Blo+1;+1,)S—(u+ fi+a))E,
NEy + LB —(u+PEyc
(1=B(Io+1,+1,0)S)=(u+f,+a,) E.
A E, —(u+6+y+y,)1,

Wil +PE,c +w,l .+ 04, —(11+6,) 1,0
vl —(49-1—,u+54)AH

E. ~(u+6,+o,+w,+y,)I,

_(/'l+ﬁ +a])EH +BSoly + BSol e + BSyl
NEy+ [LE.~(u+9)E

—(pu+ fy+ay)Ec = BSyd; = BSyl e — BSyI .
B, —(u+6,+y+w,)l,

Wil +PE, +w,l .+ 04, —(1+6;) 1,
iy _(9+ﬂ+54)AH

L E. —(u+6,+w+w,+y,)I,

I —(u+0)T, . —(u+0)T,

where
DlvT/(kl,kz)
D,w(k,, k)
D3ﬁ/(kl,k2)
T D4ﬂz(k1,k2) .
Dy(k,, k)
Défv(k],kz)
Dow(k,, k)
ngT/(kl,kz)
Hence,

BL, (S, =S) PL,(S,—8) BI.(S,—S)
0 0 0

w(p,,p,) =

S O O O O o O
S O O O O o o
S O O O O o O

It can be seen that the total population of model (1) is bound by S,. This follows that S, E,, E,c, Ec, Ly, Lyc, ey T
Ay, Ro <8y, and pI,S < p1,Sy, flycS < PlycSy, PI-S < PI.S, which implies Ijl\/(kl, k,) is +ve definite. Matrix J, f is an
undoubted M-matrix with +ve off-diagonal entries. Therefore, two conditions are met, which is a proof of the globally
asymptotically stable D, [15-17]. O

3.8 Local stability of endemic equilibrium

The local stability of model system (1) at endemic equilibrium, C, = is investigated. Given the Jacobian matrix of
system (1) as
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t, 0 0 0 BS 0 0 pBS 0 p
t, t4, 0 0 0 O 0 0 0 O
0 f B f, O 0 O O 0 O
a@-AnI. 0 0 B O O O O 0 O
0 o 0 0 ¢, 0 0 0 0 O (13)
0 0 ¢ 0 y, B 6 y, 0 0
0 o 0 0 y» O B O 0 O
0 0 0 o0 0 0 O C5 0 O
0 0o 0 0 0 0 0 @ B O
0 06 0 0 0 0 0 o o B
with
ty=BIc+1, + 1, )—u—-(1-2),
Ly = ﬂ(lc +1H +IHC)9
Iy z_(/'H'fl +a1)’
Ly :_(/I"'é‘l +7+‘//1)’
tis =—(u+6,+o +oy,),
B =—(u+¢), B, 2_(/1"']{2 +0!2),
B, :_(ﬂ+53)s B, :_(6"'#"'54)»
Rs=—(u+o0), By =—(u+p).
Hence, evaluating (13) at the endemic equilibrium Cp; gives
¢, 0 0 0 BS° 0 0 BS° 0 p
ty & 0 0 0 0 0 0 0
0 fH B f, 0O 0 O 0 0
-, 0 0 P, 0 0 0 0 0
7o 0 a 0 0 C, 0 O 0 0 (14)
0 0 ¢ 0 w K 6 w, 0 0
0 o 0o 0 y 0 p, O 0 0
0 0 0y, 0 0 0 C, 0 0
0 0 0 0 0 0 0 w PR O
0 0 0 O 0 0 0 w o pg,

with
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Py =—(u+9¢), B, :_(ﬂ"‘fz'i'az)a B, :_(ﬂ+53)7
Pu=—(0+u+6,), By =—(uu+0), pg =—(u1+p).

Hence, (4 — II') becomes

s *

t, —1 0 0 0 AS 0 0 BS 0 P
t, ty—1 0 0 0 0 0 0 0 0
0 £ B-l f 0 0 0 0 0 0
A-DI. 0 0 P, 0 0 0 0 0
0 a 0 0 C,-I 0 0 0 0
J= (15)
0 0 ¢ 0 ¥ P]s_l 0 v, 0 0
0 0 0 0 7 0 pu,-1L 0 0 0
0 0 0 a, 0 0 0 Cy-1 0 0
0 0 0 0 0 o, P.—l 0
0 0 0 0 0 o e

Using Gershgorin’s circle theorem, model system (1) is not locally asymptotically stable since |t33 —l| >t
|P11 _l| S+ /s |p13 _l|:'>¢+‘//1 +y, and |p16| F o +o.

