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Abstract: We give a proof of the simultaneous monomialization Theorem in zero characteristic for rings essentially of 
finite type over a field and for quasi-excellent rings. The methods develop the key elements theory that is a more subtle 
notion than the notion of key polynomials.
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1. Introduction
The resolution of singularities can be formulated in the following way. 
Let V be a singular variety. The variety V admits a resolution of singularities if there exists a smooth variety W and a 

proper birational morphism W → V.
This problem has been solved in many cases but remains an open problem in others. In characteristic zero Hironaka 

proved resolution of singularities in all dimensions ([33]) in 1964. Much work has been done since 1964 to simplify and 
better understand resolution of singularities in characteristic zero. We mention [7-10, 12-15,17-20, 26, 32, 44-46, 50], and 
[52].

The problem remains open in positive characteristic. The first proof for surfaces is due to S. Abhyankar in 1956[1] 
with subsequent strengthenings by H. Hironaka[34] and J. Lipman[37] to the case of more general 2-dimensional schemes, 
with Lipman giving necessary and sucient condition for a 2-dimensional scheme to admit a resolution of singularities. See 
also [25]. Still, Abhyankar's proof is extremely technical and dicult and comprises a total of 508 pages ([2-6]). For a more 
recent and more palatable proof we refer the reader to [27]. It was not until much later that V. Cossart and O. Piltant settled 
the problem of resolution of threefolds in complete generality (their theorem holds for arbitrary quasi-excellent noetherian 
schemes of dimension three, including the arithmetic case) in a series of three long papers spanning the years 2008 to 
2019 [21], [22] and [23]. To try to solve the problem of resolution of singularities numerous methods were introduced, in 
particular Zariski and Abhyankar used the local uniformization. But it does not allow at the moment to solve completely 
the problem.

We are interested in a stronger problem than the local uniformization: the mono-mialization problem. In this work we 
solve the monomialization problem in characteristic zero. We hope that these methods, applicable in positive characteristic, 
may help to attack the global problem of resolution of singularities on a different point of view.

One of the essential tools to handle the monomialization or the local uniformiza-tion is a valuation. Let us look on an 
example how valuations naturally fit into the problem.

Let V be a singular variety and Z be an irreducible closed set of V.
If we knew how to resolve the singularities of V, we would have a smooth variety W and a proper birational morphism 

W → V. In W, we can consider an irreducible set Z' whose image is Z. And so the regular local ring ,W Z ′  dominates the non 
regular local ring , .V Z  It mems that we have an inclusion , ,V Z W Z ′⊆   and the maximal ideal of ,V Z  is the intersection 
of those of , , with .W Z V Z′   Up to a blow-up Z' is a hypersurface and so ,W Z ′  is dominated by a discrete valuation ring. In 
this case the valuation is the order of vanishing along the hypersurface.

Before stating the local uniformization Theorem, we need a classical notion that will be very important: the center of 
a valuation. For details, we can read ([54]) or ([47, sections 2 and 3]).

Let K be a field and ν be a valuation defined over K. We set

( ){ }:  such that 0 ,R x K xν ν= ∈ ≥
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the valuation ring of v, and νm  its maximal ideal.
We consider a subring A of K such that .A Rν⊂  Then the center of v in A is the ideal p of A such that .A ν= ∩p m

Now we consider an algebraic variety V over a field k and K its fractions field. Assume V is an affine variety. Then V 
= Spec (A) where A is a finite type integral k-algebra with .A K⊆  If ,A Rν⊆  then the center of v over V is the point ζ of V 
which corresponds to the prime ideal A ν∩m  of A.

The irreducible closed sub-scheme Z  of V  defined by A ν∩m  (it means the image of the morphism
Spec( ) Spec( ))A

A A
ν∩ →
m

 has a generic point ξ. Equivalently ζ is the point associated to the zero ideal. We say that Z is the

center of v over V. Now let us state the local uniformization Theorem. It has been proved in characteristic zero but it is 
always a conjecture in positive characteristic.

Theorem (Zariski[54]). Let X = Spec (A) be an affine variety of fractions field K over a field k.We consider ν a 
valuation over K of valuation ring Rν.

Then A can be embedded in a regular local sub-ring A' essentially of finite type over k and dominated by Rν.
In this work we prove a stronger result: the simultaneous monomialization Theorem. We are going to explain what is 

the monomialization and what are the objects that we handle.
Let k be a field of characteristic zero and 1[ , , ]nf k u u∈ …  be a polynomial in n variables, irreducible over k. 

We denote by V ( f ) the hypersurface defined by f and we assume that it has a singularity at the origin. Then we set 

11 ( , , ): [ , , ] .
nn u uR k u u …= …  This is a regular local ring that is essentially of finite type over the field k. The vector u = (u1, 

..., un) is a regular system of parameters of R. We use the notation (R, u) to express the fact that u is a regular system of 
parameters of the regular local ring R.

Definition 4.9 The element f is monomializable if there exists a map

( ) ( )( )1, , , nR u R u u u′ ′ ′ ′→ = …

that is a sequence of blow-ups such that the total transform of f is a monomial. It means that in R', the total transform of f is 

( )
1

,i
n

i
i

v u α

=
′∏  with v a unit of R'.

Now we can give a simplified version of one of the main theorems of this work.
Theorem 7.1 Let (R, u) be a regular local ring that is essentially of finite type over a field k of characteristic zero.
Then there exists a countable sequence of blow-ups

( ) ( )( ), , i
iR u R u→ → → 

that monomializes simultaneously all the elements of R.
Equivalently, it means that for each element f in R, there exists an index i such that in Ri , f is one monomial.
If f is an irreducible polynomial of k [u1, ..., un], then ( ): R

fA =  is a local domain. We can find a valuation v over Frac 

(A) centered in R. One consequence of Theorem 7.1 is that the total transform of f in one of the Ri is ( )

1
( ) .j

n
i

j
j

v u α

=
∏  By the  

irreducibility of f its strict transform is exactly ( ) .i
nu

Hence there exists an embedding of A into the ring ( )( )
i
i

n

R

u
A′ =  which is dominated by Rν . So a consequence of Theorem 

7.1 is the Local Uniformization Theorem as announced.
And we obtain a stronger result here: the total transform is a normal crossing divisor. We call this result the embedded 

local uniformization. We will give a new proof of this theorem in this work.
Let us explain why simultaneous monomialization is a stronger result than the embedded local uniformization 

Theorem. First we monomialize all the elements of R with the same sequence of blow-ups. Secondly, this sequence is 
effective and at each step of the process we can express the u(i+1) in terms of the u(i). Indeed, we consider an essentially of 
finite type regular local ring R, and a valuation centered in R. Thanks to this valuation we construct an effective sequence of 
blow-ups that monomializes all the elements of R. One more advantage of the proof we give here is that in the essentially 
of finite type case, we prove the simultaneous embedded local uniformization whatever is the valuation. In particular we do 
not need any hypothesis on the rank of the valuation.

One of the most important ingredient in the proof of this theorem is the notion of key polynomial. We give here a 
new definition of key polynomial, introduced by Spivakovsky and appearing for the first time in ([28] and [41]). Let K 
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be a field, v be a valuation over K and we denote by 1
!:

b

bb b X
∂
∂

∂ =  the formal derivative of the order b on K [X]. For every
polynomial [ ],P K X∈  we set

( ) ( ) ( )
: max .b

b

P P
P

bν
ν ν

∗∈

 − ∂ =  
  



Definition 1.7 Let [ ]Q K X∈  be a monic polynomial. The polynomial Q is a key polynomial for v if for every 
polynomial [ ] :P K X∈

( ) X X( ) deg ( ) deg ( ).P Q P Qν ν≥ ⇒ ≥ 

One of the interests of this new definition is the following notion:
Definition 2.1 Let Q1 and Q2 be two key polynomials. We say that Q2 is an immediate successor of Q1 if 1 2( ) ( )Q Q<   

and if Q2 is of minimal degree for this property. We denote this by Q1 < Q2.
We denote by 

1QM  the of immediate successors of Q1. We assume that they all have the same degree as Q1 and that 

1
( )QM  does not have any maximal element.

Definition 2.10 We assume that there exists a key polynomial Q' such that 
1

( ) ( ).QQ M′ >   We call immediate limit 
successor of Q1 every polynomial Q2 of minimal degree satisfying 

12( ) ( ),QQ M>   and we denote this by 1 lim 2 .Q Q<

Let Q1 and Q2 be two key polynomials. Let us write Q2 according to the powers of 1 2 1
0

 , 
S

i
i

i
Q Q q Q

=
= ∑  where the qi are 

polynomials of degree strictly less than Q1.
We call this expression the Q1-expansion of Q2.
An important result in this work, and the only one for which we need the characteristic zero hypothesis, is the 

following Theorem.
Theorem 2.17 Let Q2 be an immediate limit suecessor of Q1. Then the terms of the Q1-expansion of Q2 that minimize 

the valuation are exactly those of degrees 0 and 1.
Then the hypothesis of characteristic zero is necessary also for the results that follow from this theorem.
Here we give an idea of our proof of Theorem 7.1. Let us consider a regular local ring R essentially of Hnite type over 

a field k of characteristic zero. We fix u = (u1, ..., un) a regular system of parameters of R.
The first ingredient in the proof is the notion of non degeneration.
Definition 3.1 We say that an element f of R is non degenerated with respect to u if there exists an ideal N of R, 

generated by monomials in u, such that ( ) ( ){ }min .
x N

f xν ν
∈

=

The first step is to monomialize all the elements that are non degenerated with respect to a regular system of 
parameters of R. So let f  be an element of R that is non degenerated with respect to u. We construct a sequence of blow-
ups

(R, u) → ··· → (R', u')

such that the strict transform of f in R' is a monomial in u'.
There exist elements f of R that are not non degenerated with respect to u. So we wonder if we could find a sequence 

of blow-ups

(R, u) → ··· → (T, t)

such that f is non degenerated with respect to t. If we can, after a new sequence of blow-ups, we monomialize f. Doing this 
for all the elements of R would would be too complicated. So we would want to find a sequence of blow-ups (R, u) → ··· 
→ (R', u') such that all the elements of R are non degenerated with respect to u'. It is a little optimistic and we need to do 
something more subtle. We will find an infinite sequence of blow-ups

(R, u) (R1 , u
(1)) → ··· → (Ri , u

(i)) → ···
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such that for each element f of R, there exists i such that f is non degenerated with respect to u(i).
For this, we need the second main ingredient: the key polynomials.
We construct a sequence of key polynomials ( )i iQ  such that each element f of R is non degenerated with respect to 

some Qi . It means that:

( ) ( ),  such that .
iQf R i f fν ν∀ ∈ ∃ =

We construct the sequence ( )i iQ  step by step. We require the following properties for this sequence: for every index i, 
the polynomial Qi+1 is an (eventually limit) immediate successor of Qi . Furthermore the sequence ( ( ))i iQ  is cofoial in ( )Λ  
where Λ is the set of key polynomials of the extension k (u1,...,un-1)(un).

Equivalently it means:

1 lim 1,  or ,
  such that ( ) ( ).

i i i i

i

i Q Q Q Q
Q i Q Q

+ +∀ < <
∀ ∈Λ ∃ ≥  

Assume now that we can construct a sequence of blow-ups

(R, u) → ··· → (Rj , u
( j)) → ···

such that all the Qi belong to a regular system of parameters. It means that

( )strict,, ,  such that ,jj
i ki j k Q u∀ ∃ =

where strict, j
iQ  is the strict transform of Qi in Rj. Then every element f of R which is non degenerated with respect to Qi is 

non degenerated with respect to u( j). Thus it is monomializable. So the next step is to monomialize all the Qi .
In order to do this once again we have to be subtle. The notion of key polynomial is not stable by blow-up, so we 

need a better notion: the notion of key element. Let (Qi, Qi+1) a couple of (eventually limit) immediate successors of our 
sequence. We consider 1

0

s
j

i j i
j

Q q Q+
=

= ∑  the Qi-expansion of Qi+1. Then we associate to Qi+1 a key element Q'i+1 defined as 

follows.

Definition 3.11 An element 1
0

s
j

i j j i
j

Q a q Q+
=

′ = ∑  where the aj are units is called a key element associated to Qi+1.

In fact we also have a notion of (eventually limit) immediate successors in this case.
Definition 3.13 and 3.14 Let P'1 and P'2 be two key elements. We say that P'1 and P'2 are (eventually limit) immediate 

successors key elements if their respective associated key polynomials P1 and P2 are such that P1 < P2 (eventually P1 <lim 
P2).

After some blow ups we prove that (eventually limit) immediate successors become (eventually limit) immediate 
successors key elements. So we monomialize these key elements. For this we construct a sequence of blow-ups

(R, u) → ··· → (Rs , u
(s)) → ···

that monomializes all the key polynomials Qi. More precisely, for every index i there exists an index Si such that in ,
isR  Qi 

is a monomial in ( )isu  up to a unit of .
isR

So in the case of essentially of finite type regular local rings, no matter the rank of the valuation is, we prove the 
embedded local uniformization Theorem. And we do this using only a sequence of blow-ups for all the elements of the 
ring, and in an effective way. It means that every blow-up is effective and we know how to express all the systems of 
coordinates.

Then we want to prove the same kind of result over more general rings, even if it means adding conditions on the 
valuation. We work with quasi excellent rings. Indeed, Grothendieck and Nagata showed that there is no resolution of 
singularities for rings that are not quasi excellent.

The second main result of this paper can be express in the following simplified form.
Theorem 12.3 Let R be a noetherian quasi excellent complete regular local ring and v be a valuation centered in R.
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Assume that ν is of rank 1, or of rank 2 but composed with a discrete valuation, and that car (kv) = 0.
There exists a countable sequence of blow-ups

(R, u) → ··· → (Rl , u
(l)) → ···

that monomializes all the element of R.
So let R be a quasi excellent local domain. This time R is not assume to be of finite type, so we cannot repeat what we 

did before. We need to introduce one more ingredient: the implicit prime ideal.
Let v be a valuation of the fractions field of R centered in R. We call implicit prime ideal of R asociated to v the ideal 

of the completion R̂ of R defined by:

{ }( )0

ˆ:
R

H P Rβ
β ν∈

=




where : {  such that ( ) }.P f R fβ ν β= ∈ ≥
One can show that in this case desingularizing R means desingularizing R̂. In the last part of this work we also prove 

that to desingularize R̂, we only need to desingularize ˆ
HR  and (up to one more sequence of blow-ups) R̂

H . We prove that 
the implicit prime ideal satisfies the property that ˆ

HR  is regular. So we only have to desingularize R̂
H  and this is done by 

Theorem 11.2.

