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Abstract: The paper considers the study of linearization techniques of cubic two-parameter matrix polynomial (CTMP).
We analyze vector spaces of linearization of CTMP, namely ansatz vector space and double ansatz vector space. We
also consider cubic two-parameter eigenvalue problem (CTEP) to study their linearization classes. A unified framework
on linearization of CTMP will be established. The conditions under which a matrix pencil in the ansatz spaces is a
linearization of CTMP will also be derived. Moreover, using these linearization techniques, CTEP is first converted into
a singular linear two-parameter eigenvalue problem (2PEP) of larger size so that existing numerical method for (2PEP)
can be applied.
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1. Introduction

Consider, the following CTMP
E(A, )= Py + uP, + AP, + 1’ P, + AP, + APy + 1' Py + A’ P, + A uRy + A°F, (1)
where, P, are n x n; i : =0 : 9 matrices over C such that at least one of the matrices P, P,, Pg or P, is nonzero, x € C" is
a nonzero vector and 1, u € C are spectral parameters. If for some (4, ) € C x C there exist 0 # x € C" such that E(/,
w)x =0, then x is called eigenvector corresponding to eigenvalue (4, ) of CTMP. Our focus is on examining the linear
two-parameter matrix polynomial of the form

LA, p):= Ly + AL + uL,, @)

which agrees with the eigenvalues (4, u) of (1).
The standard form of CTEP is given by
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E(, px;=0,fori=1,2; 3)
where
E (A, p)= By + pPy + APy + 1’ By + AP,y + 2’ Ps + 1’ g + A’ By + A* uPy + 2’ By,

fori=1, 2 and Py are n; X n, matrices over C; i :=1:2,;:= 0 :9 such that at least one of the matrices Py, P, Py, Py;
i :==1:2is nonzero, x; € C" is a nonzero vector for i := 1 : 2 and A, u € C are spectral parameters. Here, the problem is
to find the scalars A, 4 € C and the corresponding non zero vectors x; € C*, i := 1 : 2 that satisfy the equations (3). The
pair (4, u) is called an eigenvalue of the CTEP, if E(4, u)x; = 0 for some 0 # x; € C", i := 1 : 2 and the tensor product x,
® x, is called the corresponding right eigenvector. Similarly, a tensor product v, ® v, is called a left eigenvector of the
CTEPifv,#0;i:=1:2 satisfy v, E,(1, u) =0.

There are two types of numerical approaches for solving the polynomial two-parameter eigenvalue problems.
Those that deal directly with the problem and those that compute the eigenvalues of the linearized forms. Literature
on the direct methods to find complete solutions of the CTEPs, is very limited. Unlike the quadratic two-parameter
eigenvalue problem (QTEP) [1], there is no direct method to solve these CTEPs. The CTEP appears in the paper [2]
(Example 20), where the problem is linearized into a linear 2PEP. But the authors did not provided a brief discussion on
the Kronecker structure involved in theory similar to quadratic case, due to their complex structures. These motivate to
search possible linearizations of CTEPs, that can be used to solve the eigenvalue problem effectively.

Two-parameter matrix polynomial is the generalization of one parameter matrix polynomial of the form P(1) :=
k

Z/if A3 A € C""". One parameter matrix polynomials arise in many physical applications and they received attention
=
from the researchers [3-5]. Limited research works are found in the literature of two-parameter matrix polynomials.
Linearization is a classical approach to investigate polynomial eigenvalue problem of the form P(1)x = 0. It is the
process which converts a polynomial eigenvalue problem into a generalised eigenvalue problem (GEP) of the form Ax
= ABx of high dimension, where 4 and B are any matrices over C, x is non zero vector and 1 is the spectral parameter.
More details on linearization of matrix polynomials are found in the works [6-10], and the references therein. Explicit
constructions of various linearization classes using different polynomial bases are reported in [11]. Few Literature on
linearizations of QTEPs are found in the works of [2, 12] and for quadratic matrix polynomials in [13-14]. The usual
method to solve the CTEP defined in (3) is by linearizing it into a 2PEP of larger dimension, which is being singular. It
is found that, the linearization of the one parameter matrix polynomials induces a GEP, whereas the linearization of (3)
induces a singular 2PEP and can be solved by adopting the method proposed in [15].

For a given CTMP defined in (1) with n, = n, our area of interest is the vector spaces created when the form is
linearized to (2). These linearization classes help us to show the singularity of the associated linear 2PEP of the CTEP (1)
with n, = n, = n, which is of the form

(LD + ALY + L )w, = 0
(L + ALY + Ly =0 @

where, w, € C* / {0}; LE:” € C"*™ i=0:2,j=1,2 such that (4) agree with the eigenvalues of (3). The linearization
influences the sensitivity of the eigenvalues. Therefore, it is important to identify potential linearizations and study their
constructions.

The paper is designed as follows: Section 2 contains some basic preliminaries which are used throughout the paper.
Section 3 contains a unified framework of vector space of linearization of CTMP. Similarly, in section 4, linearizations
of CTMP are discussed. Finally, in section 5 a conclusion is drawn on the whole work.
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2. Preliminaries

The following basic definitions and results will be used throughout the paper.

Theorem 2.1 (Bézout’s theorem, [16]) Two projective curves of orders n and m with no common component have
precisely nm points of intersection counting multiplicities.