220

3.9 Global stability of HIV-COVID-19 endemic equilibrium

This section examines the global stability of the HIV-COVID-19 endemic equilibrium of the system (1).
Constructing the Lyapunov function for system (1):
Theorem 3.4 Given that S=S", E, =E},, E,. =E, ., E.=E., I, =1,,, I,. =1, 4, =4,,1.=1_., T, =T,

HC» H

and R, = R_. then E, of model (1) is said to be globally asymptotically stable in whenever R, > 1.
Proof. Defining Lyapunov function as

L:{(S,E,.E

HC>

E.1,,1,

C»

Ay 1., T.,R.)eA| S,E, E

HC>

E. 1,1

HC>

Ay 1o, T R > 00 >R
given by

* * S * £ E * & E
L =(S—S -5 ln?j+(EH -E, -E, 1nE—§’J+(EHC N 1nE—’jCJ

H HC

. . E | Y
+£EC—EC—EclnEfj+(1H—IH—IHlnl—f]+(1HC—IHC—IHCInI£’CJ

C H HC

.. A oo o o T
+(AH—AH—AH1nA—’fJ+[IC—IC—ICInI—CJ+[TC—TC—TCInTEJ

H 2 C
* * R
+(RC—RC—RC lnR—f].

C
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Time derivative of L becomes

dL _(S—S*]dS (EH —E;,JdEH {EH —E,’;deEHc

a s Jar E, dt E,. dt

. E.-E, dE, 1,-1,\dl, [ L — 1, \dl,.
E, dt 1 dt 1 dt

H HC

J{AH —A;jdAH +[IC -1 ]dLJ{TC —Tg]dTC J{RC —jodRC

A, ) dt 1. ) dt T. Jdt | R dt

C C C

dL (S-S
dt S

j{A_ﬁ((lc — 1)+ Uy = 1)+ Ly = LS =87) = (S = S7)

~(= (U~ 1)+ Uy =)+ Uye) =Ly NS =S) + p(R, = RD)}

+ Egi}ﬂ«lc—mwﬁ—1;;)+<1HC—I,’;c>)<S—S*)—(u+ﬁ+al>(EH—E;;)}

+ —EH}_EHC]{fI(EH ~E; )+ [(Ec —EQ) = (u+ @) Eye — Eye )}

E.-E,

C

Ec

]{(l_ﬂ((lc — 1)+ Ly = 1)+ Lye =Ly S =S) = (u+ f + &, ) (Ee — E)}

*

I, -1 * *
+ HI H]{al(EH_EH)_(:Ll+é‘l+}/+W1)([H_IH)}
H

I,.—1, . : . . .
+ u]{l//l(lh' _IH)+¢(EHC _EHC)'H//z(IC _IC)+9(AH _AH)_(/u+53)(IHC _IHC)}

[HC

s

AH — AH
AH

J{ﬂlﬁ — 1) =0+ pu+3,)(Ay — 4}

*

IV_]V % *
CI < J{az(Ec_Ec)_(ﬂ+52+wl +a)2+‘//2)(1c_lc)}

C

+[T“T‘TC]{wz<1c L)~ (ut 0T, ~T0)
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iRC_RCJ{wlaC—Iz)w(TC—T5>—<ﬂ+p><Rc—R2>}

+{ﬂ(lc _1;)(3_5*)(%;@]%(1,, —1};)(3—5*)[%;@J

H

+B (I _[’:C)(S_S*)[%j_(ﬂ+fl +al)[(EHE—EH)}}

_E o E,. _E;,C 2
+{fl (En _E:’)£%j+f2(l?c —E;)(%j_(ﬂ+¢)[( — ) J}

HC e

¢ c

-l )(5-5 ) B - s B

C

+{a, (E,,—E}‘,)(%}(M@+y+%)[(1n ;HI;) J}

+{l//1 (IH _I;I)EIHC];I;CJ"'¢(EHC _E;IC)[]HCI;I;CJ*"/Q (Ic —IZ‘)(I—HC _I;CJ

HC HC e

+0(4, —AZ)[I"C,;[:”J—(u+53)[_(lffc[‘flfc)z H

He HC

+(IIIC _I;IC)(S_S*)[ECE;CEZ]_(:“'F]{Z +az)[<EC;EZ) ]}

Volume 5 Issue 3|2024| 2897 Contemporary Mathematics






HC HC HC

+{yx, (1, —I;)(Mjﬂzﬁ(&m —EZC)(I”CI;[’*’CJWZ (1, _1;;)(%1;’%]