2. Key polynomials
The notion of key polynomials was first introduced by Saunders Mac Lane in 1936, in the case of discrete valuations 

of rank 1. The first motivation to introduce this notion was to describe all the extensions of a valuation to a field extension. 
Let K → L be an extension of field and v a valuation on K. We consider a valuation µ that extends ν to L. In the case 
where ν is of rank 1 and where L is a simple algebraic extension of K, Mac Lane created the notion of key polynomial 
for µ. He also created the notion of augmented valuations. Given a valuation µ and Q a key polynomial of Mac Lane, 

we write 
0

r
j

j
i

f f Q
=

= ∑  the Q-expansion of an element [ ].f K X∈  An augmented valuation µ' of µ is the on defined by 

( )
0
mi ( ){n }jj r

f f jµ µ δ
≤ ≤

′ = +  where δ > µ(Q). He proved that µ is the limit of a family of augmented valuations over the ring 

K [x]. Michel Vaquié extended this definition to arbitrary valued field K, without assuming that ν is discrete. The most 
important difierence between these notions is the fact that those of Vaquié involves limit key polynomials while those of 
Mac Lane not.

More recently, the notion of key polynomials has been used by Spivakovsky to study the local uniformization 
problem, and to do this he created a new notion of key polynomials. It is the one we use here.
2.1 Key polynomials of Spivakovsky et al

For some results of this part, we refer the reader to [28], but we recall the definitions and properties used in this work 
to have a selfcontained manuscript.

First, recall the definition of a valuation.
Definition 1.1 Let R be a commutative domain with a unit element, K be a commutative field and Γ be a totally 

ordered abelian group. We set : { }.∞Γ = Γ∪ +∞
A valuation of R is a map

: Rν ∞→ Γ

such that:

(1) , ( ) 0,x R x xν∀ ∈ = +∞ ⇔ =

(2) ( ) ( ) ( ) ( )2, , ,x y R xy x yν ν ν∀ ∈ = +

(3) ( ) ( ) ( ) ( ){ }2, , min , .x y R x y x yν ν ν∀ ∈ + ≥
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Example 1.2 The map 1 : [ ] { }xν → ∪ +∞   which sends a polynomial 
0

 to min{  such that 0}
d

i
i i

i
P p x i p

=
= ∑ ≠  is a 

valuation.
Example 1.3 We want to define a valuation v2 on ( , , ).x y z  The value of a quotient 2 2 is .( ) ( )P

Q P Qν ν−

And we define the value of a polynomial 31 2 ii i
i

i
P p x y z= ∑  as the minimal of the values of 31 2 .ii i

ip x y z
Then we only have to define the values of the generators x, y and z.
Hence the map 2 : ( , , )x y zν ∞→   which sends x to 1, y to 2π and z to 1 + π is a valuation.
Example 1.4 Let us set Q = z2 - x2y. Every polynomial [ , , ]P x y z∈  can be written according to the powers of Q. We 

write i
i

i
P p Q= ∑  with the [ , ][ ]ip x y z∈  of degree in z strictly less than degz (Q) = 2. Assume that the first non zero pi is 

Pn.
Then the map 2

3 : ( , , ) ( , lex)x y zν →   which sends P to (n, V2 (Pn)) defines a valuation, with v2 the valuation defined 
in Example 1.3.

Let K be a field equipped with a valuation v and consider a simple transcendental extension

K → K (X)

with a valuation v that extends µ to K (X). We still denote by v the restriction of v to K (X).
For every non zero integer b, we set 1

!:
b

bb b X
∂
∂

∂ = . This is called the formal derivative of order b.
For every polynomial [ ],P K X∈  we set

( ) ( ) ( )
: max .b

b

P P
P

bν
ν ν

∗∈

 − ∂ =  
  



Remark 1.5 Most of the time we will note ( ) : ( ).P Pν= 
Example 1.6 We consider ( , )[ ]x y z  and the valuation v := V3 defined in Example 1.4.
We have ν (z) = (0, 1 + π) and ν (∂z) = ν (1) = (0, 0). So

( ) ( ) ( ) ( ) ( ) ( ) ( )max 0,1 .
1

b

b

z z z z
z z

b
ν ν ν ν

ν π
∗∈

 − ∂ − ∂ = = = = + 
  



Also we have v (x) = (0, 1) and ( ) (0) ( , ) so ( ) ( , ).x xν ν∂ = = +∞ +∞ = −∞ −∞  Furthermore ( ) ( , ).y = −∞ −∞
Finally, let us compute ϵ (Q). Recall that Q = z2 - x2y. We have v (Q) = (1, 0), v (∂Q) = v (2z) = (0, 1 + π) and ν (∂2Q) 

= ν (2) = (0,0).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1,0 0,1 1,0 0,0
So max , max , 1, 1 .

1 2 1 2
Q Q Q Q

Q
ν ν ν ν π

π
− ∂ − ∂ − + −      = = = − −   

      


Definition 1.7 Let [ ]Q K X∈  be a monic polynomial. We say that Q is a key polynomial for v if for every polynomial 
[ ],P K X∈  we have:

X X( ) deg( ) ( ) deg ( ).P Q P Qν ν≥ ⇒ ≥ 

Example 1.8 We consider the same example as in example 1.6.
Let us show that z is a key polynomial. We do a proof by contrapositive. Let P be a polynomial of degree in z strictly 

less than degz (z) = 1. So P does not depend on z. Then we saw that ϵ (P) = (−∞, −∞). So ϵ (P) < ϵ (z) and z is a key 
polynomial.

Now, let us show that Q = z2 - x2z is a key polynomial. So we consider a polynomial P such that ϵ (P) ≥ ϵ (Q) = (1, −1 
−π).

Then ϵ (P) = (n, *) where n ≥ 1 and * is a scalar. So v (P) = (m, *) where m ≥ 1. Hence Qm | P and so degz (P) ≥ degz (Q). 
We proved that Q is a key polynomial.

We have two key polynomials z and Q and we have ϵ (z) < ϵ (Q). One can show that Q is of minimal degree for this 
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property. In this situation we will say that Q is an immediate successor of z.
For every polynomial [ ],P K X∈  we set

bv (P) := min I (P)

where

( ) ( ) ( )( ) :  such that .bP P
I P b P

b ν
ν ν∗ − ∂ = ∈ = 

  
 

Again, if there is no confusion, we will omit the index v.

Let P and Q be two polynomials such that Q is monic. Then P can be written 
1

n
j

j
j

p Q
=
∑  with pj polynomials of degree 

strictly less than the degree of Q. This expression is unique and is called the Q-expansion of P.

Definition 1.9 Let 2( , ) [ ]P Q K X∈  such that Q is monic, and we consider 
1

n
j

j
j

P p Q
=

= ∑  the Q-expansion of the 

polynomial P. Then we set 
0

:( ) ( )min .j
Q jj n

P p Qν ν
≤ ≤

=  The map vQ is called the Q-truncation of v.

Also we set

( ) { } ( ) ( ){ }: 0, ,  such that j
Q j QS P j n p Q Pν ν= ∈ … =

and

( ) ( ){ }: max .Q QP S Pδ =

Now, we set

( )
, : .

Q

j
Q j

j S P
P p Qν

∈
= ∑

Remark 1.10 In the general case, vQ is not a valuation. But if Q is a key polynomial, we are going to show that vQ is a 
valuation.

In order to do that, we need the next result, which will also be needed for a proof of the fundamental theorem 2.17.
Lemma 1.11 Let 1t >∈  and Q be a key polynomial. We consider P1, ..., Pt some polynomials of K [X] all of degree 

strictly less than deg (Q) and we set 
1

:
t

i
i

P qQ r
=
∏ = +  the Euclidean division of 

1

t

i
i

P
=
∏  by Q in K [X]. Then:

( ) ( )
1

.
t

i
i

r P qQν ν ν
=

 = ∏ < 
 

Proof. We use induction on t.
Base of the induction: t = 2. So we want to show that v (P1 P2) < v (qQ).
Indeed, if v (P1 P2) < v (qQ), then

v (r) = v (P1 P2 - qQ) 

        = v (P1 P2) 

        < v (qQ)

and we have the result.
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Assume, aiming for contradiction, that v (P1 P2) > v (qQ) and so v (r) ≥ v (qQ). Since Q is a key polynomial, every 
polynomial P of degree strictly less than deg (Q) satisfies ϵ (P) < ϵ (Q). In particular, for every non-zero integer j, we have 
v (P) - v (∂j P) < jϵ (Q). So it is the case for P1, P2 and r. Since P1 and P2 are of degree strictly less than deg (Q), we have

degX (P1 P2) = degX (P1) + degX (P2) 

                    < 2 degX (Q).

However, degX (P1 P2) = degX (qQ) = degX (q) + degX (Q). So q is of degree strictly less than deg (Q) too, and then q 
satisfies, for every non-zero integer j: v (q) - v (∂j q) < jϵ (Q). We are going to compute v (∂b (Q)

 (qQ)) in two different ways 
to get a contradiction.

First,

( ) ( )
( )

( ) ( )
0

( ) ( ) ) .(
b Q

b Q b Q j j
j

qQ Q qν ν −
=

 
∂ = ∂ ∂  

 
∑

Look at the first term of the sum: q∂b (Q) (Q), and compute its value v (q∂b (Q) (Q)). We are going to show that its value 
is the smallest of the sum.

We have

v (q∂b (Q) (Q)) = v (q) + v (∂b (Q) (Q))

                      = v (q) + v (Q) - b (Q) ϵ (Q) 

by definition of b (Q). But we know that for every non-zero integer j, we have v (q) < jϵ (Q) + v (∂j q), so

v (q∂b (Q) (Q)) < ( j - b (Q)) ϵ (Q) + v (Q) + v (∂j q)

                      ≤ v (∂j q) + ν (∂b (Q) - j Q)

Then q∂b (Q) (Q) is the term of smallest value in the sum. In particular,

v (∂b (Q) (qQ)) = v (q∂b (Q) (Q))

                      = v (q) + v (∂b (Q) (Q))

                      = v (qQ) - b (Q) ϵ (Q).                                                                                   (1)

Now we compute this value in a different way. We have:

v (∂b (Q) (qQ)) = v (∂b (Q)
 (P1 P2 - r))

                      = v (∂b (Q) (P1 P2) - (∂b (Q) (r))

                      ≥ min{v (∂b (Q) (P1 P2)), v (∂b (Q) (r))}.

But also:
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( ) ( )( )
( )

( ) ( ) ( )1 2 1 2
0

=
b Q

jb Q b Q j
j

P P P Pν ν −
=

 
∂ ∂ ∂  

 
∑

                        ( )
( ) ( ) ( )( ){ }1 20

min .j b Q jj b Q
P Pν ν −≤ ≤

≥ ∂ + ∂

If j ≠ 0, we have ν (P1) < jϵ (Q) + v (∂j (P1)) and so 

v (∂j (P1)) > ν (P1) − jϵ (Q)

since degX (P1) < degX (Q). If 0 ≤  j < b(Q), we also have

ν (∂b (Q) - j (P2)) > v (P2) - (b (Q) - j) ϵ (Q).

So if 0 < j < b (Q), we have

v (∂j P1) + ν (∂b (Q) - j (P2)) > v (P1 P2) - b (Q) ϵ (Q).

This inequality stays true if  j = 0 and  j = b (Q), so:

v (∂b (Q) (P1 P2)) > v (P1 P2) - b (Q) ϵ (Q).

By hypothesis, v (P1 P2) ≥ v (qQ), so

v (∂b (Q) (P1 P2)) > v (qQ) - b (Q) ϵ (Q).

But since r is of degree strictly less than deg(Q), we know that ν (∂b (Q) (r)) > v (r) - b (Q) ϵ (Q), and by hypothesis v (r) 
≥ ν (qQ). Then ν (∂b (Q) (r)) > v (qQ) - b (Q) ϵ (Q).

So

v (∂b (Q) (qQ)) ≥ min{v (∂b (Q) (P1 P2)), v (∂b (Q) (r))}

                      > v (qQ) - b (Q) ϵ (Q)

which contradicts (1). So we do have v (r) = v (P1 P2) < v (qQ), and this completes the proof of the base of the induction.
We now assume the result true for t - 1 ≥ 2 and we are going to show it for t.

We set 
1

1
: .

t

i
i

P P
−

=
= ∏

Let

P = q1Q + r1

be the Euclidean division of P by Q and

r1Pt = q2Q + r2

be that of r1 Pt by Q. Since PPt = qQ + r, we have r = r2 and q = q1Pt + q2.
By the induction hypothesis, v (r1) = ν (P) < v (q1Q). In particular,

( ) ( )1 1
1

.
t

t i t
i

r P P q PQν ν ν
=

 
= < 

 
∏
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Since the polynomials r1 and Pt are both of degree strictly less than deg (Q), we can apply the base of the induction 
and so

v (r1Pt) = v (r2)< v (q2Q).

So ( ) ( ) ( )2 1
1

( )
t

t i
i

r r r P Pν ν ν ν
=

= = = ∏  and furthermore this value is strictly less than both ν (q1PtQ) and than v (q2Q). So 

it is strictly less than the minimum, which is less then or equal to ν (q1PtQ + q2Q) by definition of a valuation. So

( )
1

=
t

i
i

r Pν ν
=

 
 
 
∏

         < ν ((q1Pt + q2)Q)

         = ν (qQ)

which completes the proof.
Theorem 1.12 Let Q be a key polynomial. The map νQ is a valuation.
Proof. The only thing we have to prove is that for every ( ) 2

1 2, [ ] ,P P K X∈  and we have

vQ (P1 P2) = vQ (P1) + vQ (P2).

First case: P1 and P2 are both of degree strictly less than deg (Q). Then vQ (P1)= v (P1) and vQ (P2) = v (P2). Since v is a 
valuation, we have v (P1 P2) = v (P1) + v (P2).

Then, v (P1 P2) = vQ (P1) + vQ (P2). Sinee P1 and P2 are both of degree strictly less than deg(Q), by previous Lemma, 
we have vQ (P1 P2) = v (P1 P2) and we are done.