Definition 2.2 [12] A In x [n linear matrix polynomial L(A, u) = L, + AL, + uL, is a linearization of an n x n matrix
polynomial O(4, u) if there exist polynomials P(4, u) and R(4, 1), whose determinant is a non-zero constant independent
of / and u, such that

A
{Q( o ) , } P(A, 1)L(Z, i)R(A, 11)
(I-Dn

Theorem 2.3 The determinant of a block-triangular matrix is the product of the determinants of the diagonal
blocks.

Definition 2.4 [17] The Kronecker Product (&) for two matrices 4 and B is defined as 4 @ B = {a; B}, where a;
are the elements in ;" row and j* column of the matrix 4.

Definition 2.5 (Column shifted sum) [6] Let X,Y, Z€C" " be any three block matrices of the form X= [X;1,
Y= [Y,], Z= [Z,], where each of the X}, ¥;, Z; € C""", for i, j := 1 : 6. Then, the box-addition for these three block

ij> T
matrices, X ¥ and Z is defined as

Xy Xy X5 00X, X5 0 X6 00
Xy Xy Xy 0 Xy X5 0 X0 00
X@EY@mZ= Xy Xy Xy 0 Xy X5 0 X5 00
Xy Xp X3 0 Xy Xy 0 Xy 00
Xsp Xy X3 0 Xgy X5 0 X 00
| X X X 0 X X5 0 X 0 O]
0%, ¥y %y 0 Y, % 0% 0] [0000 2, Z, Zy Zu Zs Zs
0Y, Y, Y 01, Vo 01 0 0000 Zy Zy, Zyy Zyy Zys Zy
+ 0%, Yy Yy 01 Y35 07X 0 + 0000 Zy Zy, Zyy Zyy Zy; Zy
07Y, Y, Ys 0V, Y5 07, O 0000 Zy Zy Zys Zuy Zss Zy |
0 Yy Yo Y55 0¥y Y5 0 Y Of 10000 Zyy Zyy Zsy Zoy Zss Zs
10 Yo Yo Yo 0 Yo Yis 0 Y O] [0 000 2y Zy, Zgy Zgy Zgs Zgs

where, “+” is the usual addition of matrices.

3. Linearization of CTMP

Let CTMP be as given in (1). In this section, we discuss the standard linearization for it, and extend the idea of the
vector space of linearization for one-parameter matrix polynomial reported in [6] to the system (1).

Let x be an eigenvector of E(4, 1) as defined in (1) corresponding to the eigenvalue (4, x); i.e. E(4, u)x = 0.

Denote

X :x()()a
AXoo = AX = X0,
HXgy = 1X = Xoy5
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1Xgo = X = X,
Axgo = Apx = xy4,
X0 = A% = Xy,
Then, we get
EQAp)x = (Py + uP, + AP, + Py + ApPy + 2° Py + 10 B+ Ap* P+ 22 uB + 2°By)x
=0
= Fy(xe) + R (xor) + Py (x10) + P (xp) + By (o)) + By (o) + B (1x00) + Py (Axy ) + B (Axy,) + By (Axy)

0. Q)
The equation (5) can be represented in the following matrix form

PP PP PRPR| [RBPO0O0OO [00R00O0])
0 0 00 -0 00 0000 000 0017]||x,
0 0 0100 00000/ 000 000]|x
2 2=
0 0-1000/""oo0oo0000/"o000070||x, ©)
0 -1 00 00 000070 000 00O0|]|x,
-7 0 0 0 0 0] [000700] [000000]) x|
Assume that,
[ x5 | [2%x] [A7]
Xy Aux Au
X || #ix|_| 4
w= = = ® x 7
X0 lx ﬂ ()
Xo1 )75 7
L Xo0 | _x__l_
Denote,
AP, PR P PRPR] [RRP000 [00R000] [A]
00 00 -0 00 0000 000007 Au
— 2
LO:O 0 0 -1 0 o;leoo0001;L22000000;A:y
0 0 -7 0 00 00 0000 000070 1
0 -1 00 00 000070 000000 1
-7 0 0 0 0 0] 100 0 700] 1000000 1
LA, p):=Ly+ AL, +uL, ®)

Here each L, € C*, i := 0 : 2. Then, the equation (6) can be represented in the following matrix form
LA, wyw = (L + AL, + uL)w =0 ©)

Thus x is the eigenvector corresponding to the eigenvalue (4, u) of E(4, u) if and only if L(4, u)w =0, i.e. w is the
eigenvector corresponding to an eigenvalue (4, u) of L(4, u).
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Theorem 3.1 Let E(4, 1) be as given in (1) and L(4, u) be defined by (8). Then, L(4, ) is a linearization of E(4, u).

Proof. Define,
(A%, 1, 0 0 0 O]
Aul, 0 I, 0 0 0
2.0 01, 00
Rﬂ, ::un n 10
% ) AL, 00 01,0 (10)
ul, 0 0 0 0 1,
I, 000 0 0
I, W, Wiy Wiy Wis Wy
0 0 A, 0 0 I,
0, 0 0 I, O
PAW=10 0w 0o 1 0 o (n
00 I, 0 0 0
07, 0 0 0 0|

where, W, = P, +/1ﬂp7+#2P6+ﬂP3+/12P8+)LP4; W13:/12P9+/1P5+P2; Wiy = APy + uPg + Py; Wis = APg + Py Wig =
APy + Ps. Here E and F are unimodular CTMPs.
Then we have

