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1. Introduction
Roads have speed limits; certain movies have age restrictions and the time it takes you to walk to the park are all 

examples of inequalities. Inequalities do not represent an exact amount but instead represent a limit of what is allowed 
or possible.

1.1 Convex function

A convex function is a function whose inscription is a convex set. Mathematically, a function f : I ⊆ R → R is 
called convex function if f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f ( y) holds ∀x, y ∈ I and all λ ∈ [0, 1].

1.2 Jensen inequality

A real valued function f defined on an interval I is convex if ∀x1, x2, ..., xn ∈ I and all scalars ∀λ1, λ2, ..., λn ∈ [0, 1] 
with 
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In his essay ‘‘A Mathematical Theory of Communication”, Shannon [1] introduced the concept of entropy. The 
uncertainty of a random variable is quantified by its entropy, as defined by Wikipedia. Shannon’s entropy is provided 
a numerical measure of the amount of information in a message, often in bits, where ‘‘message” refers to a specific 
realisation of a Random Variable (RV). Similarly, the Shannon entropy quantifies the typical loss of data due to 
uncertainty in the value of a random variable. The groundwork that entropy provided for our current knowledge of 
communication theory is immense. In the past fifty years, Shannon’s entropy has been one of the most significant 
contributions to our understanding of probabilistic instability. Statistical thermodynamics, image reconstruction, 
business, urban and regional planning, money, operation research, queuing theory, biology, spectrum analysis, and even 
manufacturing have all been linked to the idea of entropy.

Assuming that y1, y2, ..., yn are the discrete random variable which is the subset of discrete random variable set Y 
and corresponding probabilities ρ1, ρ2, ..., ρn, pi ≥ 0 where i is 1 to n and 
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Scheme (1) is referred to as the finite information scheme. Entropy, a measure of uncertainty or information that 
Shannon [1] developed, is connected to a finite information scheme (1).
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Let ρ1, ρ2, ..., ρn are the set of probabilities and corresponding cord word lengths (to be transmitted) are ℓ1, ℓ2, ..., ℓn 
satisfied Kraft inequality [2],
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Where D is the code alphabet’s size.
Using equation (3), apply the properties of uniquely decipherable codes Shannon [1], then we the lower bound of 

mean code-word length (MCWL),
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It is lies between H(ρ) and H(ρ) + 1. When is specified in (2). The length of the average exponentiated codeword, 
as determined by Campbell [3], was described as
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and using the equation (3), the minimum value of (5) lies between Tµ(ρ) and Tµ(ρ) + 1.
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which is Tsallis [4] entropy of order µ.
Tsallis entropy can be applied in many fields like statical physics to measure disorder of a system and rate of 
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a system irreversibility. Several generalized entropy measures have been explored by different researchers, and 
in accordance with these measures, generalized code-word lengths and theorems under the constraint of uniquely 
decipherability were developed, e.g., Nath’s published article [5] Inaccuracy and coding theory. The weighted entropy 
discussed by Belis and Guiasu [6], Longo [7] estimated the minimal value of useful mean code-word length. Guiasu and 
Picard [8] established noiseless coding theorem (NCT) and 60 also discussed smallest value other average code-word 
length. The average codeword length and bound which is useful, investigated by Gurdial and Pessoa [9]. Jain and Tuteja 
[10] investigated Different generalized coding theorems and various applications by various well-known authors like 
Taneja et al [11], Bhatia [12], Hooda [13], Khan et al. [14], Bhat [15-19].

In recent years, some researchers have been focused on the aspects of “Convolutional Neural Network” (CNN) 
architectures like optimizer [20], various work have been presented to develop CNN models according to loss functions 
[21], Shannon’s entropy used to remove and extract meaningful information from optical patterns. Results showed 
significantly better accuracy using Shannon’s entropy as a segmentation process [22].