0(4, —A;)(M]—<ﬂ+@>[—(l“ ~Lic) }

IHC HC

_r T.-T)
+ wz(fc—fé)(TCTTC]—(Md)[( 7 )]}

+{a2(EC —EZ)([CI;CIZJ—(/J-F@ to,+ o, +W2)[(IC ;CIE)Z ]}

Jr{a)l (1.-1)+o(T, —Té‘)[%j—(wp)[(& ;fz)z J}

Using the expression ¢ = ¢, —t, gives

tl :A+,0(RC—R:)[S;S*}rﬂ([c_Ié)(S_S*)(EHE;EZJJFﬁ(IH —IL)(S_S*)[EHE;E;’]

H H

*

+f1(EH _EL)[%J—F](Z(EC_EE‘)EEHCE,_EHCJ_F(I_ﬁ)(]C_IZ')(S_S*)(ECE_'ECJ

HC HC C

A0 _[;)(S_S*)(EC;EZ]JF(]HC _ILC)(S—S*)(ECE;EZJM:] (E, —EZ)[IHI;I;]

C C

+y, (IH _I;){IHCI;[;C]+¢<EHC _E;C)[]HC];I;CJH/Q (Ic _I;)[IHCI_[;ICJ

HC HC HC

+9(AH—A;)(I”C];1;’CJ+;/(1H—I;)E :

HC

va (B _E;)[fcl;’?]mz(zc _zg)[TCT‘TS]WI (1c-12)
C
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. A[(s=57) Al(s=57) o [(s=57)
l‘zZA(—j—ﬂ(lc—]c) 5 +B(1,-1}) +B(Iye =T ) 5
s-sY ((s-5Y [(s=5Y s-s'Y
+”( S | +1_ﬁ(1€_10)( ) +(1y IH)( S ) (T ) =T ( s )
E,-E,) o) E.-E.
+(ut fi+e) ( HEHH) +(u+9) ( ”CEHC”C) +(u+fo+ar) ( CEC ‘)
* \2 *\2 *\2 £ \2
+(u+0,) (IH _IHC) +(0+u+6,) (AH_AH) p (Ic_lc) ] (]c_lc)
HC A, 1, 1.
(e=to) |, ((e=te) |, [le-1)
+ o, I +w, I v, .
T.-1.) R.-R.)
+(u+o) % +(u+p) (Fe—Rc) CRCC) :
Now, by inspection, we observe that ¢, > £,. Hence, system (1) is not globally asymptotically stable [18]. o

4. Co-infection model extension to control

Examining possible controls that would help reduce COVID-19 and HIV co-habiting in humans, bearing in mind
that HIV-AIDS is never curable, Hence, we modified the model to include control by adding time-dependent controls
for u,, educating the community on COVID and HIV infections; u,, administering anti-retroviral drugs to HIV-infected
humans; u,, treating COVID-19 and HIV-infected humans; and u,, treating the COVID-19-infected population. Hence,
given the co-infection model:
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d
ES:A—(l—ul)ﬂ(Ic +1, 41, )S—puS—(1-u) )A=B) (o + 1, +1,.)S+ pR,
d

EEH =(1—u)B(Io+1;+ 14 )S—(u+ fi +) E,

d
EEHC =hEy + LE. —(u+P)E ;.

%EC (1)) (A= P) (I, +1, 41,0 )S—(u+ fo +a, ) E,

d
—1, =k, _(ﬂ+51+7+% +”2)IH

dt (16)
4
dt

d
EAH =yl —(0+u+6,)4,

Ly =yl +PEc +y l o+ 04, —(u+6 +uy ) Ly

d
EIC =, E.—(u+6,+w,+o, +y, +u, )1,

d
ET(, =wl. —(u+o)I,

d
ERC =wl.+oT. +u,l, +uld, +ud.—(u+p)R.