E(4, 0
P(2, iL(L iR(As 12) = [ S } (12)
S5n
Thus detE(4, u) = ydet L(4, u) for some y # 0. Thus L(4, w) is the linearization of E(4, u) with order 6n x 6n. ]
The linearization L(/, ) is the standard linearization of E(/, u). For any x € C”, from (9), we have
L 1) * (A ® x) = [(E(Z, )x)" 0 0 0...0]" (13)
Thus the solution of (6) agree with the solution of E(4, x)x = 0.
Following the idea of (13), if we replace x by 7,, we get
(221, ] [E@, 1) (1]
Aul, 0 0
2 0 0
LA, ) x(A®1,) = L(A, )| * bl =e ®E(4, 1), ¢ = (14)
A, 0 0
ul, 0 0
4L, | L 0 10]
Our aim is to find linear two-parameter matrix polynomials L(4, ) that satisfy,
LA, w) x (A® 1) =v & E p) (15)
for some v € C°. We denote
Vo={v @ E(, u):veEC (16)

and define
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L(EQ, @) = {L(, 1) : L, 1) * (A ® 1,) € Vi (17)

which agree with the Definition 3.1 from [6]. It is to be noted that L(E(4, u)) # ¢ as the standard linearization L(/,
1) € L(E(A, pn)). Again, L(E(4, u)) is a vector space. The study on the structures of L(4, ) in this space is done in the
following subsection.

3.1 Ansatz space

Consider E(4, u) defined in (1). We refer the definition of ansatz vector form [6].

Definition 3.2 [6] If L(A, u) € L(E(J, u)) for some v € C°, then v is called an Ansatz vector associated with L(4, )
and L(E(/, u)) is called the Ansatz space.

To investigate the structure of each L(4, u) € L(E(4, 1)) we recall the Definition 2.5 of box-addition for the three 6n
x 6n block matrices which is inspired by the column shifted sum for block matrices. For the standard linearization L(/, )
€ L(E(4, u)), we have

P PRPO000000O0O] [OOOP000000] [0000FR P, P, P P P

00 00000000[ (0000000070 (00000 O O 0 -0

00 000007/700|] |[0000000000| [0000O0 0 0 - 0 0
L‘BMELFOooooooooo+0000001000+0000o0—1000

0000070000/ (0000000000 (00000 -0 0 0 0

|00 00700000 0000000000/ [0000-7 0 0 0 0 O]

(R, B, P, P, PP PP P R

000 0O0O0O0OUO0O0O

1000 000O0O0O0TO 0O

1000 0O0O0O0O0O0O

0000O0O0OUO0O0O

100 00O O0O0O0O0O0 O]

=4 ®[R R P, B PP PPRBR]
Thus, for a linear two-parameter matrix polynomial L(4, 1), we can draw a relation between the box addition of the
coefficient matrices and product of L(4, u) with v @ E(Z, 1) by the following Lemma.
Lemma 3.3 Let E(A, 1) be as defined in (1) with coefficient matrices of order n x n, and v € C° and L(4, u) be any
linearization of the form (2) with L, L,, L, € C*** then L(Z, u) X (A ® 1) = v ® E(4, u) if and only if
LHBELHBEL=vQ[P, Py P, P, P; P, P; P, P, Py.

Proof. Consider, L(4, u) =L, + AL, + uL,, where

Ay Ap As Ay As A B,y B, By By Bis By Gy G, C; Gy Cs Cg ]
Ay Ay Ay Ay Ars Ay By By, By By Bys By Gy Cp Gy Gy Gy Cy
L= Ay Ay Ay Ay Ass Ay L= By, Bsy, By By, Bis By L= G Gy Gy Gy G Gy .
Ay Ap Ay Ay Ags Ay By By, By By Bus By Co Cy Cyy Cy Cys Cy
A5y Ay A5y Asy Ass As B, Bs, Bs; By Bss Bsg G Gy Gy Gy Css Cg
| Aot Ap Az Aes Ags Age | | Bt Boy Bey By Bgs B | 1Coi Coo Cq3 Cou Cos Cog |

with each 4;, B,, C; € C""" fori,j:==1:6.

First, we consider,
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Lo, u) * (AR IL)=v® EQ, u), forv=_[v, v, ... v]". (18)

To show,
LBLBL=vQ|[P, Py P, Pi P; P, P, P, P, Py. (19)

From (18), we have

[C, + /1411 +uB, C,+ MP +uBy . G+ Ad + B, /12.1n

. : et X .
| Cor + AAdg + uBg, Cy + AAg + 1By, ... Ceo + AAgs + 1By 1,
_le({t 1)
v w)

APC, + A+ A7 uB,, + AuCy, + A2 A, + A’ By, + ... Cg + AAy + 1B,
= :
APCy + AP Ag + AP uBgy + AuCyy + A° piAgy + Apt’Bgy + ... Cog + AAgs + 1By

VB + B+ VAP, +v1* P+ AP, + AP vy’ B+ v A’ P+ v 2P uB + v AR,

WB) + VP, + VAP, + v’ P, + v AUP, + véizP5 Vo il By + v ALP Py + v AP 1P, + vy A’ P,
Now equating matrix entries on both sides we have,
NCy+ Ay + 2PuB, + AuCy + Xudy + J’By + ... + Cy + AAi + uBi,
=V, Py + VP, + v, AP, + v’ Py + v, JuP, + v,)’Ps + v’ Py + v\’ Py + v, )’ uPg + v’P,
fori:=1:6.
For each of these equations if we equate the coefficient matrices for A°, N’u, Au’, A°, Au, u°, A, u and the constant
terms we get
A; =v.P,
B, +A4,=v,Pg
B, +A4;=v.P,
B;=v,P

Cy+ Ay =vPs

CotByt+As=vP,
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Cis + B =vP,

Cix=VvP, (20)
fori=1:6.