Second case: P1 = pi
(1)Qi and P2 = pj

(2)Q j with pi
(1) and pj

(2) both of degree strictly less than deg (Q).
Let pi

(1) pj
(2) = qQ + r be the Euclidean division of pi

(1) pj
(2) by Q. Sinee degX ( pi

(1) pj
(2)) < 2degX (Q), we know that degX 

(q) < degX (Q), and by definition of the Euclidean division, we have degX (r) < degX (Q). So P1 P2 = qQi + j + 1 + rQi + j is the Q- 
expansion of P1P2.

We are going to prove that in this case we still have

vQ (P1P2) = v (P1P2),

and since v is a valuation, we will have the result. We have:

vQ (P1 P2) = vQ (qQi + j + 1 + rQi + j)

               = min{v (qQi + j + 1) , v (rQi + j)}

               = min{v (qQ) + v (Qi + j), v (r) + v (Qi + j)}.

However, we can apply thee previous Lemma to the product 

pi
(1) pj

(2) = qQ + r

and conclude that v (r) = v (pi
(1) pj

(2)) < v (qQ).
Then
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vQ (P1 P2) = v (r) + v (Qi + j)

                 = v (pi
(1) pj

(2)) + v (Qi + j)

                 = v (P1 P2)

and we have the result.
Last case: general case. Since we only look at the terms of smallest value, we can replace P1 by

( )
( )1

(1)
1 ,

Q

j
jQ

j S P
P p Q

ν
∈

= ∑

and P2 by

( )
( )2

(2)
2 ,

.
Q

i
iQ

i S P
P p Q

ν
∈

= ∑

We know that

vQ (P1 + P2) ≥ min{ vQ (P1), vQ (P2)}

and

vQ (pj
(1)Q j pi

(2)Qi) = vQ (pj
(1)Q j) + vQ (pi

(2)Qi).

So

( ) ( )(1) (2)
1 2 = j i

Q Q j iP P p p Qν ν +∑

               ( ) ( ){ }(1) (2)min .j i
Q j Q ip Q p Qν ν≥ +

However

( ) ( ) ( )(1) (1)
1

j j
Q j j Qp Q p Q Pν ν ν= =

and

( ) ( ) ( )(2) (2)
2 .i i

Q i i Qp Q p Q Pν ν ν= =

So vQ (P1 P2) ≥ vQ (P1) + vQ (P2) and we only have to show that it is an equality. In order to do that, it is enough to find 
a term in the Q-expansion of P1 P2 whose value is exactly vQ (P1) + vQ (P2) Let us consider the term of smallest value in 
each Q-expansion, so let us consider 1 2

1 2

(1) (2) and ,n m
n mp Q p Q  where n1 = minSQ (P1) and m2 = minSQ (P2).

Let 
1 2

(1) (2)
n mp p qQ r= +  be the Euclidean division of 

1 2

(1) (2)
n mp p  by Q, which is its Q-expansion too.

By Lemmd 1.11, we have 
1 2

(1) (2)( ) ( ).n mr p pν ν=  In fact, in the Q-expansion of P1 P2, there is the term 1 2 ,n mrQ +  and we 
have:
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( ) ( )1 2 1 2n m n m
Q rQ rQν ν+ +=

                     ( )1 2
1 2

(1) (2) n m
n mp p Qν +=

                      = vQ (P1) + vQ (P2).

This completes the proof.
Remark 1.13 For every polynomial [ ],P K X∈  we have 

vQ (P) ≤ v (P).

It will be very important to be able to determine when this inequality is an equality.
A key polynomial P which satisfies the strict inequality and which is of minimal degree for this property will be called 

an immediate successor of Q (Definition 2.1). We will study these polynomials in more details in this work. First, let us 
concentrate on the equality case.

Definition 1.14 Let Q be a key polynomial and P be a polynomial such that vQ (P) = v (P).We say that P is non-
degenerate with respect to Q.

Another very important thing is to be able to compare the ϵ of key polynomials. Indeed, if I have two key polynomials 
Q1 and Q2, do I have ϵ (Q1) < ϵ (Q2), or do I have ϵ (Q1) = ϵ (Q2)? Being able to answer will be crucial. The next four results 
can be found in [28] but we recall them for more clarity.

Lemma 1.15 For every polynomial [ ]P K X∈  and every stricly positive integer d, we have :

νQ (∂d P) ≥ νQ (P) − dϵ (Q)

Proof. We consider the Q-expansion 
0

n
i

i
i

P p Q
=

= ∑  of P.

Assume we have the result for piQ
i. It means that

νQ (∂d (piQ
i)) ≥ νQ (piQ

i) − dϵ (Q)

for every index i. Then:

( )

( )

( )( )
( ) ( ){ }
( ){ } ( )

( ) ( )

0

0

0

0

0

=

=

min

min

min

n
i

Q d Q d i
i

n
i

Q d i
i

i
Q d ii n

i
Q ii n

i
Q ii n

Q

P p Q

p Q

p Q

p Q d Q

p Q d Q

P d Q

ν ν

ν

ν

ν

ν

ν

=

=

≤ ≤

≤ ≤

≤ ≤

  
∂ ∂     

 
∂ 

 

≥ ∂

≥ −

≥ −

≥ −

∑

∑







and the proof is finished.
So we just have to prove the result for P = piQ

i.
First, we know that νQ (∂d (Q) ≥ νQ (Q) − dϵ (Q). Now we will prove that we have the result for P = pi. Then we will 

conclude by showing that if we have the result for two polynomials, we have the result for the product.
So let us prove the result for P = pi.
Since degX (pi) < degX (Q) and since Q is a key polynomial, we have ϵ (pi) < ϵ (Q). So, for every strictly positive 

integer d, we have:
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νQ (∂d pi) = ν (∂d pi)

               ≥ ν (pi) − dϵ (pi)

               = νQ  (pi) − dϵ (pi)

               > νQ  (pi) − dϵ (Q).

Now, it just remains to prove that if we have the result for two polynomials P and S, then we have it for PS. Assume 
the result proven for P and S. Then:

( )( ) ( ) ( )

( )( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ){ }

( ) ( )

0

0

0

min

min

=
d

Q d Q r d r
r

r d rr d

Q Qr d

Q

PS P S

P S

P r Q S d r Q

PS d Q

ν ν

ν ν

ν ν

ν

−
=

−≤ ≤

≤ ≤

 
∂ ∂ ∂ 

 

∂ + ∂

−

≥

≥ + − −

−≥

∑

 



This completes the proof.
Proposition 1.16 Let Q be a key polynomial and [ ]P K X∈  a polynomial such that SQ (P) ≠ {0}.
Then there exists a strictly positive integer b such that

( ) ( )
( ).Q Q bP P
Q

b
ν ν− ∂

= 

Proof. First, by Lemma 1.15, we can replace P by 
( )

, .
Q

i
Q i

i S P
P p Qν

∈
= ∑

We want to show the existence of a strictly positive integer b such that νQ (P) - νQ (∂b P) = bϵ (Q).
Since SQ (P) ≠ {0}, we can consider the smallest non-zero element l of SQ (P). We write l = peu, with .p u
We are going to prove that we have the desired equality for the integer b := peb (Q) > 0. To do this, we need to 

compute ∂b (P), it is the objective of the following technical lemma.
Lemma 1.17 We have 1) ,(

e el p l p
b P urQ Q R S− − +∂ = + +  where:

(1)The polynomial r is the remainder of the Euclidean division of ( )( )
ep

l b Qp Q∂  by Q,
(2)The polynomials R and S satisfy

vQ (S) > vQ (P) - bϵ (Q).

Proof. First let us show that the Lemma is true for P = pl Q
l and that for every ( ) { },Qj S P l∈   we have

1 ,( )
ej l p

b j j jp Q Q R S− +∂ = +

where Rj and Sj are two polynomials, and where vQ (Sj) > vQ (P) - bϵ (Q).
So we consider ( .)Qj S P∈  We set

( ) 1
0

0
: , ,  such that  and .

s
s

j s s i
i

M B b b b b s j+

=

 
= = … ∈ = ≤ 
 

∑

The generalized Leibniz rule tells us that:

( ) ( )( )
s j

j
b j s

B M
p Q T B

∈

∂ = ∑
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where

( ) ( )( )

( ) ( ) ( )
0

0

1

, ,

i

s s

s
j s

s b j b
i

T B T b b

C B p Q Q −

=

…

 
∂ ∂ 

 

=

= ∏

with C (Bs) some elements of K whose exact value can be found in [35]. We set 

( ) ( )( ) 1: 0, , , .
epb Q b Qα += … ∈

Recall that ( ) ( ) ( ){  such that ( )}.dQ Q
dI Q d Qν ν− ∂∗= ∈ =  We set

( ) { } ( ){ }0 0 1: , ,  such that 0 or , , ,j s s j sN B b b M b b b I Q= = … ∈ > … 

( ):
s j

j s
B N

S T B
∈

= ∑

and finally we set

( )

{ }( )
( )

1

if 

: .
if 

e s j j

s j j

s
B M Nl p

j
s

B M N

T B j l

Q R
T B j l

α

∈− +

∈ ∪

 ≠
=  =


∑

∑




If j = l, the term T (α) appears ( ) times in .l
b le

l
u p Q

p
 

∂
 

=  Equivalently, C (α) = u and so

( ) ( )( )
( )

e
e

e

p l p
l b Q

l p

T up Q Q

u qQ r Q

α −

−+=

∂=

where qQ + r is the Euclidean division of ( )( )
ep

l b Qp Q∂  by Q.

In other words

( )


0

1

:

.
e el p l p

R

T uq Q urQα − + −

=

= +

So if  j ≠ l, then 1 .( )
ej l p

b j j jp Q Q R S− +∂ = +  It remains to prove that vQ (Sj) > vQ (pj Q j) - bϵ (Q).
But:

( ) ( )

( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

0

0

1

1
min .

s j

i
s j

i
s j

Q j Q s
B N

s
j s

Q s b j b
B N i

s

b j bB N i

S T B

C B p Q Q

p Q j s Q

ν ν

ν

ν ν ν

∈

−

∈ =

∈ =

 
 
 
 
  
 ∂ ∂    
 

∂

=

=

≥ + ∂ + − 
 

∑

∑ ∏

∑
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Since ,s jB N∈  we have two options. The first is b0 = 0 and 1{ , , } ( ).sb b I Q…   In other words for every {1, , }i s∈ …  
we have ( ) (( ) .) ( )

ib iQ Q b Qν ν∂ ≥ −   And then the inequality is strict for at least one index {1, , }i s∈ … . The second option is 
b0 > 0 and then

( ) ( )( ) ( ) ( )0

0

j b j
j

p p
p Q

b

ν ν− ∂
≤ < 

because degX (pj) < degX (Q) and Q is a key polynomial. Equivalently,

( )( ) ( ) ( )0 0 .b j jp p b Qν ν∂ > − 

So if b0 = 0 and 1{ , , } ( ).sb b I Q…   we have

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0
1

.
i

j
j

s

b j b j
i

p Q b Q

p Q j s Q p s Q b Q j s Q

ν

ν ν ν ν ν ν
=

−

∂ + ∂ + − > + − + −∑








And if b0 > 0, then

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0
1 1

.
i

j
j

s s

b j b j i
i i

p Q b Q

p Q j s Q p b Q s Q b Q j s Q

ν

ν ν ν ν ν ν
= =

−

∂ + ∂ + − > − + − + −∑ ∑






 

So:

( ) ( ) ( ){ }
( ) ( )

min
s j

j
Q j jB N

Q

S p Q b Q

P b Q

ν ν

ν
∈

> −

> −





If j = l, then

( ) ( ) 1
0

e el l p l p
b l l lp Q R R Q S urQ− + −∂ = + + +

hand using the same argument as before, vQ (Sl) > vQ (P) - bϵ (Q). It remains to prove the general case. We have:

( )
( )

( )
( ) { }

( ).
Q

Q

i
b b i

i S P

l j
b l b j

j S P l

P p Q

p Q p Q

∈

∈

 
 ∂ ∂
 

=

=

 

∂ + ∂

∑

∑


( )
( )

( )
( ) { }
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Q

Q

i
b b i

i S P

l j
b l b j

j S P l

P p Q

p Q p Q

∈

∈

 
 ∂ ∂
 

=

=

 

∂ + ∂

∑

∑


Then:

( ) ( ) ( )
( ) { }

1 1
0

1

e e e

Q

e e

l p l p l p
b l l j j

j S P l

l p l p

P R R Q S urQ Q R S

urQ Q R S

− + − − +

∈

− − +

∂ + + + +=

=

+

+ +
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j
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p Q b Q

p Q j s Q p s Q b Q j s Q

ν

ν ν ν ν ν ν
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−

∂ + ∂ + − > + − + −∑
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1

.
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j
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b j b j
i

p Q b Q

p Q j s Q p s Q b Q j s Q

ν

ν ν ν ν ν ν
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−

∂ + ∂ + − > + − + −∑
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where

( )
0:

Q

j
j S P

R R R
∈

= + ∑

and

( )
: .

Q

j
j S P

S S
∈

= ∑

We have

( )
( )

( ){ } ( ) ( )min .
Q

Q Q j Qj S P
S S P b Qν ν ν

∈
≥ > − 

This completes the proof of the Lemma.
Recall that we want to prove that

vQ (∂b P) = vQ (P) - bϵ (Q).

We just saw that the Q-expansion of ∂b P contains the term ,
el purQ −  some terms divisible by 1el pQ − +  and others of 

value strictly higher than vQ (P) - bϵ (Q). It is sufficient now to show that

vQ (∂b P) ≥ vQ (P) - bϵ (Q).

and that

( ) ( ) ( ).
el p

Q QurQ P b Qν ν− = − 

Let us compute ).(
el p

Q urQν −

Recall that ( )( ) .
ep

l b Qp Q qQ r∂ = +  By Lemma 1.11, we have ( ) ( ) ) ).((
ep

l b Qr p Qν ν= ∂
So:

( ) ( )
( )

( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( )( )
( ) ( )

=

=

=

=

= .

=

=

e e

e

e
e

l p l p
Q Q

l p

p l p
l b Q

l e e
l b Q

e
Q b Q

e
Q

Q

urQ rQ

rQ

p Q Q

p Q p Q p Q

P p Q Q

P p b Q Q

P b Q

ν ν

ν

ν ν

ν ν ν

ν ν ν

ν

ν

− −

−

− 
∂ + 

 

+ ∂ −

+ ∂ −

+ −

−





The result now follows from Lemma 1.15.
Remark 1.18 One can show that the implication of the proposition is, in fact, an equivalence.
Proposition 1.19 Let Q be a key polynomial and P a polynomial such that there exists a strictly positive integer b 

such that
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vQ (P) = vQ (∂b P) - bϵ (Q).

and

vQ (∂b P) = v (∂b P).