We consider a quadratic function, as in [19], that minimizes these populations through education u,, treatment of
the HIV infected humans u,, treatment of the COVID-19 and HIV infected humans u; and treatment of the COVID-19
infected humans u,. Costs are non-linear in nature. We therefore use a quadratic functional for the optimal control in our
study. Hence, we employed an objective functional 7 as:

1
J=[ {AIE + A By + AE + A, + Al + A Ay + AT, +E(C1u12 +Cyul + Cyail + ol )} dt (17)
. .. . . Cul Cu: Cui

With (17), the quantities 4,, 4,, A5, A4, As, A, and A, are weight constants. The expressions %,%,%, and

2

4 are the cost-minimizing variables in the model. We seek controls u;, u,, u;, u, such that
j(ur,u;,u;,u:) = min{J(ul,uz,u3,u4):(ul,uz,u3,u4) € U} (18)
where

U= {(u, Sy, uy, 1y ) 0<u, <1, i=1,2,3,4, Lebesgue measurable} (19)

Here, Pontryagin’s principle [20, 21], which is an analytic method, would be used to convert systems (16) and (17)
into a minimization problem. The Hamiltonian H function with respect to the controls u,, u,, u;, and u, is given by:

1
H = [AIE + A E, .+ AE.+ Ady, + Al + A A, + A, +5(C1u12 +Cu; +Coui +Cou; )}
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+ A (A =(1=w)) (I +1,; +1,0)S —uS —(1=u, ) (A= B) (I +1,, +1,.) S+ pR.}
+ 2, (=) (Lo + 1, + 1,0 )S —(u+ f +, ) Ey |

A fiEy + LEc —(U+$)Epc |

2 (1= ) A= BY (e + 1y + 1) S—(u+ £+ ) B |

+As{ @By —(u+68,+y+y, +u, )1, }

2 WLy + GE e+, + 04, —(p+0, +uy) 1. |

+2, {71, —(0+pu+3,) A4, }

+A @B —(u+6, + o + o, +y, +u,) 1|

+A {0 —(u+0)T,}
+ho{ode +0T, +udy, +ud,. +ud. —(pu+p)R.}. (20)
Theorem 4.1 There exists an optimal control U™ = u], u5, u;, u; € U such that
j(u:,u;u;,u:)zminuj(ul,uz,u3,u4) 21)

subject to control system (16) with initial conditions.
Proof. The control space U = {u | u,, u,, us, u, are measurable, 0 < u,, u,, us, uy; < u,ax < oo, t € [0, t,]} is convex
and closed by definition. The optimal system is bounded, which verifies the compactness needed for the existence of the

. . . . 1 .
optimal control. Also, the integrand in the functional {GIDP +G,D, +G,D,, +5(C1u,2 +Cyus + Gyl )} is convex on the

control u.
Therefore, there exist constant ¢ > 1, +ve values u,, u,, u;, and u, such

q
2 2 2\, 2
J(ul,uz,u3,u4)2ul(|ul| +|u2| +|u3| ) —u”.

In the quest to find an optimal solution, Pontryagin’s principle is applied to the Hamiltonian (20). If (y, u) is an
optimal solution to the control problem, there exists a non-trivial vector function 4 = (4, ... 4) satisfying the below
equation:

dz _OH(t,y,u,A)  OH(t, y,u,A) dA _OH( y,u, 1)

22)
dt oA ou dt oz
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Hence, the necessary condition associated with the Hamitonian (20) is applied.
Theorem 4.2 Given that S, D,, D;, D,, R. and R are optimal state solutions with associated optimal control