Then, by using Definition 2.5, we have

All AIZ + Bll A13 + Bl2 Bl3 Al4 + Cll AIS + Bl4 + CIZ BlS + C13 Al6 + C14 BIG + CIS C16
LBLBL = ! ; ; s ; ; ; ; ; ;
A61 A62 + BGI A63 + B62 B63 A64 + CGI AGS + Bé4 + C62 B65 + C63 A66 + C64 Béé + C65 CGG

Now, by using equations in (20), we get
[vB wR wP, vF wP wP, wPB wP, vP wFR

WVebs VeFx VePy VeFy ViP5 VP, voPs voP, VR veF
",
=|:|®[R R P R PR P PP PR

Vs

=v®[R B P R R B B PR R

which is (19). Thus (18) implies the (19).
Conversely, we consider that (19) holds. Then

LBLHEHL=v®I[P, Py, P, Pi P; P, P, P, P, Py,
1.e.,
_411 A, -!*B“ A -f-Blz B.13 Ay -!-Cll Ajs +B'14 +C, B J.rC13 A TCM By -f-cls (’th
Ay Ap+ By Ag+ By By Ay +Co A+ Bu+Co B+ Coy Ay +Coy By +Cos Coo

wh vk wb vwE vwP vwF, vB vwP, wh vE

_V6P9 vely Vol veFy vePs viPy voPy viP, viF V¢F,

Equating matrix entries from both side we again have the system of equations as in (20) fori :=1 : 6.
From left side of (18), we have

[ C,, + A4, + uB, C,+AA,+uB, ... Cq+AAg+ uB, A,
. . N X N

_Cm +Adg + uBgy Cop + Adg + uBg, ... Cgo+ Adgs + By I,

[ 22C, + AP Ay + AP By + AuCyy + A pdy + AP B,y + ... Cog + Adyg + 1By

| A2Cy + A2 Ay + A2 uBgy + AuCoy + A2 pAgy + A’ Bgy + ... Cog + Adgg + 1By
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Now, by separating the coefficients of A°, °u, Au®, ui°, %, Au, u°, /., u and the costant terms in each of the entries of
the above matrix we get,

_/13’411 + /12/”(311 +4,) + ﬂﬂz(Blz +4;) + ,U3(Bls) + ﬂz(cn + Ayy) + Au(Cpy + By + Ais) |
+/‘2(C13 +Bi5)+ A(Cyy + 4ys) + 1(Cis + Big) + Cig

ﬂ'}Aél + AZN(B(»I + Agp )+ ﬂﬂz(B(»z +4g) + /13(363) + 2’ (Co1 + Ags) + Ap(Coy + Bey + Ags)
_+ﬂ2(C63 + Bgs) + A(Coy + Ags) + 1(Cos + Bgg) + Ceg

Now, by using equations from (20), we have
I /13V1P9 + ﬂzﬂvlps + /1/”2"1])7 + ,U3V1P6 + /12V1P5 + A P, + /UZV1P3 + AP, + v B + v Ry
_13"11)9 + A v By + Ve Py + 10V By + ANV P+ Auve Py + 1PV Py + Avg Py + uv B + v by

_le(ly /u)

L VeE(A, 1)

This is the required (18). Hence, (19) also implies the (18). o

Now, based on this Lemma 3.3, we can investigate the structure of any L(4, u), which belongs to the ansatz space
L(E(A, p)). Thus, we have the following Theorem.

Theorem 3.4 Let E(A, 1) be as defined in (1) with coefficient matrices of order n x n, and L(4, u) be as defined in (2).
Let v € C°. Then, L(A, u) € L(E(., u)) corresponding to the ansatz vector v is of the form L (A, )= L, + AL, + ulL,,
such that

Ly=[z, z, z, z, Z; v®R)],

L=[yv®P -Y,+v®P -Y,+v®P -Z +v®P, -Z,+v®P, -Z,+v®P],

L=[¥, ¥, vOP, 0 -Z,+v®P, -Z;+v®R].

where
_Ylp_ _ZU_
YZp ZZj
r Zs;
Y — P , Z — J e C(mxn’

P Y4p J Z4/_
YSp ZSj
_Y6ﬁ_ _ij

forp:=1:2,j:=1:5 are arbitrary.
Proof. Let I : L(E(4, u)) — V,, be any linear map defined by

F(L(A, @) = L(Z, 1)(A @ 1,).

To show that F' is surjective. Let v @ E(4, u) € V, be any element. Consider a two-parameter matrix pencil L2, )
= L,+ AL + uL,, where
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ﬁoz[O 0000 v®PO]

L=[v®P, v®R v®P, v®P, v®P, v®P]

L, :[0 0 v®PF 0 vxPh V®P]]
Then after simplification, we get

LBLBAL=v®[P, P, P, P, P; P, P; P, P, P,
So by Lemma 3.3, L,(4, u) is a F-preimage of v ® E(4, u). Then we have,
L) (A®L)=v® E(, p).

Therefore, the set of all F-preimages of v ® E(A, u) is L (1, u) + KerF.