2. Bounds on new average code-word length’s
Entropy measure is a key measure in information theory. Entropy gauges the unpredictability associated with the 

value of a random variable or the outcome of a random process. Like Shannon entropy measure (2), here we discuss a 
new generalized entropy measure which is given by
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2.1 Remarks for (7)

I - If ν = 1 then the equation (7) gives the following Tsallis entropy [4], i.e.
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1
( ) log

n

i i
i

H ρ ρ ρ
=

= −∑

A new generalized average code-word length based on (7)
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here D is the size of code alphabet.
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2.2 Remarks for (9)

I - If ν = 1 (9) and from equation (9), we get the code word length i.e.
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II - If ν = 1 and µ → 1 using the equation (9), we get optimal code-word length
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Now we got the bounds of (9) in terms of (7), under the following condition
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The equation number (11) is the Kraft’s inequality [2].
Theorem 2.1 Let ℓ1, ℓ2, ..., ℓn be the code-word lengths and satisfies the equation (11), then the equation (9) satisfies 

the following inequality
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which is the reverse Holder inequality.
For all(xi yi) > 0, i = 1, 2, 3, ...... and 1 1 1

ρ δ
+ = , ρ < 1 (≠ 0), δ < 0, or ρ > 0 (≠ 0).

The equality holds if a positive constant k occurs, we get
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Now using the inequality (11) we get
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Or equivalently (17), can be written as
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Here the following new particular cases.
Case 1
If 0 < µ < 1, ν ≥ 1 then (µ − 1) < 0, taking power both sides of (µ − 1) then using the inequality (18), we get
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νρ, 0 < µ < 1, ν ≥ 1 Hence proved the result.
Case 2
From equation (13),
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Alternatively, the above-mentioned equation can be expressed as

1

il i

n
ii

D

µ
ν

µ
ν

ρ

ρ

−

=

=

∑

After properly simplifying equation (21) and taking 1µ
µ
− , we obtain.

1
1 1

1

i nl

i i
i

D

µ
µ µ µ ν
µ ν νρ ρ

−
− −−

=

 
=  

  
∑

By multiplying both sides of equation (22) by 
1

i
νρ  then taking summation from 1 to n and finally performing certain 

simplifications, we obtain

1
11

1 1

in nl

i i
i i

D
µ µ µ
µν νρ ρ
−

−

= =

 
=  
  

∑ ∑

Taking both the sides to the power µ in the equation (23), we obtain
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Theorem 2.2 Let ℓ1, ℓ2, ..., ℓn be the series of code-word lengths and Lµ

ν(ρ) be the Kraft inequality, then the 
inequality holds:
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We will first show that ℓ1, ℓ2, ..., ℓn as specified, satisfies the Kraft [2] inequality. From the left part of the inequality 
(26), we get
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Taking summation over i is from 1 to n on both sides to the inequality (27), we get D−li ≤ 1, which is the Kraft’s [2] 
inequality equation (26) provides
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Thus, we have demonstrated from the two coding theorems above that
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Where 0 < µ < 1, ν ≥ 1 and ω > 0.
In the next part, using the Huffman and Shannon-Fano coding can be verified to discrete channel of noiseless 

coding theorems.

3. Illustration
In this part, using empirical data from Tables 1 and 2 and following the methodology of Hooda et al. [19], we 

demonstrate the validity of theorems 2.1 and 2.2. The value of Hµ
ν(ρ), Lµ

ν(ρ) (Hµ
ν(ρ) + ω)D(1 − µ) with particular values of 

µ and ν for ψ, D = 2 given in Table 1. It is based on Huffman coding scheme.

Table 1. Using Huffman coding scheme the value of Hµ
ν(ρ), Lµ

ν(ρ) (Hµ
ν(ρ) + ω)D(1 − µ) and ψ for different values of µ and ν 

Probabilities Huffman
Code words ℓi µ ν Hµ

ν(ρ) Lµ
ν(ρ)

( )
100

( )
H
L

ν
µ
ν
µ

ρ
ψ

ρ
= × (Hµ

ν(ρ) + ω)D(1 − µ)

ρi

0.3846 0 1 0.9 1 1.6466 1.7003 96.8417 12.4825

0.1795 100 3 0.5 1 2.3725 2.7714 85.6066 6.1836

0.1538 101 3

0.1538 110 3

0.1282 111 3
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Table 2. Using Shannon-Fano coding scheme the value of Hµ
ν(ρ), Lµ

ν(ρ) (Hµ
ν(ρ) + ω)D(1 − µ) and ψ for different values of µ and ν 

Probabilities Huffman
Code words ℓi µ ν Hµ

ν(ρ) Lµ
ν(ρ)

( )
100

( )
H
L

ν
µ
ν
µ

ρ
ψ

ρ
= × (Hµ

ν(ρ) + ω)D(1 − µ)