variables (u;, u,, us, u,) for the optimal control problems (16) and (17), there exist adjoint variables 4, fori = 1, ..., 6,
satisfying
. oH
A :_g:(/L _ﬂz)(l_ul)ﬁ(lc +1y +IHC)+(11 _14)(1_“_1)(1_ﬂ)(1c +1 +1Hc)+/uﬂ'1
}“2,:_ai:Al+(lz_ﬂ'3)fl+(/12_/15)al+ﬂ/12
OE,
%:_G(ZZC ==, +(4 = A )p+ uh,
/1;:—52 =—A,+(A, =)o, + A, fo + pA,
/15’=_STH=_A4+(/11_Az)(l_ul)ﬂs'*'(/lz_/14)(1_/})S+(/15_/16)'//1"’(/15_/?7)7“'(#4’51'H"z)ﬂs
. oH
2,6——61 =—A5+(/7.l—ﬁz)(l—ul)ﬂS+(/7.l—2,4)(1—u1)(1—ﬂ)S+(,u+53+u3)
ﬂ;——a—H——A +(O+p+6,)2,
- aAH - 6 H 4
, OH
A== (A=) (1) A8+ (A4 = 2) (1= ) (A= )S + (4 = A )y,
+(ﬂ8_ﬁ9)w2+(j’8_ﬂ’lo)wl+(28_j‘6)u4
O
K== h)o+
A :_SIZ :(110_21):04',“/?10 (23)

with boundary condition

A(t,)=0,i=12,..,10 24)

The optimal control u;, u,, u;, and u, are given by
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),BS(IC+IH +IHC)+(

u/ =min

—

)(1— BS(I. +1, +IHC)]H

B]

O R
i =minf. . (2202 |
s s o. (1 -2 |
=it . (1212 |

5. Numerical simulations

Numerical simulations regarding the effects of strategies on the HIV-COVID-19 model are conducted using
parameter values in Table 6. Table 6 shows a decline in the number of new cases of HIV infections as well as the
number of HIV-AIDS deaths. Optimal control is derived by solving a system consisting of a state equation (16), an
objective functional equation (17), an adjoint equation (23), transversality conditions, and characterization.

Table 6. Co-infection model and parameter description

Parameter Description Source
A (10-1,000) [25]
B 0.075 [26]
o, (0.025-0.075) [25]
0 0.15 [25]
@ 0.001 Assumed
® 0.0045 Estimated
fi 0.025 Assumed
f 0.035 Assumed
u 0.0025 [25]
9 0.15 [25]
0, 0.12 [26]
05 0.13 Estimated
78 0.005 Assumed
v, 0.02 Estimated
, 0.9286 [26]
, 0.0714 [26]
o 0.0083 [26]
o, 0.14 [25]
o, 0.01 [26]
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Generally, an optimal system is solved by employing an iterative scheme using the Range-Kutta fourth-order
approach [22-24].

5.1 Strategy 1: Optimal education/sensitization of susceptible population and treatment of
COVID-19 infected population

Using education and treatment of COVID-19 infected as control strategies, we optimized the objective functional
by setting the other control strategies to zero. Using Strategy 1, it can be established from Figure 2 that the COVID-19
recovered population has increased and the COVID-19 infected population has decreased. Moreover, the co-infected
population has also decreased, as shown in Figure 3. This is so because, as the recovery population increases, there is
the possibility of the infectious population reducing.

There has been a reduction in the susceptible population and an increased COVID-19-infected population, as
shown in Figure 4. This is because, as the population’s susceptibility reduces, more people are infected since it is an
open, dynamical system.

u,; #0, u,#0 e 1, 7 0, U, 7 0
u=u,=u;=u, =0 — == Uy =u, =0
- 1,100 1% 10° )
2 =
= =]
= 1,000 k= 8 x 10°
5 E 1
2
= 900 g
= o 6x10° 4
2 80 N
S Z 4x10°
O
5z 700 S
5 B 2x10°
2 600 31
= 500 , . 04
0 2 4 6 8 10 12 0o 2 4 6 8 10 12
Time (months) Time (months)
u, 70, u,#0 w70, u,#0
w=u,=u;=u, =0 —_— == uy=u, =0
.-"f__ g
2 220 A
S 400 1 = -
§ § 200 o -
% 300 2 180 4
= < 160 4
b3 >
gaé 200 + = 140 -
S E 120
© 100+ 8 ]
T T = 100 ;
0o 2 4 6 & 10 12 0 2 4 6 8 10 12
Time (months) Time (months)