Again, KerF = {L(, u) € L(E(A, 1)) : L(A, 1) * (A ® 1) = 0}. By Lemma 3.3 it follows that, if (£, + AL, + uL,) x (A
® I)=0, if and only if L, B L, B L, = 0. The definition of F ensures that £, i := 0 : 2, are of the form

L=z z, z, z, Z; 0],
ff} :[0 _Yl _Yz _Z] _Zz _Z4],
ﬁz:[x Y, 00 -7 _Zs];

where ¥, Z € C*"", fori:=1:2,j:=1:5 are arbitrary.

i» &

Therefore, the set of all preimages of v @ E(A, u) is of the form £ (4, u) = L, + AL, + uL,, with

Ly=[z, z, z, Z, Z; v®R)],

L,

[V®R -Y,+v®R -Y,+v®P, -Z +v®P -Z,+v®P, -Z,+v®P)],

L,=[Y, ¥, v®P, 0 -Z,+v®P, ~Z;+v®R].

This completes the proof. o
The dimension of the ansatz space L(E(4, u)) can be calculated easily by the following corollary.

Corollary 3.5 Dimension of L(E(L, u)) = 42n° + 6.

Proof. Since the map F is surjective, we have,

dimF" = dim(Rangef’) + dim(KerF') = dimV,, + dim(KerF") = 6 + 420 o

3.2 Construction for linearization

It is worth mentioning that not all the two-parameter matrix polynomials L(4, u) € L(E(A, x)) are linearization of
E(4, u). For example, for the ansatz vector v = 0, we don’t have any L(4, u) € L(E(4, u)) which will be a linearization of
E(A, 1). Therefore, it becomes necessary to classify which L(4, u) in L(E(4, u)) are linearizations.

From the Standard linearization case we have obtained (14), it shows the possibility of constructing potential
linearizations of E(4, x) with the ansatz vectors which are scalar multiples of e,. In the following Theorem, we derive a
linearization condition for L(4, u) € L(E(A, 1)) corresponding to the ansatz vector ae, € C" for some scalar a # 0. These
linearizations are easy to construct with the help of Theorem 3.4.
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Theorem 3.6 Let £(4, ) be a CTMP as given in (1) with real or complex coefficient matrices of order n x n. Let
LA, ) =Ly+ AL, + uL, € L(E(4, u)) corresponding to the ansatz vector v = ae, for some 0 # a € C, where

Ly=|Z 7, Z, Z, Z; ae ®R],
L =[ae,®P, -Y,+ae,®PF ~Y,+ae®P, ~Z +ae®P —Z,+ae ®P, —Z,+ae ®P,],

L=[Y, Y, ae,®P, 0 -Z,+ae,xP, —Z;+ae, ® P

where
_Yll_ _YIZ_ _le_ _ZIZ_ _Zl3_ _Zl4_ _ZIS_
0 0 Zy Zy Zy Zy Zys
0 0 VA VA Z Z VA
Y — Y — Z — 31 Z — 32 Z — 33 Z _ 34 Z — 35 C()nxn,
1 O ) 2 0 B 1 Z41 ) 2 Z42 E) 3 Z43 B 4 Z44 B 5 Z45 € B
0 0 Zs, Zs Zs; Zs, Zss
L O _ L 0 i _ZGI_ _ZGZ_ _Zﬁ3_ _Z64_ _Z65_
with
ZZS ZZ4 ZZ3 ZZZ ZZI
Z35 Z34 Z}} Z32 Z3l
det| Zys Zy Zyy Ziy Zy |#0
ZSS ZS4 ZSS ZSZ ZSI
Z65 264 Z63 Z62 ZGI

Then L(A, u) is a linearization of E(4, u).
Proof. By Theorem 3.4, for any two-parameter cubic polynomial E(4, 1) corresponding to the ansatz vector v =
oe,, there exists a linear two-parameter matrix polynomial L(4, u) = L, + AL, + uL, € L(E(4, u)), such that

Zy Zy Zy Zy Zg aPo_ _an Yy +abk -Y,+aP, —-Z,+ab —-Z,+ab, —Z, +aP2_
Zy Zy Zy Zy Zy O 0 =Y -1, =2, —Zy —Zy
LA, )= Zy Zy Zy Zy Zy O ' 0 -Y, -Y; —Zy ~Zs, ~Zs,
Z41 Z42 Z43 Z44 Z45 0 0 _Y41 _Ktz _Z41 _Z4z _Z44
Zgy Zy Zs Zsy Zss O 0 =¥ -¥5, —Zs —Zs —Zs
| Ze1 Zey Zes Zey Zss O ] | 0 Y Y5 —Zg ~Zg, ~Zgy |
Y, Y, aP 0 -Z,+aP, ~Zs+aR |
Yy Ye 00 —Z, 7y
+u Y, ¥, 0 0 25 —Zss
Yy ¥, 0 0 —Zy —Zys
Y, Y 0 0 ~Zs, ~Zss
Yo Yo 0 0 —Zg ~Zs |

Thus we have,
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| T(4, w) T,(A, u) L,(Z, 1) Ti(A, p) T5(4, u) T, (2, 1)
U +Zy =AY+ u¥p +Zyy =AYy +Zyy —AZy + 2y —ALy — ULy + Zys —AZy — Uy
WYy +Zy AV Yy +Zyy, AV +Zy —AZy + 2y, —ALy —uZy +Zys —AZy — uZss
MYy +Zy =AYy +u¥y+2Z, —AY, + Zy ALy +Zy, ~AZy, — MLy + Zys ~AZy — HZ 4
MY+ Zsy A+ Yo +Zs, —AY+Zsy —AZs+Zsy —ALs, —ulsy+Zss —AZs, — UZss
_xUYsl +Zg Ao +uYo+Zgy —AYg+Zg —ALg+Zy —ALgy — pZg+Zes —AZg, — s |

LA, )=

where,
T\(A, u) = Z;, + 0APy + uY,,,
T,(A, ) =Z,, — AY,, + 0APg + uY,,,
Ty(A, ) =Z;5 — AY, + aAP; + abPs,
T\A, ) =Z,y— AZ,, + ouPs,
Ts(A, u) =Z,s— AZ,, + 0aAP, — uZ,5 + aP;,
Ts(A, u) = aPy— AZy + adP, — uZ,s + ouP,.