ρi

0.3846 0 1 0.9 1 1.6466 1.8035 91.3002 12.4825

0.1795 10 2 0.5 1 2.3725 3.3776 70.2442 6.1836

0.1538 110 3

0.1538 1110 4

0.1282 1111 4

The values of Hµ
ν(ρ), Lµ

ν(ρ) (Hµ
ν(ρ) + ω)D(1 − µ) and ψ for particular values of µ and ν calculated by using “Shannon-

Fano coding scheme” are discussed in below table.
From the Tables 1 and 2 following results have been inferred:
1. In the instances of Shannon-Fano codes and Huffman codes, theorems 2.1 and 2.2 are true i.e.,

(1 )( ) ( ) ( ( ) ) ,  where 0 1, 1H L H Dν ν ν µ
µ µ µρ ρ ρ ω µ ν−≤ < + < < ≥

2. The mean code-word length Lµ
ν(ρ) of the Huffman coding scheme is less than that of the Shannon-Fano coding 

scheme.
3. The Huffman code efficiency coefficient is greater than the Shannon-Fano code efficiency coefficient. In other 

words, it has been determined that the scheme of Huffman coding is more effective as compared to the scheme of 
Shannon-Fano coding.

4. Some properties of new generalized entropy measure
Using Hµ

ν(ρ) we will examine a few properties of measure given in (7).
(i) Hµ

ν(ρ) is non-negative.
Proof. From equation (7), we get

1

1( ) 1
(1 )

n

i
i

H
µ

ν ν
µ ρ ρ

ν µ =

 
= − 

−   
∑

where

1
0 1,  1,  0,  1, 2,..., ,  1

n

i i
i

i nµ ν ρ ρ
=

< < ≥ ≥ ∀ = =∑

For any values of µ and ν, it is clear that,
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1
1

n

i
i

µ
νρ

=

≥∑

also we have 0 < µ < 1, ν ≥ 1 and 
1 0

(1 )ν µ
>

−
 therefore, we conclude that

1

1( ) 1 0
(1 )

n

i
i

H
µ

ν ν
µ ρ ρ

ν µ =

 
= − ≥ 

−   
∑

(ii): Hµ
ν(ρ) is a symmetric function ρi, i is from 1 to n.

Proof.

1 2 1 1 1( , , ..., , ) ( , , ..., )n n n nH Hν ν
µ µρ ρ ρ ρ ρ ρ ρ− −=

(iii): Hµ
ν(ρ) is maximum when ν = 1, µ → 1 with equal probabilities.

Proof. When 1
i n

ρ = , i is from 1 to n, and ν = 1, µ → 1. Then Hµ
ν(ρ) = logn which is maximum entropy.

(iv): For ν = 1, µ → 1 Hµ
ν(ρ) is convex function for ρ1, ρ2, ..., ρn −1, ρn.

Proof. From (7),

1

1( ) 1
(1 )

n

i
i

H
µ

ν ν
µ ρ ρ

ν µ =

 
= − 

−   
∑

where

1
0 1,  1,  0,  1, 2, ..., ,  1

n

i i
i

i nµ ν ρ ρ
=

< < ≥ ≥ ∀ = =∑

If ν = 1, µ → 1, then we can calculate its first derivative regarding ρi as

1, 1

( ) 1 log( )i
d H

d
ν
µ

ν µ

ρ ρ
ρ = →

 
= − − 

 

And the second derivative is given by

2

2
1, 1

1( ) 0,  [0, 1]i
i

d H
d

ν
µ

ν µ

ρ ρ
ρρ = →

   
= − < ∀  ∈ 

  

and i from 1 to n.
But the 2nd derivativities of Hµ

ν(ρ), ∀ρi ∈ [0, 1] and i from 1 to n. as ν = 1 and µ → 1.
Therefore Hµ

ν(ρ) is concave downward function for ρ1, ρ2, ..., ρn.
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5. Conclusion
In this study, a new generalized entropy measure has been constructed and by using this measure, we created a new 

generalized average code-word length and determined its boundaries in terms of the new generalized entropy measure. 
In this paper, established the bounds for discrete channel. These bounds have been substantiated by considering Huffman 
and Shannon-Fano coding schemes by using an empirical data. The key characteristics of the new entropy measure have 
also been discussed.
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