Then ϵ (P) ≥ ϵ (Q).
If, in addition, v (P) > vQ (P) then ϵ (P) > ϵ (Q).
Proof. We have

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )
( ) ( )

=

= .

=

b

Q b

Q

Q

P P
P

b
P P

b
P b Q P

b
P P

Q
b

ν ν

ν ν

ν ν

ν ν

− ∂

− ∂

+ −

−
+

≥





We know that for every polynomial P, we have v (P) ≥ vQ (P), so ϵ (P) ≥ ϵ (Q). And if v (P) > vQ (P), we have the 
strict inequality ϵ (P) > ϵ (Q).

Proposition 1.20 Let Q1 and Q2 be two key polynomials such that

ϵ (Q1) ≤ ϵ (Q2)

and let [ ]P K X∈  be a polynomial.
Then 

1 2
.( ) ( )Q QP Pν ν≤

Furthermore, if 
1 2

, then ( ) ( .) ( ) ( )Q QP P P Pν ν ν ν= =
Proof. First, we show that 

2 1 1( ) ( .)Q Q Qν ν=  If degX (Q1) < degX (Q2), we do have this equality. Otherwise we have degX 
(Q1) = degX (Q2) since ϵ (Q1) ≤ ϵ (Q2) and since Q1 is a key polynomial.

Assume, aiming for contradiction, that 
2 1 1( ) ( .)Q Q Qν ν<

So 
2 1( ) {0}QS Q ≠  and by Proposition 1.16, there exists a non-zero integer b such that 

2 21 1 2( ) ( ) ( ).Q Q bQ Q b Qν ν− ∂ = 
However degX (∂bQ1) < degX (Q2), so 

2 1 1( ) ( )Q b bQ Qν ν∂ = ∂  and by Proposition 1.19, we have ϵ (Q1) > ϵ (Q2). This is a 
contradiction. So we do have 

2 1 1( ) ( .)Q Q Qν ν=

Let 1
0

n
i

i
i

P p Q
=

= ∑  be the Q1-expansion of P.

For every {0, , },i n∈ …  we have:

( ) ( ) ( ) ( ) ( )2 2 2 21 1 1 .i
Q i Q i Q Q ip Q p i Q p i Qν ν ν ν ν= + = +

But degX (pi) < degX (Q1) ≤ degX (Q2), so 
2 2 1 1( ) ( ) and ( ).( )i i

Q i i Q i ip p p Q p Qν ν ν ν= =

Then

( ) ( ){ }
( ){ }

( )

2 2

1

10

10

min

min

.

i
Q Q ii n

i
ii n

Q

P p Q

p Q

P

ν ν

ν

ν

≤ ≤

≤ ≤

≥

=

=

Assume that, in addition, 
1 2

. Then ( ) ( ) ( ).) (Q QP P P Pν ν ν ν= ≤  By definition of 
2Qν , we have 

2Qν  (P) ≤ ν (P), and hence 
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the equality. 
Proposition 1.21 Let 1, , [ ]nP P K X… ∈  be pelynemials and set 

1
{: max deg ( .)}X ii n

d P
≤ ≤

=

There exists a key polynomial Q of degree less than or equal to d such that all the Pi are non-degenerate with respect 
to Q. In other words, there exists a key polynomial Q such that for every i, we have vQ (Pi) = v (Pi).

Proof. Assume the result for only one polynomial and let n > 1.
So we have Q1, ..., Qn some key polynomials of degrees less than or equal to d such that for every {0, , },i n∈ …  the 

polynomial Pi is non-degenerate with respect to Qi. In other words ( ) .( )
iQ i iP Pν ν=

We can assume

( ) ( ){ }
1
max .n ii n

Q Q
≤ ≤

= 

By Proposition 1.20, for every {1, , }, we have ( ( .( ) ) )
i nQ i i Q ii n P P Pν ν ν∈ … = =  So all the Pi are non-degenerate with 

respect to Qn. This completes the proof.
It remains to show the result for n = 1. We give a proof by contradiction. Assume the existence of a polynomial P such 

that for every key polynomial Q of degree less than or equal to d, we have vQ (P) < v (P). We choose P of minimal degree 
for this property.

Let us show that there exists a key polynomial Q, of degree less than or equal to d = degX (P) such that for every b > 0, 
we have vQ (∂b P) = v (∂b P).

First, for every b > d, we have ∂b P = 0. Then, by minimality of the degree of P, for every {1, , },b d∈ …  there exists a 
key polynomial Qb such that ( ) ).(

bQ b bP Pν ν∂ = ∂
Take an element 1 1

{ , , } such that ( ) max{ ( )}.d bb d
Q Q Q Q Q

≤ ≤
∈ … =   By Proposition 1.20, we have vQ (∂b P) = v (∂b P), for 

every b > 0.
So we have vQ (P) < v (P). In particular, SQ (P) ≠ {0} and vQ (∂b P) = v (∂b P) for every b > 0. By Proposition 1.16 and 

Corollary 1.19, we conclude that ϵ (P) > ϵ (Q).
Let us show that this last inequality is true for every key polynomial of degree less than or equal than deg(P). Let Q0 

be such a key polynomial.
First case: ϵ (Q0) ≤ ϵ (Q). Then ϵ (Q0) < ϵ (P) since ϵ (Q) < ϵ (P).
Last case: ϵ (Q0) > ϵ (Q). By Proposition 1.20, we have v (∂b P) = vQ (∂b P) = vQ0 (∂b P) for every b > 0. By hypothesis 

we know that vQ0 (P) < v (P). So by Proposition 1.16 and Corollary 1.19, we have ϵ (P) > ϵ (Q0) as desired.
So we know that for every key polynomial of degree less than or equan than those of P, we have ϵ (P) < ϵ (Q). But by 

definition of key polynomials, there exists a key polynomial Q  of degree less than or equal than those of P and such that ϵ (P) 
≤ ϵ (Q)Contradiction. This completes the proof.
2.2 Immediate successors

Definition 2.1 Let Q1 and Q2 be two key polynomials. We say that Q2 is an immediate successor of Q1 and we write 
Q1 < Q2 if ϵ (Q1) < ϵ (Q2) and if Q2 is of minimal degree for this property.

Remark 2.2 We keep the hypotheses of Example 1.8. Then we have z < z2 - x2y. 
Definition 2.3 It will be useful to have simpler ways to check if a key polynomial is an immediate successor of 

another key polynomial. This is why we give these two results.
Proposition 2.4 Let Q1 and Q2 be two key polynomials. The following are equivalent.
(1) The polynomials Q1 and Q2 satisfy Q1 < Q2.
(2) We have vQ1 (Q2) < v (Q2) and Q2 is of minimal degree for this property.
Proof. First let us show that

( ) ( ) 11 2 2 2( ) ( ).QQ Q Q Qν ν< ⇒ < 

We set 2 2( ) ( )
2 2: ( ) min{  such that ( )}.bQ Q

bb b Q b Qν ν− ∂∗= = ∈ = 
We have

1

1 2 1 2 2

1 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

b

Q b

Q Q b Q Q Q
b Q Q Q

ν ν
ν ν

< ⇔ < − ∂
⇒ < − ∂
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because for every polynomial g, we have vQ1 (g) ≤ v (g).
But by Lemma 1.15, vQ1 (Q2) - vQ1 (∂b Q2) ≤ bϵ (Q1), so

vQ1 (Q2) - vQ1 (∂b Q2) < v (Q2) - vQ1 (∂b Q2).

Then vQ1 (Q2) < v (Q2).
Now let us show that 

1 2 2 1 2( ) ( ) ( ) ( ).Q Q Q Q Qν ν< ⇒ <   Assume, aiming for contradiction, that ϵ (Q1) ≥ ϵ (Q2). Then 
deg(Q1) ≥ deg(Q2).

If we have deg(Q1) > deg(Q2), then vQ1 (Q2) = v (Q2) and this is a contradiction. Hence we assume that Q1 and Q2 have 
same degree.

Let Q2 = Q1 + (Q2 - Q1) be the Q1-expansion of Q2.
If v (Q1) ≠ v (Q2 - Q1), then

v (Q2) = min{(v (Q1), v (Q2 - Q1)} = vQ1 (Q2)}

and again we have a contradiction.
So v (Q1) = v (Q2 - Q1) = vQ1 (Q2) < v (Q2).
But v (Q2) = vQ2 (Q2) ≤ vQ1 (Q2) by Proposition 1.20. Again, this is a contradiction.
So we showed that 

11 2 2 2( ) ( ) ( ) ( ).QQ Q Q Qν ν< ⇔ < 
Let Q2 be of minimal degree for the first property.
Assume the existence of Q3 of degg strictly less than Q2 such that vQ1 (Q3) < v (Q3). So ϵ (Q1) < ϵ (Q3), which is in 

contradiction with the minimality of the degree of Q2 for this property.
So we have 

11 2 2 2( ) ( )QQ Q Q Qν ν< ⇒ <  and Q2 is of minimal degree for this property.
Take Q2 such that vQ1 (Q2) < v (Q2) and Q2 is of minimal degree for this property. Assume the existence of Q3 of 

degree strictly less than deg (Q2) and such that ϵ (Q1) < ϵ (Q3)). By this last property, we have vQ1 (Q3) < v (Q3), which is in 
contradiction with the minimality of the degree of Q2 for this property.

This completes the proof.
Proposition 2.5 Let Q1 and Q2 be two key polynomials, and let

2 1
j

j
j

Q q Q
∈Θ

= ∑

be the Q1-expansion of Q2.
The following are equivalent:
(1) The polynomials Q1 and Q2 satisfy Q1 < Q2.
(2) We have 

( )21
1in ( ) 0

Q

j
j

j S Q
q Qν

∈
∑ =  with Q2 of minimal degree for this property.

Proof. First, let us show that

( )
( )

21

1 2 1in 0.
Q

j
j

j S Q
Q Q q Qν

∈

< ⇒ =∑

Assume Q1 < Q2. By Proposition 2.4, we know that vQ1 (Q2) < v (Q2). So by definition

( )
( )

21

1in 0.
Q

j
j

j S Q
q Qν

∈

=∑

Furthermore, if Q1 < Q2, we have that Q2 is of minimal degree for this property by definition of immediate successor.
Now let us show that if 

( )21
1i ( )n 0

Q

j
j

j S Q
q Qν

∈
∑ =  with Q2 of minimal degree for this property, then Q1 < Q2.

Assume 
( )21

1i ( )n 0
Q

j
j

j S Q
q Qν

∈
∑ = . Then
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12 1 2( ) min ( ) ( ),j
j Qj

Q q Q Qν ν ν
∈Θ

> =

and so Q2 > Q1 by Proposition 2.4.
Remark 2.6 Let Q1 and Q2 be key polynomials such that Q2 is an immediate successor of Q1 and let 2 1

j
j

j
Q q Q

∈Θ
∑=  be 

the Q1-expansion of Q2. We set

( )21

2 1 .
Q

j
j

j S Q
Q q Q

∈

= ∑

We will show that 2Q  is an immediate successor of Q1. Then we will always consider “optimal” immediate successor 
key polynomials. This means, by definition, that all the terms in their expansion in the powers of the previous key 
polynomial are of same value.

Proposition 2.7 Let Q1 and Q2 be keg polgnomieds such that Q2 is an immediate successor of Q1 and let 2 1
j

j
j

Q q Q
∈Θ
∑=  

be the Q1-expansion of Q2. We set

( )21

2 1
Q

j
j

j S Q
Q q Q

∈

= ∑

Then 2Q  is an immediate successor of Q1.
Proof. First, by definition of 2Q , we have deg ( 2Q ) < deg (Q2). We are going to show that this inequality is, in fact, an 

equality.

We have 
( ) ( )2 21 1

1 1 ( )  ( ) 0in in .
Q Q

j j
j j

j S Q j S Q
q Q q Qν ν

∈ ∈
∑ ∑= =



 Since Q2 is of minimal degree for this property, we know that 

its term of greatest degree appears in this sum. So degX ( 2Q ) = degX (Q2).
Now let us show that ϵ ( 2Q ) > ϵ (Q1).

Since 
( ) 1

21

1 2 2 2in 0, we have ( ) ( ) ( , and )
Q

j
j Q

j S Q
q Q Q Q Qν ν ν

∈
∑ = <



    is still of minimal degree for this property. Then 

SQ1
( 2Q ) ≠ {0} and for every non-zero integer b, we have 

1 2 2( ) ).(Q b bQ Qν ν∂ = ∂   By Proposition 1.16, there exists a strictly 
positive integer b such that vQ (P) - vQ (∂b P) = bϵ (Q). So we can use Corollary 1.19 to conclude that

( ) ( )2 1 .Q Q> 

Assume that we already know that 2Q  is a key polynomial. Since deg ( 2Q ) = deg ( 2Q ), we have that 2Q  is of minimal 
degree for the property 2 1 1 2( ) ( ), and so .Q Q Q Q> <  

It remains to prove that 2Q  is a key polynomial.
Assume, aiming for contradiction, that 2Q  is not a key polynomial. Then there exists a polynomial [ ]P K X∈  such that 

( ) ( )2P Q≥  

and

( ) ( )2deg deg .X XP Q< 

We take P of minimal degree for this property. We can also assume that P is monic. Let us show that P is a key 
polynomial.

Let [ ]S K X∈  be a polynomial such that ϵ (S) ≥ ϵ (P). Then ϵ (S) ≥ ϵ ( 2Q ). If degX (S) ≥ degX ( 2Q ), then degX (S) > degX (P) 
and the proof is finished. So let us assume that degX (S) < degX ( 2Q ).

We have ϵ (S) ≥ ϵ ( 2Q ) and degX (S) < degX ( 2Q ). By minimality of the degree of P for this property, we have degX (S) ≥ 
degX (P), and hence P is a key polynomial.

So there exists a key polynomial P such that 
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( ) ( )2P Q≥  

and

( ) ( )2deg deg .X XP Q< 

Since ϵ ( 2Q ) > ϵ (Q1), we also have ϵ (P) > ϵ (Q1). By minimality of the degree of Q2 among the key polynomials 
satisfying this inequality, we have degX (Q2) ≤ degX (P) < degX ( 2Q ) which is a contradiction by the equality of the degrees 
of Q2 and 2Q . Hence the polynomial 2Q  is a key polynomial.