Define,

. i
A7 0 1001
a

M 0010

A2 rur o100

R((A, p)=| ¢ . o2y

A1 0 1000

a

2r 7 0000

a

L o 0000
L & _

Then, we have
EG. w7 f, 1, T, Iy

0 XYy + Zos Ay + Loy ANy +Zyy =AYy + p¥yy + 25y ¥y + 2,
—APYy 4 Ly ApYy + Zy =AYy +Zy =AYy + Yy + Zyy, Yy + Zs,
_/12Y41 +Zy ApYy+Zy —AYp+Zy =AYy +u¥, +Zy, p¥, +Z,
_ZZYSI +Zss A5 +Zsy —AYy +Zsy =AY+ u¥o +Zs, u¥s +Zs
_/12Y(71 +Zo AuYg+Zgy —AYg+Zg —AYy +u¥Y, +Zg, u¥ + Z61_

L(A, R(A, p) =

S O O O

where 7, = AT, (4, 1)+ uTy (A, 1)+ T5 (A, ), T, = AT, (A, )+ Ty (A, ), Ty = T,(A, w), Ty =T, (A, w), Ts =T,(A, p). We
want to make the entries in the lower block matrix,
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Ay + 2o
_/12Y31 + Zss
_/12Y41 +Zs
_lzysl + Zss

__ﬂ'ZYGI +Zgs

AuYy + 2y,
ApYs, + Zy,
ApYy +Zy
ApYs, +Zs,
ApYg + Zg,

AV +Zy
AV +Zy
—AY, +Z,,
_ﬂYsz + Zs3
A+ Zg

—AYy + uYy + 2y,
—AYy +uYy +Zy,
AV +u¥, +Z,
—AYs + uY, + Zs,
—AYg + Yo+ Zg

free from A°, Au and .
Setting

V=Y, =Y,=Y;=Y,=0,

fori=1,2; we get,

EGp T 1, T, 1, T

0 Zys Ly Ly Ly Z,

L(A, )R(A, p) = 8 535 534 533 532 53
45 Las Lyz Ly Ly

0 Lss Zsy Zsy Zs, Zs

L 0 Zes Loy Loy Lgy Zg

Define,
T w=1 T, 1, T, T;]eC™,

and

)
G
8]
=

[
A
[N
r

N

Il
NN NNN
N NNNN
N NN NN
N NNNN
NN NNN

e C5n><5n .

v
a
[
B

65

So, we can rewrite L(4, 4)R(4, ) as,

L(A, )R(A, p) = {E(ﬂr #) T(4, y)}

0 z
Since Z is nonsingular, we define

P, )= {1 ~T(4, ,u)Zl}

0 z!

Thus we get,

A
P(i 1)L f)R(A, 1) =[E (4 u) 0 }

O [5)1

Since both P(4, 1) and R(4, i) are unimodular matrices we get,
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uYy + 2y
uYs, + Zy,
uYy, +27,
uYsy +Zs,

MY+ Zg, |

(22)
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detL(4, u) = ydetE(4, u)

for some nonzero y € C. Thus L(4, u) is a Inearization of E(4, u). o
Consider, E(4, u) in (1) and L(A, u) € L(E(J, 1)) corresponding to the nonzero ansatz vector v € C°i.e., L(4, ) * (A
® 1) =v Q E(4, u). After that, we may use the following process to find a collection of linearizations for E(4, u).
Procedure to determine linearizations of L(E(4, 1))
1. Let E(, 1) be defined in (1) and L(A, u) = L, + AL, + uL, € L(E(J, 1)) with ansatz vector v € C°.
2. Consider any nonsingular matrix M := [m,] € C°*% i, j=1:6such that Mv=ae, € C°, where 0 # a € C.
3. Apply corresponding block transformation M & I, to L(4, «). Then

L2, 1) =(M ®1,)x L(A, ) = Ly + AL, + L,

such that,
Ly=(2 7, Z, Z, Z; ae,®P,],
L, :[ael ®P Y +ae,®P -Y,+ae,®P, -Z, +ae,®P, —Z,+ae, ® P, -7, +ae, ®PZ},
L=[" ¥, ae,®PF 0 ae,®P ~Z,+ae,®P, ~Z;+ae, ®F |,
where
_Yu_ _muYn_ _YZI_ _mIIYZI_
0 my ¥, 0 my, Yy,
~ 0 Y - 0 Y,
=MLY, =M®I)| & |=|"" =M en)y,=Mmel,) & |=|""2
0 my Y, 0 my Yy
0 ms; ¥, 0 ms; Yy,
_0_ _mélY]]_ B O_ _mGIYZI_
_Zli I myZy +mpZy +muZy + myZy +msZs, + mgZ; 1
2y, My Zy + My Ly, + My Zy; + My Ly + MysZs; + My Zg;
7 =(M®I1)Z, =(M®]I) Zy; _ myZy; + mypZy + My Ly + Mgy Zy + My Zs; + My Z; ’
Zy, My Zy + My, + Ml + My Zy + mysZs; + mygZ;
Zs; Mmsi Zy; + My Loy + My Ly, + M5y 2y + Mss Zs; + Misg L
_Z(n‘_ _mlei + MLy + M2y, + Mgy Zy; + MesZs; + msﬁzéi_

fori=1:5 are arbitrary.