Figure 2. Population with and without control
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70,1, #0 u #0,u,#0
w=u,=us=u, =0 w=u,=us=u, =0
£ 3% 10° ——
k ) s 1%10° 1
§ 2.5 x10° 4 g .
o § 8 x10° 4
: 2x10° s
E o 6x10° 1
) a
© 1.5 % 10° 4 > 4%10° 4
2 8
2] 1% 10° ] 3 ax10°d /
3 3
2 E
T L L L3 v L 0 T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (months) Time (months)
0, u,#0 0, u, 70
— = U= U =u, =0 — = Uy = U = U, =0
g 3% 10° ———
5 g 1% 10° 1
e 2.5%10° 1 <
i = 8% 10° 4
o)) [=]
— o
a 2x10° o :
% Q 6x10° 4
>
S 1.5 % 10° ] 5 4%10° |
)
=] o
& 1% 10° ] g 2% 10° 4
@ —
& k=
0

T . T . T

0 2 4 6 8 10 12

Time (months) Time (months)

Figure 3. Population with and without control

5.2 Strategy 2: Optimal education/sensitization of susceptible population and use of anti-
retroviral therapy

Using education and anti-retroviral therapy as control strategies, we optimized the objective function by setting the
other control strategies to zero. Using this strategy, we observed from Figure 4 that COVID-19-susceptible individuals
have decreased and COVID-19-treated populations have decreased. However, the co-infected population has increased,
and HIV infection has reduced in a gradual process, as shown in Figure 4.

There has been a reduction in the COVID-19 susceptible population and a reduction in COVID-19 treated
populations, as shown in Figure 5.
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Figure 4. Population with and without control
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Figure 5. Population with and without control
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Figure 6. Population with and without optimal control
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5.3 Strategy 3: Treatment of COVID-19-HIV infected population and treatment of COVID-19
infected population

Using treatment of co-infected populations and COVID-19-infected populations as control strategies, we optimized
the objective functional by setting the other control strategies to zero. Using strategy 3, we can observe from Figure 6
that the COVID-19 recovered population has increased and the COVID-19 infected population has increased. However,
HIV infections have reduced in a gradual process, and the co-infected population has increased, as shown in Figure 6.
As there are more recoveries in COVID-19, more COVID-19 infections imply that there are substantial numbers of
susceptible populations becoming infected in the system.

However, there has been a reduction in the COVID-19 susceptible population and an increase in COVID-19
infected populations, as shown in Figure 7.
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6. Conclusion

A co-infection of HIV-COVID-19 model was developed to examine the co-existence of both diseases in humans.
The study employed a non-linear differential equation in formulating the co-infection model. Positivity of solutions and
boundedness were conducted to determine a feasible region.

The stability analysis of the co-infection model was determined at equilibrium. The local and global stability of the
co-dynamics model’s equilibria were established. The co-dynamic model was extended to optimal control.

The results of numerical simulations revealed that the best strategy to be used in combating COVID-19 infection
spread is Strategy 1 (education of susceptible individuals and treatment of COVID-19-infected populations). As there
are more recoveries in COVID-19, more COVID-19 infections imply that there are substantial numbers of susceptible
populations becoming infected in the system. There has been a reduction in the susceptible population and an increase in
the COVID-19-infected population. This is because, as the population's susceptibility reduces, more people are infected
since it is an open, dynamical system.

There were reductions in COVID-19 infection, an increase in the COVID-19 recovery population, and a substantial
reduction in co-infection populations due to this control strategy. Therefore, policymakers should give more priority to
educating the public on COVID-19 and HIV infections and the treatment of the COVID-19-infected population when
combating these diseases.

The authors recommend future research on HIV, COVID-19, and HIV-COVID-19 co-infection. The pattern of
dynamics regarding these infections is relevant for policymakers in the fight against future epidemics. These future
studies should target the comparison of results and findings to better understand the best control measures for addressing
future epidemics.

Acknowledgments

The authors deeply appreciated the support from the faculty in the preparation of this manuscript.

Source of funding

There are no funding sources for this study. The authors are completely responsible for the entire cost of this
research.

Data availability statement

The data used in the analysis of this study were taken from published articles. These articles are cited at relevant
places within the text as references.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

References

[1] Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, et al. FOXD1 promotes nephron progenitor
differentiation by repressing decorin in the embryonic kidney. Development. 2014; 141(1): 17-27. Available from:
https://doi.org/10.1242/dev.089078.