Definition 2.8 Let Q1 and Q2 be two key polynomials such that Q1 < Q2. We say that Q2 is an optimal immediate 
suecessor of Q1 if all the terms of its Q1-expansion have same value.

Remark 2.9 Proposition 2.7 shows how to associate to every immediate successor Q2 of Q1 an optimal immediate 
successor 2Q .

Hence, if Q1 is not maximal in the set of the key polynomials Λ, it admits an optimal immediate successor.
Let Q∈Λ be a key polynomial. We note

{ }:  such that .QM P Q P= ∈Λ <

Definition 2.10 We assume that MQ does not have a maximal element and that for every element QP M∈  we have 
degX (P) = degX (Q).

We also assume that there exists a key polynomial  such that ( ) ( ).QQ Q M′ ′∈Λ > 
We call a limit immediat successor of Q every polynomial Q' of minimal degree which has this property, and we write 

Q < lim Q'.
Proposition 2.11 Let Q and Q' be two key polgncmidls such that ϵ (Q) < ϵ (Q'). Then there exists a sequence Q1 = Q, ..., 

Qh = Q' where for emry index i, the polynomial Qi+1 is either an immediate successor of Qi or a limit immediate successor 
of Qi.

Proof. If Q' is an immediate successor of Q, we are done, so we assume that Q' is not an immediate successor of Q, 
and we write this Q </  Q'.

Let us first look at MQ = MQ1. If this set has a maximum, we denote this maximum by Q2. We have:

( ) ( )
2

   

Q Q
Q Q

Q Q

<
 ′<
 ′

 

      </  

and by minimality of the degree of Q2 we know that degX (Q2) < degX (Q'). But Q' is a key polynomial, so ϵ (Q2) < ϵ (Q').
Then we have

( ) ( ) ( )
1 2

2

Q Q Q
Q Q Q
= <

 ′< <  

and since Q < Q2, we know that degX (Q) ≤ degQ (Q2).
We iterate the process as long as MQi has a maximum.
Assume that there exists an index i such that MQi does not have a maximum.
Assume that ϵ (MQi) </  ϵ (Q'). So there exists gi ∈ MQi such that ϵ (gi) ≥ ϵ (Q'). Since Q' is a key polynomial, we know 

that degX (gi) ≥ degX (Q').
We have:

( ) ( )

( ) ( )deg deg

i

i i

X X i

Q Q
Q g

Q g

′ <
 <
 ′ ≤
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By definition of immediate successors, we have Qi < Q' and we set Qi+1 = Q'. This completes the proof.
Now assume that ϵ (Q') > ϵ (MQi).
Since degX (Q) ≤ degX (Qi) < degQ (Q') for every index i, there exists a natural number N such that for every index j ≥ 

N we have

degX (Qj) = degX (Qj+1) < degX (Q').

Let P ∈ MQN
. By constmction, ϵ (P) ≤ ϵ (QN+1) < ϵ (Q'). If Q' is not of minimal degree for this property, then there 

exists a key polynomial P' limit immediate successor of QN, of degree strictly less than the degree of Q'. So

degX (QN+1) < degX (P') < degX (Q').

Then we replace QN+1 by P' and iterate the process, which ends because the sequence of the degrees increase strictly.
Otherwise, Q' is of minimal degree among all the key polynomials such that ϵ (MQN

) < ϵ (Q'), so Q' is a limit 
immediate successor of QN and the process ends at QN+1 = Q'.

In each case, we construct a family of key polynomials which begins at Q, ends at Q' and such that for every index i, 
the polynomial Qi+1 is either an immediate successor of Qi, or a limit immediate successor of Qi. This completes the proof.

Proposition 2.12 Let Q and Q' be two key polgncmidls such that ϵ (Q) < ϵ (Q'). Then there exists a sequence Q1 = Q, 
..., Qh = Q' where for every index i, the polynomial Qi+1 is either an optimal immediate successor of Qi or a limit immediate 
successor of Qi.

Proof. Let Q2 be an optimal immediate successor of Q. We look at MQ = MQ1. If this set has a maximum, we denote 
this maximum by P.

If ϵ (Q2) = ϵ (P), we set P = Q2. Otherwise, ϵ (Q2) < ϵ (P). Since P and Q2 are both immediate successors of Q, they 
have same degree.

Hence P is an immediate successor of Q2, of the degree as Q2. The polynomial P is then an optimal immediate 
successor of Q2.

So we set Q3 = P.
In fact, we have a finite sequence of optimal immediate successors which begins at Q and ends at P = max{MQ}.
We iterate the process as long as MQi has a maximum. Assume that there exists an index i such that MQi. does not have 

a maximum.
Then we do exactly the same thing that we did in the proof ofcProposition 2.11 and this completes the proof.

Lemma 2.13 Let Q and Q' be two key polynomials such that Q < Q' and we denote by 
0

m
j

j
j

Q q Q
=

′ = ∑  the Q-expansion 
of Q'. Then qm = 1.

Proof. Since ϵ (Q) < ϵ (Q') we know by Proposition 2.5 that ( )
0
in 0.

m
j

j
j

q Qν
=

=∑
In fact we have

( ) ( ) ( ) ( ) ( )1 0in in in in in 0.m
mq Q q Q qν ν ν ν ν+…+ + =

Then, since inν (qm) ≠ 0, we have

( ) ( )
( ) ( ) ( )

( )
01 inin

in in 0.
in in

m

m m

qq
Q Q

q q
νν

ν ν
ν ν

+…+ + =
                                                                 (2)

We set a := degX (Q) and we consider G<a subalgebra of grν (K [X]) generated by the initial forms of all the 
polynomials of degree strictly less than a.

Hence G<a is a saturated algebra, and all the coefficients of the form ( )
( )

in
in

i

m

q
q

ν

ν
 of the equation (2) can be represented by 

polynomials. We denote by hi some liftings, of degrees strictly less than a.
The element inν (Q) is hence a solution of a homogeneous monic equation with coefficients in G<a and whose leading 

coefficient is 1.

We consider the polynomial 
1

0
, with, by hypothesis, deg de) (g .( )

m
m j

j X X
j

Q Q h Q Q Q
−

=

′= + ≤∑   By construction we have
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( ) ( ) ( )
1

0
in in in 0

m
m j

j
j

Q h Qν ν ν

−

=

+ =∑

and by the proof of the proposition 2.5, we have ϵ (Q) > ϵ (Q).
By minimality of the degree of Q' for this property, if we can show that Q  is a key polynomial, then we would have 

degX (Q') = degX (Q)and so qm = 1.
Let us show that Q  is a key polynomial.
Assume, aiming for contradiction, that it is not. Then there exists a polynomial P such that ϵ (P) ≥ ϵ (Q)and degX (P) 

< degX (Q). We choose P monic and of minimal degree for this property. Let us show that P is a key polynomial.
Let S be a polynomial such that ϵ (S) ≥ ϵ (P). Then ϵ (S) ≥ ϵ (Q).
If degX (S) ≥ degX (Q), then, since degX (P) < degX (Q), the proof is finished.
So let us assume that degX (S) < degX (Q). Then ϵ (S) ≥ ϵ (Q)and degX (S) < degX (Q). By minimality of the degree of P 

for that property, degX (S) ≥ degX (P) and the proof is finished.
So there exists a key polynomial P such that ϵ (P) ≥ ϵ (Q) and degX (P) < degX (Q).
Since ϵ (Q) > ϵ (Q), we have ϵ (P) > ϵ (Q).
So we have a key polynomial P such that ϵ (P) > ϵ (Q). By minimality the degree of Q' for this property, we know that 

degX (Q') ≤ degX (P). But degX (P) < degX (Q), and this implies that degX (Q') < degX (Q), which is a contradiction.
Thus Q  is a key polynomial.
Proposition 2.14 Let Q and Q' be two key polynomials such that:

ϵ (Q) < ϵ (Q').

Let c and c' be  two polgnomials of degrees strictly less than degX Q' and let j and j' be two integers such that:

( ) ( )
( ) ( )

( )( ) ( )( ).

Q

Q

j j
Q Q

c c
c c

j j

c Q c Q

ν ν
ν ν

ν ν ′

 =
 ′ ′=
 ′≤

 ′ ′ ′≤


Then:

( )( ) ( )( ).j jc Q c Qν ν ′′ ′ ′≤

If, in addition, either  or ν ( ) ( ) ,( ) ( )j j
Q Qj j c Q c Qν ′′ ′ ′ ′< <  then

( )( ) ( )( ).j jc Q c Qν ν ′′ ′ ′<

Proof. We know that vQ (Q') ≤ v (Q'), hence

v (Q') - vQ (Q') ≥ 0.

Since we assumed that j ≤  j', we have

( ) ( )( ) ( ) ( )( ).Q Qj Q Q j Q Qν ν ν ν′ ′ ′ ′ ′− ≤ −

Furthermore, we know that ( ) ( )( ) ( ) ,j j
Q Qc Q c Qν ν ′′ ′ ′≤  hence

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ).j j
Q Q Q Qc Q j Q Q c Q j Q Qν ν ν ν ν ν′′ ′ ′ ′ ′ ′ ′ ′+ − ≤ + −
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So we have the inequality

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).Q Q Q Q Q Qc j Q j Q j Q c j Q j Q j Qν ν ν ν ν ν ν ν′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − ≤ + + −

Equivalently, νQ (c) + jν (Q') ≤ νQ (c') + j'ν (Q').
But  and , so ( ) ( ) ( ) ( ) ( ) ( ( )) .( )j j

Q Qc c c c c Q c Qν ν ν ν ν ν ′′ ′ ′ ′ ′= = ≤

If, in addition, either  or ( ) ( ) , then we have ( )( ) ( ) ( ) ( )( ) .j j j j
Q Qj j c Q c Q c Q c Qν ν ν ν′ ′′ ′ ′ ′ ′ ′ ′< < <

Lemma 2.15 Let Q and Q' be two polynomials such that 

ϵ (Q) < ϵ (Q')

and let [ ]f K X∈  be a polynomial whose Q'-expansion is Q 
0

( ) .
r

j
j

j
f f Q

=
′= ∑  Then

( ) ( )( ){ }0
min .j

Q Q jj r
f f Qν ν

≤ ≤
′=

If we set

( ) { } ( )( ) ( ){ }, : 0, ,  such that ,j
Q Q Q j QT f j r f Q fν ν′ ′= ∈ … =

then we have

( )
( )

( )( )
,

in in .
Q Q

Q Q

j
j

j T f
f f Qν ν

′∈

′= ∑

Proof. Only for the purposes of this proof, we will write

( ) ( )( ){ }0
: min j

Q jj r
f f Qν ν

≤ ≤
′ ′=

and

( ) { } ( )( ) ( ){ }: 0, ,  such that .j
Q jT f j r f Q fν ν′ ′ ′= ∈ … =

Let us show that vQ ( f ) = v' ( f ).
First, we have

( )
( )

( )
( )( )

( )
( )

( )

min

min

.

j j
Q j Q jj T fj T f

j T f

f Q f Q

f

f

ν ν

ν

ν

′∈′∈

′∈

 
′ ′  


′=

=



′

≥∑

Set b' = max T' ( f ) and b = δq ( fb'). In other words

{ } ( ) ( ){ }max 0, ,  such that j
j Q bb j n a Q fν ν ′= ∈ … =

where 
0 ( )

. Hence, the expressio (n ) 
n

j j
b j j

j j T f
f a Q f Q′

′= ∈
′= ∑ ∑  contains the term
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deg
deg .Q

Q

b b Q
b Qa c Q ′ ′+

′

Then for every {0, , } such that  0,jj r f∈ … ≠  we have:

( )( ) ( )( ){ }
( )

( )( )

0
minj j

Q j Q jj r

i
Q i

f Q f Q

f

f Q

ν ν

ν

ν

≤ ≤
≥

=

′ ′

′

′

=

for every index ( ).i T f′∈  So in particular,

( )( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )
( )

deg
deg

deg
deg

Q
Q

Q
Q

j b
Q j Q b

b
Q b Q

bb
b Q

b Qb
b Q

b b Q
b Q

f Q f Q

f Q

a Q Q

a Q c Q

a c Q

ν ν

ν ν

ν ν

ν ν

ν

′
′

′
′

′

′ ′
′

′ ′+
′

≥

=

=

=

′

′+

′+

+

=

′

with strict inequality if ( ).j T f′∉
So

( ) ( )deg
deg

Q
Q

b b Q
b Qa c Q fν ν′ ′+

′ ′=

and

( )
( ) ( ).j

Q j
j T f

f Q fν ν
′∉

 
′ ′>  

 
∑

By maximality of b and b', the term deg
deg

Q
Q

b b Q
b Qa c Q ′ ′+

′  cannot be cancelled and so vQ ( f ) = deg
deg( )Q

Q

b b Q
b Qa c Qν ′ ′+

′  = v' 

( f ). In other words 
0

( ) { ( (min .) )}j
Q Q jj r

f f Qν ν
≤ ≤

′=  So we also have

T' ( f ) = TQ,Q' ( f ).

Then 
( )

in ( ( ) )
Q

j
j

j T f
f Qν

′∈
′∑  is a non-zero element of , equal to in ( .)

Q Q
G fν ν  This completes the proof.

Corollary 2.16 Let Q and Q' be two key polynomials such that 

ϵ (Q) < ϵ (Q')

and let

( )
0 0

r n
j j

j j
j j

f f Q a Q
= =

′= =∑ ∑

be the Q' and Q-ewpansions of an element [ ].f K X∈  We set
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( ) { } ( )( ) ( ){ },: min min 0, ,  such that j
Q Q Q j QT f j r f Q fθ ν ν′ ′= = ∈ … =

and we assume that ( ) ( )( ) and tha( ) ( ) ( )t .
Q QQ f f Qf f f fδ δ θ θν ν ν ν
′ ′

= =
Then:
(1) δQ' ( f ) degQ' Q' ≤ δQ ( f ), and so δQ' ( f ) ≤ δQ ( f ).
(2) If δQ ( f ) = δQ' ( f ), we set δ := δQ ( f ) and then

degQ Q' = 1,

TQ,Q' ( f ) = {δ}

and

( ) ( )( )in in in .
Q Q Q

f a Q
δ

ν ν δ ν ′=

Proof. First let us show the point 1.
By the proof of the previous Lemma, we know that

( )deg .Q QQ fθ δ′ ≤

Furthermore,

( )( ) ( )( ) , Q QQ f ff fδ δν ν
′ ′

=

( ) ( ).Q f fθ θν ν=

By definition of δ = δQ' ( f ), we have ( ) ( )) .( ) (f Q f Qδ θ
δ θν ν′ ′≤  We know by Lemma 2.15 that vQ ( f ) = 

0
( ) { ( (min .) )}j

Q Q jj r
f f Qν ν

≤ ≤
′=  Since θ = minTQ,Q' ( f ), we have

( )( ) ( ) ( )( ){ }0
min .j

Q Q Q jj r
f Q f f Qθ
θν ν ν

≤ ≤
′ ′= =

Hence ( ( ) ) ( ( ) ).Q Qf Q f Qθ δ
θ δν ν′ ′≤

Then, since vQ ( fθ ) = v ( fθ ) and vQ ( fδ ) = v ( fδ ):

( )( )
( ) ( )
( ) ( )

( )( )
( ) ( )
( ) ( ).