4. For L(4, ) to be linearization, Y,, Y, Z,, Z,, Z;, Z, and Z; have to be choosen as follows.

If m,, = my, = my, = ms, = mg, = 0 then choose Y, arbitrary, otherwise choose Y, = 0. Similarly if m,, = my, = m,, =
ms, = mg, = 0 then choose Y,, arbitrary, otherwise choose ¥,, = 0.

Further, we need to choose,

—le— _Zl2— _Z]3_ _Zl4_ _Z]S—
Z21 ZZZ ZZ3 224 ZZS
VA VA Z zZ Z
7. = 31 7. = 32 7. = 33 7, = 34 7. = 35
1 Z41 ’ : Z42 ’ ’ Z43 ’ ! Z44 ’ ° Z45
ZS] ZSZ Z53 Z54 Z55
| Ze1 | | Ze | | Ze | | Zea | [ Zes |
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such that

K, K, K; Ky K
Ky K, Ky Ky K
det| Ky, K, K Ky Ky |#0,
Ky Ky Ky Ky Kis
K5 Ky, K5y Ky Kis
where
K, = mg . 1)1215 +mg . 1)2225 +mg . 1)3Z35 +mg . 1)4Z45 +mg ., 1)3255 +mg. 1)6ZGSa
K,= mg 1)1214 +mg . 1)2224 +mg . 1)3Z34 +mg, 1)4Z44 +mg, 1)3254 +mg, 1)6Z(74:
K= mg . 1)1213 +mg. 1)2223 +mg. 1)3Z33 +mg. 1)4Z43 +mg. 1)3253 +mg. 1)62635
K,= mg . 1)1212 +mg . 1)2222 +mg . 1)3Z32 +mg . 1)4Z42 +mg ., 1)3252 +mg. 1)6ZGZa
Kis= mg 4 1)1Zn +mg, 1)2221 +mg, 1)3Z31 +mg, 1)4Z41 +mg, 1)3251 +mg, 1)6Z61’
fori=1:5.

From the construction of M, we can always choose suitable Z,, Z,, Z,, Z, and Z;.

3.3 Double ansatz space

Let E(4, ) be CTMP as given in (5). We proved that L(E(Z, u)) = {L(4, p) : L(A, u) * (A @ 1,) € V,} is vector
space. We replace the notation L(E(4, ))) by L,(E(4, u)) i.e. Li(E(A, p)) = {L(A, ) : L(A, u) x (A & 1,) € V,5} and refer it
as right ansatz space.

Define L(E(4, u))) = {(A" ® 1) x L(Z, u) : L(A, u) € V,} and refer it as left ansatz space. Then we define double
ansatz space as the intersection of L,(E(4, u)) and L,(E(A, 1)) as follows:

DL(E(2, @) = Li(E(4, @) N Ly(E(, 1)) (23)

It is easy to see that L(A, u) € DL(E(, 1)) © L(, ) x (A ® L) =v @ E(%, u) and (A" ® 1) x L(A, 1) =v' & E(, u).
To characterize DL(E(Z, u)) we use the Lemma 3.3. Consider

LA, u) =Ly + AL, + ulL,

where each L;; i := 0 : 2 is defined as,

0 0 0 —aP, Z 0 0 0 0 0 0 aP,

0 0 0 —aR-Z Z 0 0 0 0 0 0 aB+Z

I 0 0 0 -aP-Z -af 0|, |0 0 0 0 0 aP,+Z
0 —aP, Z Z —aP, z o™ 0 0 0 aP, -Z aP |

-aP,-7Z —aP,-7Z —-aP, —aP,-Z —aP, 0 0 0 O aR+Z 0 aP,+Z
|0 0 0 0 0 ab| \aP, ~Z ~Z aP, -Z aP |

and
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S oo O O
S O O O
S O O
|
N

-Z -Z|
0 aP,+Z aF, aP
\aRk+Z aP+Z abF, aP,+Z aP, af

S O O O O
S O O O O

It is easy to see that L(A, u) x (A ® I)=v @ E(, u) and (A" @ I) x L, u)=v' @ I,, where v=[00000a]" €
C®and A =[A* Au 1 2 1 11" € C°. Therefore, L(A, u) € DL(E(A, u)).

4. Linearization of CTEP

The eigenvalues of CTEP are the roots of the system of bivariate polynomials det(E,(4, u)) = 0; i := 1 : 2. The
following lemma ensures that it has 9n° eigenvalues.

Lemma 4.1 In the generic case, the CTEP defined in (3) has 9n” eigenvalues.