[2] Southall E, Ogi-Gittins Z, Kaye AR, Hart WS, Lovell-Read FA, Thompson RN. A practical guide to mathematical

Contemporary Mathematics 2910 | Shaibu Osman, et al.


https://doi.org/10.1242/dev.089078

methods for estimating infectious disease outbreak risks. Journal of Theoretical Biology. 2023; 562: 111417.
Available from: https://doi.org/10.1016/j.jtb1.2023.111417.

[3] Sun G-Q, Ma X, Zhang Z, Liu Q-H, Li B-L. What is the role of acrosol transmission in SARS-Cov-2 Omicron
spread in Shanghai? BMC Infectious Diseases. 2022; 22(1): 880. Available from: https://doi.org/10.1186/s12879-
022-07876-4.

[4] Tamuzi JL, Ayele BT, Shumba CS, Adetokunboh OO, Uwimana-Nicol J, Haile ZT, et al. Implications of
COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infectious Diseases.
2020; 20(1): 1744. Available from: https://doi.org/10.1186/s12879-020-05450-4.

[5] Mirzaei H, McFarland W, Karamouzian M, Sharifi H. COVID-19 among people living with HIV: A systematic
review. AIDS and Behavior. 2021; 25(1): 85-92. Available from: https://doi.org/10.1007/s10461-020-02983-2.

[6] LiY, Qin Q, Sun Q, Sanford LD, Vgontzas AN, Tang X. Insomnia and psychological reactions during the
COVID-19 outbreak in China. Journal of Clinical Sleep Medicine. 2020; 16(8): 1417-1418. Available from: https://
doi.org/10.5664/jcsm.8524.

[7] Suwanwongse K, Shabarek N. Clinical features and outcome of HIV/SARS-CoV-2 coinfected patients in the
Bronx, New York city. Journal of Medical Virology. 2020; 92(11): 2387-2389. Available from: https://doi.
org/10.1002/jmv.26077.

[8] Smith AP, Moquin DJ, Bernhauerova V, Smith AM. Influenza virus infection model with density dependence
supports biphasic viral decay. Frontiers in Microbiology. 2018; 9: 1554. Available from: https://doi.org/10.3389/
fmicb.2018.01554.

[9] Tilahun GT, Makinde OD, Malonza D. Co-dynamics of pneumonia and typhoid fever diseases with cost effective
optimal control analysis. Applied Mathematics and Computation. 2018; 316: 438-459. Available from: https://doi.
org/10.1016/j.amc.2017.07.063.

[10] Omame A, Isah ME, Abbas M, Abdel-Aty A-H, Onyenegecha CP. A fractional order model for dual variants of
COVID-19 and HIV co-infection via Atangana-Baleanu derivative. Alexandria Engineering Journal. 2022; 61(12):
9715-9731. Available from: https://doi.org/10.1016/j.a¢j.2022.03.013.

[11] Thirthar AA, Abboubakar H, Khan A, Abdeljawad T. Mathematical modeling of the COVID-19 epidemic with fear
impact. AIMS Mathematics. 2023; 8(3): 6447-6465. Available from: https://doi.org/10.3934/math.2023326.

[12] Sweilam NH, Al-Mekhlafi SM, Mohammed ZN, Baleanu D. Optimal control for variable order fractional HIV/
AIDS and malaria mathematical models with multi-time delay. Alexandria Engineering Journal. 2020; 59(5):
3149-3162. Available from: https://doi.org/10.1016/j.a¢j.2020.07.021.

[13] Otoo D, Osman S, Poku SA, Donkoh EK. Dynamics of tuberculosis (TB) with drug resistance to first-line
treatment and leaky vaccination: A deterministic modelling perspective. Computational and Mathematical Methods
in Medicine. 2021; 2021: 5593864. Available from: https://doi.org/10.1155/2021/5593864.

[14] Osman S, Makinde OD. A mathematical model for coinfection of listeriosis and anthrax diseases. International
Journal of Mathematics and Mathematical Sciences. 2018; 2018: 1725671. Available from: https://doi.
org/10.1155/2018/1725671.

[15] Otoo D, Abeasi 10, Osman S, Donkoh EK. Mathematical modeling and analysis of the dynamics of hepatitis B
with optimal control. Communications in Mathematical Biology and Neuroscience. 2021; 2021: 43.