Q Q

Q Q Q Q

Q Q

f Q f Q

f Q f Q
f Q f Q

θ δ
θ δ

θ δ

θ δ

ν ν

ν θν ν δν
ν θν ν δν

′ ′≤

′ ′⇔ + ≤ +
′ ′⇔ + ≤ +

Assume we have equality on v, it means that ( ) ( ). So ( )( () )( ( )) ( )f Q f Q f f Q Qθ δ
θ δ θ δν ν ν ν δν θν′ ′ ′ ′= = + −  and

( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

Q Q

Q Q

Q

f Q f Q

f Q Q Q f Q
Q Q

θ δ
θ δ

δ δ

ν ν

ν δν θν θν ν δν
δ θ ν δ θ ν

′ ′≤

′ ′ ′ ′⇔ + − + ≤ +
′ ′⇔ − ≤ −

Since we know that ϵ (Q) < ϵ (Q'), by the proof of Proposition 2.4, we know that νQ (Q') < ν (Q') and then δ - θ ≤ 0, 
that is δ ≤ θ.

Otherwise we have ( ) ( )) .( ) (f Q f Qδ θ
δ θν ν′ ′<
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Then the following four conditions hold:

( ) ( )
( ) ( )

( )( ) ( )( )
( )( ) ( )( ).

Q

Q

Q Q

f f
f f

f Q f Q

f Q f Q

θ θ

δ δ
θ δ

θ δ

δ θ
δ θ

ν ν
ν ν

ν ν

ν ν

 =
 =
 ′ ′≤

 ′ ′<

By the contrapositive of Proposition 2.14, we deduce that δ < θ.
In each case, we have δ ≤ θ. Then since θ degQ Q' ≤ δQ ( f ), we know that δ degQ Q' ≤ δQ ( f ). So in particular δQ' ( f )  

≤ δQ ( f ).
Now let us show the point 2.
Assume δQ' ( f ) = δQ ( f ) = δ. We just saw that δQ' ( f ) degQ Q' ≤ δQ ( f ), so we have degQ Q' = 1. Then Q' = Q + b with 

b a polynomial of degree strictly less than the degree of Q.
We know by the proof of point 1 that δ ≤ θ. Furthermore, we know that θ degQ Q' ≤ δQ ( f ) = δ, in other words θ ≤ δ 

since degQ Q' = 1.
Hence δ ≤ θ ≤ δ , hence θ = δ = minTQ Q' ( f ). We now have to prove that for every index j > δ, we have , .( )Q Qj T f′∉

Equivalently, that:

( )( ) ( ) ( )( ){ }0
min .j i

Q j Q Q ii r
f Q f f Qν ν ν

≤ ≤
′ ′> =

And then we will have TQ Q' ( f ) = {δ}.
So let j > δ. By definition of δQ ( f ) and δQ' ( f ), we know that ( )  and ( ) ( () ( )) .j j

j Q j Qf Q f a Q fν ν ν ν′′ > >
Furthermore, since , , we have ( ) ( ( ) ) ( .)Q Q Q QT f f Q fδ

δδ ν ν′ ′∈ =  We want to prove that ( ( ) ) ( ( ) )j
Q j Qf Q f Q δ

δν ν′ ′>  for 
every index  { 1, , }.j rδ∈ + …

We know that:

( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

because deg deg deg

because deg deg deg

j
Q j

Q X X X

Q j j X j X X

f Q f f Q

f f f Q Q

f f f Q Q

j

δ
δ

δ δ δ

ν ν ν

ν ν

ν ν

δ

′
 ′ ′= <

 ′ = < =


′ = < =


<

By the contrapositive of Proposition 2.14, we have

( )( ) ( )( ).j
Q Q jf Q f Qδ

δν ν′ ′<

By Lemma 2.15, we have

( )
( )

( )( )
( )( )

( ) ( )( )

,

in in

in

in in .

Q Q
Q Q

Q

Q Q

j
j

j T f
f f Q

f Q

f Q

ν ν

δ
ν δ

δ

ν δ ν

′∈

=

=

=

′

′

′

∑

Theorem 2.17 Let Q and Q' be two key polynomials such that

ϵ (Q) < ϵ (Q').
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We recall that char (kv) = 0 If Q' is a limit immediate successor of Q, then δQ (Q') = 1.
Proof. We give a proof by contradiction. Assume that δQ (Q') > 1. Among all the couples (Q, Q') such that Q' is a limit 

immediat successor of Q and such that δQ (Q') > 1, we choose Q and Q' such that deg (Q') - deg (Q) is minimal.
By definition of a limit immediate successor, for every sequence of immediate successors ( )i i

Q ∗∈
 with Q1 = Q, we 

have Qi ≠ Q' for every non-zero index i. By definition of limit key polynomials and by hypothesis, we know that deg (Q') - 
deg (Q) is minimal for this property.

If we find a polynomial Q  such that

ϵ (Q) < ϵ (Q) < ϵ (Q')

and deg (Q) < deg(Q) < deg(Q') then by minimality of deg (Q') - deg (Q), we know that there exists a finite sequence of 
immediate successors between Q and Q  and that there exists a finite sequence of immediate successors between Q  and Q'. 
Then we have a finite sequence of immediate successors between Q and Q', which is a contradiction.

Hence there exists a key polynomial Q  such that

ϵ (Q) < ϵ (Q) < ϵ (Q')

and deg(Q) < deg(Q') and so deg (Q) = deg(Q).
Let Q  be a such key polynomial. We have Q  := Q - a where a is a polynomial of degree strictly kss than the degree of Q.
Since ϵ (Q) < ϵ (Q), by Proposition 2.5 ,we know that inv (Q) = inv (a).

Consider the Q-expansion 
0

 of . We may assume tha ( ) ( )t 
n

j
j Q Qj

a Q Q Q Qδ δ
=

′ ′ ′∑ =


 and we set δ := δQ (Q').

By Corollary 2.16, we know that in in in . In other words i( ) ( ) ( ) ( ) ( ) (n n in .)i
Q Q Q Q Q Q

Q a Q Q a Q aδ δ
ν ν δ ν ν ν δ ν′ ′= = −

Furthermore, 1

0
[ ( ) ].

n
j j

j j
j

Q a Q a jQ Q−

=
′∂ = ∑ ∂ + ∂

We first show that the terms ∂ (aj)Q j do not appear in inv (∂Q'). So let {0, , }.j n∈ …
We have

vQ (∂aj) = v (∂aj)

             ≥ v (aj) − ϵ (aj).

But Q is a key polynomial and aj is of degree strictly less than the degree of Q since it is a coefficient of a Q-expansion. 
Then ϵ (aj) < ϵ (Q).

So

vQ (∂aj) > v (aj) − ϵ (Q) = vQ (aj) − ϵ (Q).

By the proof of Proposition 1.16, we know that, since we are in characteristic zero,

vQ (Q) − vQ (∂Q) = ϵ (Q).

Then vQ (∂aj) > vQ (aj) − vQ (Q) + vQ (∂Q). In fact,

vQ (∂aj) + vQ (Q) > vQ (aj) + vQ (∂Q).

It means that vQ (Q∂aj) > vQ (aj∂Q), and adding vQ (Q j−1) to each side, we obtain:

vQ (Q j∂aj) > vQ (ajQ
 j−1∂Q) = vQ ( jaj Q

 j−1∂Q).

So
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( ) 1

1
in in .

Q Q

n
j

j
j

Q ja Q Qν ν
−

=

 
 ′∂ = ∂   

 
∑

Even though the expression 1

1
[ ]

n
j

j
j

ja Q Q−

=
∑ ∂  need not be a Q-expansion, since aj and ∂Q are of degrees strictly less 

than the degree of Q in characteristic zero, by Lemma 1.11, the vQ-initial form of aj ∂Q is equal to the initial form of its 
remainder after the Euclidean division by Q. So we conserve this expression and consider it a substitute of a Q-expansion.

Now let us prove that δQ (∂Q') = δ − 1.
Replacing Q by Q  in the computation of the initial form of Q' with respect to Q (respectively Q) does not change the 

problem, and we assume that δ stabilizes starting with Q. Then, if δQ (∂Q') = δ − 1, we would also have ) 1.(Q Qδ δ′∂ = −


Let j > δ. Let us first show that

( ) ( )1 1 .j
Q j Qja Q Q a Q Qδ

δν ν δ− −∂ > ∂

It is enough to show that

( ) ( )1 1 .j
Q j Qja Q a Qδ

δν ν δ− −>

But by definition of δ. we have vQ (aj Q j) > vQ (aδ Q
 δ). So

vQ (aj Q
 j−1) > vQ (aδ Q

 δ−1)

hence vQ ( jaj Q
 j−1) > vQ (δaδ Q

 δ−1).
We now have to prove that the value of the term δ - 1 is minimal.
Let j < δ. We know that vQ (aj Q j) = vQ (aδ Q

 δ), and hence 

vQ (aj Q
 j−1∂Q) = vQ (aδ Q

 δ−1∂Q).

So vQ ( jaj Q
 j−1∂Q) = vQ (δaδ Q

 δ−1∂Q) since we are in characteristic zero.
So we do have ( ) ( 1.)Q QQ Qδ δ δ′ ′∂ = ∂ = −



 By Corollary 2.16, we have:

( ) ( ) ( ) 1
in in in .

Q Q Q
Q a Q Q

δ
ν ν δ νδ

−
′∂ = ∂ 

In other words

( ) ( ) ( ) 1in in in .
Q Q Q

Q a Q Q a δ
ν ν δ νδ −′∂ = ∂ −

We know that vQ (Q - a) < v (Q - a). Then, since δ > 1,

( )( ) ( )( )1 1 .Q a Q Q a a Q Q aδ δ
δ δν δ ν δ− −∂ − < ∂ −

It means that the image by φ: grνQ
 K [x] → grν K [x] of

( )( )1in
Q

a Q Q a δ
ν δδ −∂ −

is zero. Then, the image by φ of inνQ
 (∂Q') is zero, and so 

vQ (∂Q') < v (∂Q').

By the proof of Proposition 2.4, we have ϵ (Q) < ϵ (∂Q'). But we know that deg (∂Q') < deg (Q')，and since Q' is a 
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key polynomial, we have ϵ (∂Q') < ϵ (Q').
More generally, the above argument holds if we replace Q by any key polynomial Q  of the same degree as Q.
So for every key polynomial Q  of the same degree as deg (Q), we have ϵ (Q) < ϵ (∂Q').
In fact, ϵ (Q) < ϵ (∂Q') < ϵ (Q') and deg(∂Q') < deg(Q'). So if we show that ∂Q' is a key polynomial, we will have

deg (Q) = deg (∂Q').

Let us show that ∂Q' is a key polynomial. We assume, aiming for contradiction, that it is not. There exists a 
polynomial P such that ϵ (P) ≥ ϵ (∂Q') and deg (P) < deg (∂Q'). We choose P of minimal degree for this property. Using the 
same idea as before, we can show that P is a key polynomial.

We have deg (P) < deg (∂Q'), hence deg (P) < deg(Q') and since Q' is a key polynomial, we have ϵ (P) < ϵ (Q').
Since ϵ (P) ≥ ϵ (∂Q'), we have ϵ (P) > ϵ (Q).
Thus we have another key polynomial P such that ϵ (Q) < ϵ (P) < ϵ (Q') and deg (P) < deg (Q'). Then deg (P) = deg (Q). 

Hence the polynomial P is a key polynomial of same degree as Q, and so ϵ (P) < ϵ (∂Q'), which is a contradiction.
We have proved that ∂Q' is a key polynomial. Then deg (Q) = deg (∂Q'). But then ϵ (∂Q') < ϵ (∂Q') and this in a 

contradiction. This completes the proof.

3. Simultaneous local uniformization in the case of rings essentially of finite type 
over a field

The objective of this part is to give a proof of the local uniformization in the case of rings essentially of finite type 
over a field of zero characteristic without any restriction on the rank of the valuation. The proof of the local uniformization 
is well known in characteristic zero. It has been proved for the first time by Zariski in 1940 ([54]) in every dimension. The 
benefit of our proof is to present a universal construction which works for all the elements of the regular ring we start with, 
and in which the strict transforms of key polynomials become coordinates after blowing up. Thus we will have an infinite 
sequence of blow-ups given explicitly, together with regular systems of parameters of the local rings appearing in the 
sequence, and which eventually monomializes every element of our algebra essentially of finite type.

To do this, we will proceed in several steps. Let us give the idea.
Let k be a field of characteristic zero, R a regular local k-algebra essentially of finite type, with residual field k. Let u 

= (u1, ..., un) be a regular system of parameters of R, v a valuation centered in R, Γ the value group of v and K = k (u1, ..., 
un-1). We assume that k = kv . This property is preserved under blowings-up. Thus every ring that will appear in our local 
blowing-up sequence along the valuation v will have the same residue field: k.

We will construct a single sequence of blowings-up which monomializes every element of R provided we look far 
enough in the sequence. To do this, we will construct a particular sequence of (possibly limit) immediate successors. We 
will show that every element f of R will be non-degenerate with respect to a key polynomial Q of this sequence, in other 
words, that we will have vQ ( f ) = v ( f ). Furthermore, all the polynomials of this sequence will be monomializable. At 
this point we will have proved that every element of R is non-degenerate with respect to a regular system of parameters of 
a suitable regular local ring Ri. Then we will just have to see that every element non-degenerate with respect to a regular 
system of parameters is monomializable by our sequence of blow-ups.