Proof. This lemma can be proved easily using Bézout’s theorem. The bivariate polynomials det(£,(4, «)) and
det(E,(4, u)) are of order 3n. Thus, by Bézout’s theorem 2.1, this polynomials has 37 x 3n = 9n° solutions. |

For spectral analysis of CTEP, the usual approach adopted is to linearize it into a 2PEP of the form (4). The de-
facto way [ 18], to solve the problem (4) is by converting it into a coupled GEP given by

Az =AAyz
Az = uAyz (24)
where z = w, ® w, is decomposable tensor and
w,=AQ x, =[x, lux, w'x; Jx; px; x]5i=1:2
Each operator matrices A, i := 0 : 2 is defined as follows
Ay =L"QLY - IV ® LY (25)
A=LY®LY - LY ®LY; A =LY LY - L @ LY (26)

The system (24) is referred to as singular or nonsingular according to the operator matrix A, specified in equation
(25) is singular or nonsingular. The operator matrices I', = A;'A,, i := 1 : 2 commute for nonsingular problem and the
eigenvalues of (4) agree with the eigenvalues of joint GEPs of the type (24). Using the conventional numerical method
for GEPs [19], we can find the numerical solution for nonsingular problems using this relation. However, solving the
problem with low-order matrices is more convenient. The major computational drawbacks are the cost of computing the
operator matrices A, i = 0 : 2 of size 36n % 36n. Thus, it is necessary to adopt numerical algorithm to find the solution of
the problem. Again, the matrices in the linearized version of the problem are not of full rank and therefore, the operator
determinant A, is singular having rank 20n°. Such a problem cannot be transformed into the joint GEP system of the
kind (24). For the singular case, there are infinitely many eigenvalues that satisfy the equivalent systems of joint GEPs
of the type (24), which makes computing appropriate eigenvalues of the problem challenging. The relationship between
equations (4) and the joint GEP specified in equations (24) is less investigated for singular case. In the extant literature,
there are numerical techniques to find the some part of the numeric of singular 2PEP [2, 15, 19-21] and the references
therein. It is easy to verify that x; ® x, is an eigenvector corresponding to an eigenvalue (4, u) of a CTEP if and only if
w; @ w;, is an eigenvector corresponding to the eigenvalue (4, u) of the linearization.
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Theorem 4.2 Let CTEP defined in (3). A class of linearizations of (3) is given by
LA, yw, = (LY + ALY + ulyw, =0; i:=1:2

where w, = A ® x, and L\ are defined as,

VAV A A ANV A
z8 z9 z8) z¥ z¥) 0
LY = 0 Zy z;;f Z;‘) Zé;.) 0 (27)
0 0 z@ z¥ z{ o
0 0 0 Zs‘fﬁ Zs‘;" 0
L 0 0 0 0 Zé? 0 ]
[a.py Y +a,Py Y +a,Py ~Z0 +a,Ps ~Z3 +a,By, ~Z +a,P, |
0 0 -Y -Z4) ~Z3) SN
_7() _7()
10 = 0 0 0 0 z4 Z?) 28)
0 0 0 0 0 —Z 4
0 0 0 0 0 —ngf
L 0 0 0 0 0 0 ]
N aPy 0 ~Z9 +aPy ~Z2 +aP, |
0 vy o0 o0 -zZ¥ ~Z3Y
(i) ()
10 = 0 0 0 0 -z ~Z; 29)
0o 0 0 0 -Z¥ A
0 0 0 0 0 -7
0 0 0 0 0 -z

Proof. The proof of the theorem follows from the Theorem 3.6, by considering L2, u)w, := (L} + ALY + uL)w, = 0;
i:=1:2of E(), u) associated with ansatz vector 0 # a,e, € C% i :==1:2. |

Theorem 4.3 The linearization of CTEP derived from the equations (3) are singular.

Proof. Consider the linearizations defined by the equation (4) i.e.,

LA, pyw, =LY + ALY + ulMYw, =0; i:=1:2

where L\ are as defined in (27), (28) and (29) fori=0:2;j=1, 2.
Then the operator matrix A, is given by (25) as follows,

‘D!, D, D, D Djs Dy | [p) DY Dy O D D;,
0 0 0 -ZzVerY -zl -z{) LY 0 D, 0 0 -ZWeL?P -ZVeL?
A, = 0 0 0 0 —ZY®LY -ZZ®LY| |0 0 0 0-ZieL) -z@eL? .
0 0 0 0 0 -ZQ) QLY 0 0 0 0-zP®I» -zZVerL?
0 0 0 0 0 -Z3 QLY 0 0 0 0 0 Z0 @ LP
L0 0 0 0 0 0 | [0 0 00 0 -z ®LY |
where,
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D\ =aP,®LY,
Dy = (=Y + P ) ® LY,
Dy ==Yy +aP)® Ly,
Dy, =-Z +a,Ps® LY,
Dis = (=25 +a,R)® LY,
Dig=(-Z{ +a,Ry) ® LY,
Dy =Yy ®LY.
Dy =Y ® L,
Dy =Yy ®LY,
Dy =ay,B ® LY,
Dis=(Z5 +aR;)® LY,
Dig=(Z}y' +ayB) ® LY,
D;, =YY ®LP.

More than one block on the diagonal of the block-triangular matrix A, is zero. Using Theorem 3.4 we have det(A,)

= 0. So the linearizations are singular and hence the theorem. o

5. Conclusion

We have described a unified framework on vector space of linearization of CTMP. Moreover, for a given CTMP,
a vector space of linear 2PEPs has been constructed. A set of linearization classes are also identified which lie in the
vector space. We also derived a class of singular linearizations for a CTEP. The linearization process discussed in this
paper can be extended to k-parameter polynomial eigenvalue problem. However, the associated linear two-parameter
forms yields matrices of larger structures. Therefore, the proofs for the aforementioned Lemmas and Theorems become
challenging to work due to the involvement of large structures of the matrices. However, by suitably defined block
matrices with the coefficient matrices of k-parameter matrix polynomials, the linearization framework can be made
feasible to work and it can be considered as future avenue of research in this area.
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