[16] Osman S, Tilahun GT, Alemu SD, Onsongo WM. Analysis of the dynamics of rabies in North Shewa, Ethiopia.
Italian Journal of Pure and Applied Mathematics. 2022; 48: 877-902.

[17] Otoo D, Abeasi 10, Osman S, Donkoh EK. Stability analysis and modeling the dynamics of hepatitis B with
vaccination compartment. /talian Journal of Pure and Applied Mathematics. 2022; 48: 903-927.

[18] Osman S, Togbenon HA, Otoo D. Modelling the dynamics of campylobacteriosis using nonstandard finite
difference approach with optimal control. Computational and Mathematical Methods in Medicine. 2020; 2020:
8843299. Available from: https://doi.org/10.1155/2020/8843299.

[19] Nana-Kyere S, Boateng FA, Jonathan P, Donkor A, Hoggar GK, Titus BD, et al. Global analysis and optimal
control model of COVID-19. Computational and Mathematical Methods in Medicine. 2022; 2022: 9491847.
Available from: https://doi.org/10.1155/2022/9491847.

[20] Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF. LS Pontryagin Selected Works: The
Mathematical Theory of Optimal Processes. Boca Raton: CRC Press; 2018.

[21] Onsongo WM, Mwini ED, Nyanaro BN, Osman S. The dynamics of psittacosis in human and poultry populations:
A mathematical modelling perspective. Journal of Mathematical and Computational Science. 2021; 11(6): 8472-
8505.

[22] Osman S, Makinde OD, Theuri DM. Mathematical modelling of listeriosis epidemics in animal and human
population with optimal control. Tumkang Journal of Mathematics. 2020; 51(4): 261-287.

Volume 5 Issue 3]2024| 2911 Contemporary Mathematics


https://doi.org/10.1016/j.jtbi.2023.111417
https://doi.org/10.1186/s12879-022-07876-4
https://doi.org/10.1186/s12879-022-07876-4
https://doi.org/10.1186/s12879-020-05450-4
https://doi.org/10.1007/s10461-020-02983-2
https://doi.org/10.5664/jcsm.8524
https://doi.org/10.5664/jcsm.8524
https://doi.org/10.1002/jmv.26077
https://doi.org/10.1002/jmv.26077
https://doi.org/10.3389/fmicb.2018.01554
https://doi.org/10.3389/fmicb.2018.01554
https://doi.org/10.1016/j.amc.2017.07.063
https://doi.org/10.1016/j.amc.2017.07.063
https://doi.org/10.1016/j.aej.2022.03.013
https://doi.org/10.3934/math.2023326
https://doi.org/10.1016/j.aej.2020.07.021
https://doi.org/10.1155/2021/5593864
https://doi.org/10.1155/2018/1725671
https://doi.org/10.1155/2018/1725671
https://doi.org/10.1155/2020/8843299
https://doi.org/10.1155/2022/9491847

[23] Otoo D, Tilahun GT, Osman S, Wole GA. Modeling the dynamics of tuberculosis with drug resistance in North
Shoa Zone, Oromiya Regional State, Ethiopia. Communications in Mathematical Biology and Neuroscience. 2021;
2021: 12.

[24] Osman S, Otoo D, Sebil C, Makinde OD. Bifurcation, sensitivity and optimal control analysis of modelling
Anthrax-Listeriosis co-dynamics. Communications in Mathematical Biology and Neuroscience. 2020; 2020: 98.

[25] Dwomoh D, Iddi S, Adu B, Aheto JM, Sedzro KM, Fobil J, et al. Mathematical modeling of COVID-19 infection
dynamics in Ghana: Impact evaluation of integrated government and individual level interventions. Infectious
Disease Modelling. 2021; 6: 381-397. Available from: https://doi.org/10.1016/j.idm.2021.01.008.

[26] Ayele TK, Goufo EFD, Mugisha S. Mathematical modeling of HIV/AIDS with optimal control: A case study in
Ethiopia. Results in Physics. 2021; 26: 104263. Available from: https://doi.org/10.1016/j.rinp.2021.104263.

Contemporary Mathematics 2912 | Shaibu Osman, et al.


https://doi.org/10.1016/j.idm.2021.01.008
https://doi.org/10.1016/j.rinp.2021.104263