We will begin this part by some preliminaries, where we define non-degeneracy and framed and monomial blowing-
up.

Then, we will see that every element non-degenerate with respect to a regular system of paramaters is monomializable. 
And then it will be sufficient to prove that it is the case of all the elements of R.

So, after that, we construct sequence of (possibly limit) immediate successors such that every element f of R is non-
degenerate with respect to one of these key polynomials.

In sections 6 and 7 we prove that all the key polynomials of this sequence are monomializable, and that we have 
proven the simultaneous local uniformization. To do this we will need a new notion: the one of key element. Indeed, 
modified by the blow-ups, the key polynomials of the above mentioned sequence have no reason to still be polynomials. 
So we will give a new definition, this one of key element. This notion has the benefit to be conserved by blow-ups. We will 
monomialize the key elements and not the key polynomials, and the proof will be complete by induction.
3.1 Preliminaries

Let k be a field of characteristic zero and R a regular local k-algebra which is essentially of finite type over k. We 



Contemporary Mathematics 302 | Julie Decaup

consider u = (u1, ..., un)  a regular system of parameters of R and ν a valuation centered on R whose group of values is 
denoted by Γ.We write βi = ν (ui) for every integer {1, , },i n∈ …  and K = k (u1, ..., un-1).
3.1.1 Non-degenerate elements

Definition 3.1 Let f  ∈ R. We say that f is non-degenerate with respect to v and u if we have vu ( f ) = v ( f ), where vu is 
the  monomial valuation with respect to u.

We need a more convenient way of knowing whether an element is non-degenerate with respect to a regular system of 
parameters. It is the objective of the following Proposition.

Proposition 3.2 Let f  ∈ R. The element f is non-degenerate with respect to v and u if and only if there exists an ideal 
N of R which contains f, monomial with respect to u and such that

{ }( ) ( ) min ( ) .
x N

f N xν ν ν
∈

= =

Proof. Let us show that if there exists an ideal N of R which contains f, monomial with respect to u and such that

{ }( ) ( ) min ( ) ,
x N

f N xν ν ν
∈

= =

then vu ( f ) = v ( f ). Let N be such an ideal. As N is monomial with respect to u, we have vu (N) = v (N) and vu (N) ≤ vu ( f ) 
since f  ∈ N.

So v ( f ) = v (N) < vu ( f ), which give us the equality.
Now let us show that if vu ( f ) = v ( f ), then there exists an ideal N of R which contains f, monomial with respect to u 

and such that ( ) ( ) min ( .{ })
x N

f N xν ν ν
∈

= =

Let us assume that vu ( f ) = v ( f ). Let N be the  smallest ideal of R generated by monomials in u containing f. So v (N) 
= vu (N) = vu ( f ) and since vu ( f ) = v ( f ), we have v (N) = v ( f ).
3.1.2 Framed and monomial blow-up

Let 1 1 1 1 1{1, , }, {1, , }  and  .J n A n J j J⊂ … = … ∈
We write

{ }
1

1 1 if 

otherwise

q

jq

q

u
q J j

uu
u


∈

′ = 





and we let R1 be a localisation of { }1 1
[ ]J jR R u′ ′=   by a prime ideal, say R1 = R'm' of maximal ideal 1 1.R=m m'  Since R is 

regular, R' and R1 are regular. Let 
1

(1) (1) (1)
1( , , )nu u u= …  be a regular system of parameters of 1.m

We write

{ }{ }1 1 1 1:  such that qB q J j u R×′= ∈ ∉

and

{ }( )1 1 1 1: .C J B j= ∪

Since u is a  regular system of parameters of R, we have the disjoint union

{ }1 1 1 1
.A B C ju u u u u′ ′ ′ ′ ′=   

Let π: R → R1 be the natural map. Without loss of generality, we may assume that

J1 = {1, ..., h}.
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Definition 3.3 We say that π: (R, u) → (R1, u
(1)) is a framed blow-up of (R, u) along (uJ1

) with respect to v if there 
exists 1 1{1, , }D n⊂ …  such that

{ } 11 1 1

(1)
DA B ju u∪ ∪′ =

and if {  such that ( ) 0}.x R xν′ ′= ∈ >m
Remark 3.4 A blow-up π is framed if among the given generators of the maximal ideal 1m  of R1, we have all the 

elements of u', except, possibly, those that are in u'C1
. In other words, except, possibly, those that are invertibles in R1.

It is framed with respect to v if we localized in the center of v.
Let π be such a blow-up.
Definition 3.5 We say that π is monomial if 1 1 1{ }.B J j= 
Remark 3.6 Let π be a monomial blow-up.
Then n1 = n and D1 = {1, ..., n}.
Definition 3.7 Let π: (R, u) → (R1, u

(1)) be a framed blow-up and {1, , }.T n⊂ …
We say that π is independent of 1 1 if , in other words if Ø .Tu T J T A∩ = ⊂
Remark 3.8 Since we look at blow-ups with respect to a valuation v, we have blow-ups such that v (R1) ≥ 0. Since 

u'q ∈ R1 for every q ∈ J1, we want 
11

1 1( ) 0, so ( ) ( ) for every { }.q

j

u
q ju u u q J jν ν ν≥ ≥ ∈   So we can set j1 to be an element of J1 

such that 
1

1
min{ }.j qq J

β β
∈

=

We have :

{ }{ }

{ }

{ }{ }
1

1

1 1 1 1

1 1

1 1

:  such that 

such that 0

 suc

=

h that=  .

 

q

q
q

j

q j

B q J j u R

u
q J j u

u

q J j

ν

β β

×′= ∈ ∉

   ′∈ = >      

∈ >







And 
11 1 1{  such that }.\{ } q jC q J j β β= ∈ =

Let k1 be the residue field of R1 and tk1
 the transcendence degree of k → k1. Let us show that 

1
.kt #C≤

We write .R
RR ′
′=

m
 We denote by qu  the image of u'q in 

1 1

1
1 1\{ } for every . So [ , ].B CR q J j R k u u ±∈ =  We have R → R' → 

R1 → k1, which induces homomorphisms 1

1 1.R
Rk R k→ → →
m

We have 1 1 . Let .RR R R R ′
′′ ′= ∩ = ∩ = ∩ = m

m
m m m m m  We have

1

1

R

RR
R R

R
R

R

′

′

′

′′
′

=

=

′
′

′ 
 ′

=



m

m

m

mm
m

m

m m

m

in other words

1.k R R k→ → →
m                                                                                                                         (3)

Since 
1 1 1{ } 1 1 1, for every { },A B ju q A B j∪ ∪′ ′⊂ ∈ ∪ ∪m  the image of u'q in k1 is zero. So k1 is generated over k by the 

images of the u'q with 
11 1. Hence .kq C t #C∈ ≤

But we have 1 1 1 1 1 1 1: ( { }). So 1 ,C J B j #C #B #J h= ∪ + + = =  and:

11 1 1 11 1 1 .k#B t #B #C #B h n+ ≤ + + ≤ + + = ≤                                                                                    (4)♯ ♯

♯ ♯

♯

♯

♯

♯

♯
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We will often set 1 {1, , , }J r n⊂ …  where r is the dimension of 
1

( ) in .
n

i
i

uν
=
∑ Γ⊗



   If 1 {1, , },J r⊂ …  the family βJ1
 is a 

family of -linearly independent elements, and so B1 = J1 \ { j1}.
Otherwise 1 1 1 1 1 1 1 1 1 1 1. Then we have { } or { , } where { }.n J B J j B J j q q J j∈ = = ∈    The interesting cases are those 

where h - 2 ≤ ♯B1, in other words, those where h - 1 ≤ ♯B1 + 1.
Since (4), we have h - 1 + tk1

 ≤ ♯B1 + 1 + tk1
 ≤ h.

Then we have three cases.
The first one, ♯B1 + 1 = h and tk1

 = 0, it occurs when the blow-up is monomial.
The second one, ♯B1 + 1 = h - 1 and tk1

 = 1.
The last one, ♯B1 + 1 = h - 1 and tk1

 = 0.
Fact 3.9 In the cases 1 and 3, we have n1 = n and in the case 2 we have n1 = n − 1.
Remark 3.10 In the rest of the chapter, we will assume that the valuation ring has k as residue field. So k1 = k and tk1

 = 
0. Hence we will have n1 = n.

Since [ ]
1 ( ( )) ,k Z

Zk λ  we know that λ(Z) is a polynomial of degree 1 over k.
3.1.3 Key elements

We need a more general notion than the one of key polynomials. Indeed, after several blow-ups, a key polynomial 
might not be a polynomial anymore.

For example, we can have 1
11 ,

n nu u −+  which is not a polynomial.
Definition 3.11 Let P1, P2 be two key polynomials for the field extension ( ) ( ) ( )

1 1( , , )( )l l l
n nk u u u−…  with P2 and immediate 

successor of P1. Let 
21 (

2 1
)P

j
j

j S P
P a P

∈
= ∑  be the P1-expansion of P2.

We call key element every element P'2 of the form

( )21

2 1
P

j
j j

j S P
P' a b P

∈

= ∑

where bj are units of ( ) ( )
1

( ) ( )
1 ( , , )

( , , ) .l l
n

l l
l n u u

R k u u
…

= …  The polynomial P2 is the key polynomial associated to the key element P'2.

Remark 3.12 A key element is not necessarily a polynomial. Indeed, for example, ( )
1

1 l
nl

u+
 is a unit of Rl.

Definition 3.13 Let P'1 and P'2 be two key elements. We say that P'2 is an immediate successor of P'1, and we write, 
1 2 ,P' P'  if their associated key polynomials are immediate successors of each other.

Now we define limit immediate successors key elements.
Definition 3.14 Let P'1 and P'2 be two key elements. We say that P'2 is a limit immediate successor of P'1, and we 

write 1 lim 2 ,P' P'  if their associated key polynomials P1 and P2 are such that P2 is a limit immediate successor of P1.

3.2 Monomialization in the non-degenerate case
In this section, we will monomialize all the elements which are non-degenerate with respect to a system of parameters.
Let α and γ be two elenients of ,n

  and let δ = (min{αj, γj})1 ≤ j ≤ n. We say that uα | uγ if for every integer i, αi is less than 
or equal to γi , in other words if α is componentwise less than or equal to β.

Let us set

( )1, , ,0, ,0 .n
aα α δ α α= − = … … ∈  



The objective is to build a sequence of blow-ups (R, u) → ··· → (R', u') such that in R', we have uα | uγ.
Definition 4.1 We say that α γ  if for every index i, we have αi ≤ γi.
We assume that  and that . So we may assume that | | 0, and 0 for every integer {1, , }.i i aγ α α γ α α≠ > ∈ …  
Similarly, we set

( )10, ,0, , , .n
a nγ γ δ γ γ+= − = … … ∈  



Interchanging α and γ, if necessary, we may assume that 0 | | | | .α γ< ≤ 

3.2.1 Construction of a stricly decreasing numerical character
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Definition 4.2 Let 2: n nτ × →    be the map such that

( , ) (| |,| |).τ α γ α γ=  

Let J be a minimal subset of {1, ..., n} such that {1, , }  and | | .q
q J

a J γ α
∈

… ⊂ ∑ ≥ 

Let π: (R, u) → (R1, u
(1)) be a framed blow-up along (uJ). Let j ∈ J be such that R1 is a localization of [ ].J

j

u
uR

If { }, we recall that , and  otherwise.q

j

u
q q quq J j u u u′ ′∈ = =

We now define  for , and 0 otherwise. We set  if , | | otherwise.q q q q q q q
q J

q j q jα α α γ γ γ γ α
∈

′ ′ ′ ′= ≠ = = ≠ = ∑ −       

And finally we define

1 1 1( , , , | |, , , ).j q j n
q J

δ δ δ δ α δ δ− +
∈

′ = … + …∑ 

So we have:

{ } { }

1

1 1
\ \

.

l

l l

n

l
l

n n

l l
l l

l J j l J j

u u

u u

αα

α α

=

= =
∈ ∉

=

= ×

∏

∏ ∏

But for every { }, we have  and for { }, we have .l l j l ll J j u u' u l J j u u'∈ = × ∉ =   Hence

( )
{ }

( )

{ }
1 1

.
l ln n

l j l
l l

l J j l J j

u u' u u'
α α

α

= =
∈ ∉

= × ×∏ ∏
 

Let us isolate the term uj. We obtain:

{ } ( )\

1

l
l J j l

n

j l
l

u u u
α

αα ∈
∑

=

′= ×∏

and since , we have α α δ α α δ= − = +   and then

{ } ( ) { } ( ) ( )\ \

11
. = =

l l
j jl J j l J jl l l l

n n

j l j l j
ll
l j

u u u u u u
α α α δα δ α δα ∈ ∈

∑ ∑
++ +

==
≠

′ ′ ′× × ×∏ ∏

But 1 1 1 for  and ( , , , | |, , , ),q q j q j n
q J

q jα α δ δ δ δ α δ δ− +
∈

′ ′= ≠ = … ∑ + …    so

{ } ( ) ( )

{ } ( )

1

1

=

= .

l j jl J j l l

l j j
l J j l l

n

j l j
l
l j

n

j l
l
l j

u u u u

u u

α α δα δα

α α δ
α δ

∈

∈

∑ +′ ′+

=
≠

∑ + +
′ ′+

=
≠

′ ′× ×

′×

∏

∏













We include another time the term l = j in the product, and then:
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{ } ( )

{ } ( )

1

.

 

l j j j j
l J j l l

l j j j j
l J j

n

j l
l

j

u u u

u u

α α δ α δ
α δα

α α δ α δ
α δ

∈

∈

′ ′∑ + + − −
′ ′+

=
′ ′∑ + + − −

′ ′+

′= ×

′= ×

∏
 



 







But we have

{ } { }

{ }

( )
{ } { }

| |

| |

| |

0.

l j j j j l j j j
l J j l J j

l j j q
l J j q J

l l j q
l J j q J j

l
l J

α α δ α δ α α δ δ

α α δ δ α

α δ α δ α

α α

∈ ∈

∈ ∈

∈ ∈

∈

=

=

=

′ ′ ′+ + − − + + −

+ + − −

+ + −

=

−

−=

∑ ∑

∑ ∑

∑ ∑

∑

  

 

  

 

 



 

So ( ) , and similarly ( ) .u u u uα α δ γ γ δ′ ′ ′ ′+ +′ ′= = 

We set  and .α δ α γ δ γ′ ′ ′ ′ ′ ′= + = + 

Proposition 4.3 We have τ (α', γ') < τ (α, γ).
Proof. First case: {1, , }.j a∈ …  Then

| | | | | | .jα α α α′ = − <   

Second case: { 1, , }. Then | | | | . Let us show that | | | | .j a n α α γ γ′ ′∈ + … = <     We have

{ }
| | | | | | .

1 1
q q q q

q J q J j

n n

q a q a
q j

γ γ γ α γ γ α
∈ ∈

′ = + − = + −
= + = +
≠

∑ ∑∑ ∑      



By the minimality of J, we have 
{ }

| | 0,q
q J j

γ α
∈
∑ − < 


 and so

1
| | | | .

n

q
q a

γ γ γ
= +

′ < =∑  

In every case, we have ( ) ( )| |,| | | |,| | ( , ).α γ α γ τ α γ′ ′ < =   

If | | | | , then ( , ) (| |,| |)α γ τ α γ α γ′ ′ ′ ′ ′ ′≤ =     and this completes the proof.
Otherwise, | | | |,α γ′ ′>   so

( ) ( )( , ) | |,| | | |,| | ,τ α γ γ α α γ′ ′ ′ ′ ′ ′= <   

and the proof is complete.
Renumbering the u'q, if  necessary, we may assume that 1 1 for every {1, , } and q qu R q s u R× ×′ ′∉ ∈ … ∈  otherwise. Since   π 

is a framed blow-up, we have (1)
1{ , , } ,su u u′ ′… ⊂  so renumbering again, if necessary, we may assume that (1)

q qu u′ =  for every 
{1, , }.q s∈ …  We set

( ) 1(1)
1, , ,0, 0 n

sα α α′ ′= … … ∈

and
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( ) 1(1)
1, , ,0, 0 .n

sγ γ γ′ ′= … … ∈

We have (1) (1)( , ) ( , ).τ α γ τ α γ′ ′≤  By Proposition 4.3, we have

(1) (1)( , ) ( , ).τ α γ τ α γ<

3.2.2 Divisibility and change of variables
Let {1, , }.s n∈ …  We write u = (w, v) where
w = (w1, ..., ws) = (u1, ..., us)

and

v = (v1, ..., vn-s).

Let α and γ be two elements of .s


Proposition 4.4 There exists a framed local sequence

(R, u) → (Rl, u
(l)),

with respect to v independent of v, such that in Rl , we have wα | wγ or wγ | wα.
Proof. Unless , or ,γ α α γ   we can iterate the above construction, choosing blow-up with respect to v and 

independent of v. Since 2 is a vector in τ   and is stricly decreasing, after a finite number of steps, the process stops. After 
these steps, we have 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) , ( ) , with  and with , or .
l ll l l l l l

lw U u w U u U Rα α γ γ γ α α γ×= × = × ∈    So we do have 
wα | wγ or wγ | wα in Rl ,

Let us now study the change of variables we do at each blow-up. We consider i and i' some indexes of the framed 
local sequence

( ) ( ) ( ) ( )( ) ( ) ( ), , , , .i i l
i i lR u R u R u R u′

′→…→ →…→ →…→                                           (5)

Proposition 4.5 Let us consider 0 ≤ i < i' ≤ l. We let m be an element of {1, ..., ni} and m' one of {1, ..., ni'}. Then:
(1) There exists a vector #( , ) iDi i

mδ
′ ∈  such that

( )
( , )

( )( ) .
i i

m

i

ii
m iDu u R

δ ′

′

′ ×
′∈

(2) If, in addition, the local sequence (5) is independent of uT, with {1, , };T n⊂ …  and if we assume that ( ) ,i
m Tu u∉   then 

( , )( ) ( )( )  is monomial in .
i i

m
i i

i i
TD Du u uδ ′

′ ′

′ ′ 
(3) We assume that i'' > 0 such that i ≤ i'' < i'. We have Di'' = {1, ..., ni''}, and we assume that m' ∈ Di'. Then exists a 

vector ( , )  of ini i
mγ

′
′   such that

( )
( , )

( ) ( ) .
i i

mi i
mu u

γ ′
′′

′ =

(4) If, in addition, the local sequence (4.1) is independent of uT and if we assume that ( ) ( ), then i i
Tm mu u u′ ′

′ ′∉  is monomial 
in u(i) \ uT.

Proof. We only consider the case i' - i + 1, the general case can be proved by induction on i - i'. We can also assume 
that i = 0.

Let us show (1). By DeHnition 3.3, we have 
1 1 1 1

(1)
{ } .A B j Du u∪ ∪′ =

We denote by 1 1
1 1 1

A BD D D= ∪  where

11
1

(1)
AA D

u u′ =

♯
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and

11 1
1

(1)
{ } .BB j D

u u∪′ =

If 1 1{ },m A j∈ ∪  so um = u'm and the proof is finished. If m ∈ B1 then um = uj1 u'm = u'j1 u'm and the proof is finished.
If m ∈ C1, so um = u'j1 u'm and by ddinition, 1 ,mu R×′ ∈  which gives us the result.
Let us show (3). We have 1 1 1

1 1 1 1 11

(1) (1)
1 1 1 { } 1 and . If then by defini tion A B A

A B j A AmDm D D D u u m D u u u′∪ ∪′ ′ ′ ′∈ = ∪ = ∈ ∈ =  and 
we have the result. Otherwise 1

1 .Bm D′∈  So

1 1 1
1

(1)
{ } 1,  .q

B j jm
j

u
u u u q B

u′ ∪

  ′∈ = ∈ 
  

This completes the proof of (3).
Now let us assume that the sequence is independent of uT . By definition we have 

1
ØJ Tu u∩ =  and also

1
1

(1) Ø.B TD
u u∩ =

Let us show (2). Assume that .m Tu u∉

If 
1

1

(1)
1 1, then  and  and the proof is finished. Otherwise .Am m m TD

m A u u u u u m J′∈ = ∈ ∉ ∈  We saw in the proof of (1) that 

m was monomial in 
1 1

1 1

(1) (1), and since , ØB B TD D
u u u∩ =  this completes the proof of (2).

It remains to prove (4). We assume that 1 1(1)
1 1 1, with .A B

Tmu u m D D D′ ′∉ ∈ = ∪
If 1

1 1
(1) (1) (1)

1 , then . Since , we have .A
A A T Tm m mm D u u u u u u u u′ ′ ′′ ′∈ ∈ = ∉ ∈ 

1
1 1

(1)
1 [ }Otherwise  and we saw that  is monomial in . Since Ø,B

B j J J Tmm D u u u u u′ ∪′∈ =⊂ ∩  we are done.
Remark 4.6 Let ,T A⊂  be a set of cardinality t, and s := n − t. We set

v = (v1, ... ,vt) = uT 

and

w = (w1, ... ,ws) = u{1, ..., n} \ T .

In this Remark, we only consider monomial blow-ups.
We have (1) ( )

1( , ) where ( , , ) ( , , ) with ( ) ,s s
su v w w w w w w iγ γ γ′ ′ ′ ′ ′= = … = … ∈  by Proposition 4.5. By the proof of this 

Proposition, the matrix Fs = [γ (1) ... γ (s)] is a unimodular matrix. For every , we have .sFs w wδδδ ′∈ =
 In the same vein 

wi = w' δ (i) and the s-vectors δ (1), ..., δ (s) form a unimodular matrix equal to the inverse of Fs. Then we have 
1
,sFw wγγ −

′ =  
for every .sγ ∈

Proposition 4.7 We have:

|  in ( ) ( ).lw w R w wα γ α γν ν⇔ ≤

Proof. We have ( ) ( )( )
1( , , , ).

l

l ll
ru w w v= …

By Proposition 4.5, there exists 
( ) ( )( ) ( ) ( ) ( ),  and ,  such that ( )  and ( ) .
l l

lrl l l l
ly z R w y w w z wα α γ γα γ ×∈ ∈ = =

For every ( ){1, , }, we have ( ) 0l
l ii r wν∈ … ≥  since the blow-up is with respect to v, so centered in Rl, By constniction of 

Rl , we have that ( ) ( ) ( ) ( ) or .l l l lγ α α γ 
So
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,
l l l l

l l l lw w w w
α γ α γ

ν ν
   

⇔ ≤   
   

∣

hence

( ) ( ).w w w wα γ α γν ν⇔ ≤∣

3.2.3 Monomialization of non-degenerate elements 
Let N be an ideal of R generated by monomials in w. We choose 0 , , bw w…   to be a minimal set of generators of N, 

with 0( ) ( )iw wν ν≤   for every i.
Proposition 3.2.8 There exists a local framed sequence

( ) ( )( ): , , l
lR u R uφ →

with respect to ν , independent of ν and such that 0( )l lNR w R=  .
Proof. Let

( )( )0
, min , if 0

( , ) :
(0,1) otherwise.

ji

i j b
b w w b

N w
τ

τ ≤ < ≤

 ≠= 




Assume b ≠ 0.
We let ( )0 0,i jw w   be a pair for which the minimum

( )
0
min , ji

i j b
w wτ

≤ < ≤



is attained. By Proposition 3.2.3, τ (N, w) is strictly decreasing at each blow-up.
Since the process stops, N Rl is generated by a unique element as an ideal of Rl. By Proposition 3.2.7, this element is 

0w  (which has the minimal value), which divides the others. Then N Rl = ( 0w )Rl.
Definition 3.2.9 An element f of R is monomializable if there exists a sequence of blow-ups

( ) ( ), ,R u R u′ ′→

such that the total transformed of f is a monomial. It means that in R', the total transform of f is ( )
1

i
n

i
i

u αν
=

′∏ , with ν a unit of R'.

Theorem 3.2.10 Let f be a non-degenerate element with respect to u = (w, ν ), and let N be the ideal which satisfies 
the conclusion of the Proposition 3.1.2, generated by monomials in w.

Then there exists a local framed sequence, independent of ν ,

( ) ( ), ,R u R u′ ′→

such that f is a monomial in u' multiplied by a unit of R'. Equivalently,  f is monomializable.
Proof. Let (R, u) → (R', u') be the local framed sequence of the Proposition 3.2.8. We have NR' = 0w R'. Since f ∈ N, 

by the proof of the Proposition 3.1.2, there exists an element z ∈ R' such that f = 0w z. Since ν  is centered in R', to show 
that z is a unit of R', we will show that ν (z) = 0.

But ν (z) = ν ( f ) − ν ( 0w ) = ν (N ) − ν ( 0w ) by Proposition 3.1.2.
Since NR' = 0w R', we have ν (N ) = ν ( 0w ), and so ν (z) = 0, and this completes the proof. 

3.3 Non-degeneracy and key polynomials
Now that we monomialized every non-degenerate element with respect to the generators of the maximal ideal of our 

otherwise.

ifmin

min



Contemporary Mathematics 310 | Julie Decaup

local ring, we are going to show that every element is non-degenerate with respect to a particular sequence of immediate 
successors. We denote by Λ the set of key polynomials and

{ }:  such  that deg( )= .Mα α= ∈ΛQ Q

Proposition 3.3.1 We consider ν  an archimedean valuation centered in a noetherian local domain (R, m , k). We 
denote by Γ the value group of ν  and we set Φ: = ν (R \ (0)). 

The set Φ does not contain an infinite bounded strictly increasing sequence.
Proof. Assume, aiming for contradiction, that we have an infinite sequence

1 2α α< <…

of elements of Φ bounded by an element β ∈ Φ. 
Then we have an infinite decreasing sequence 

2 1
P Pα α⊆ ⊆  such that for every index i, we have 

i
P Pβ α⊆ . And so 

we have an infinite decreasing sequen of ideals of R
Pβ

.
We set

( )
{ }

( ){ }
0

min .
x

xδ ν ν
∈Φ

= =m


Since ν  is archimedean, we know that there exists a non-zero integer n such that β ≤ nδ, and so such that n Pβ⊆m  

This way, we construct an epimorphism of rings n

R R
Pβm

 . Since the ring R is noetherian, n

R R
Pβm

 is artinian, and so is n

R R
Pβm

 . 

This contradicts the existence of the infinite decreasing sequence of ideals of n

R R
Pβm

 .
Definition 3.3.2 Assume that the set Mα is non-empty and does not have an maximal element. Assume also that there 

exists a key polynomial Q ∈ΛQ  such that ( ) ( )Mα> Q . We call a limit key polynomial every polynomial of minimal 
degree which has this property.

Definition 3.3.3 Let ( )i i∈
Q  be a sequence of key polynomials. We say that it is a sequence of immediate successors if 

for every integer i, we have Qi ﹤ Qi+1.
Proposition 3.3.4 If there are no limit key polynomials then there exists a finite or infinite sequence of immediate 

successors Q1 ﹤ ...﹤ Qi ﹤ ... such that the sequence { }( )i Q  is cofinal in ( )Λ . Equivalently, such that

  such that ( ) ( ).ii∀ ∈Λ ∃ ≥ Q Q Q

Proof. We do the proof by contrapositive.
Assume that for every finite or infinite sequence of immediate successors key polynomials Qi, the sequence { }( )i Q  

is not cofinal in ( )Λ . Let us show that there exists a limit key polynomial.
First let assume that for every { } such that M βα β φ∈Ω = ≠ , M α has a maximal element. It means that

  such that , ( ) ( ).R M Q M R Qα α α αα∀ ∈Ω ∃ ∈ ∀ ∈ ≥ 

We set { }:M Rα α∈Ω
= . All elements in M are of distinct degree, so they are strictly ordered by their degrees. So if α ﹤ α', 

then deg(Rα) ﹤ deg(Rα'). Since Rα' is a key polynomial, by definition, we have ( ) ( )R Rα α′<   as soon as α ﹤ α'. Then in M 
the elements are strictly ordered by their values of ( ) ( )R Rα α′< .

Let us show that they are immediate successors. Let Rα and Rα' be two consecutive elements of M. We know that

deg( ) deg( )R Rα αα α′ ′= < =

and ( ) ( )R Rα α′<  . We want to show that Rα' is of minimal degree for the property. So let us set R ∈ Λ such that 
( ) ( ) and deg( ) deg( )R R R Rα α′< ≤  . Let us show that deg(R) = deg(Rα') = α'. Since ( ) ( )R Rα <   and since Rα is a key 

polynomial, by definition,

.

such that 

min

such that 

deg deg

 such that degQ Q

Q

Qi

Qi

QiQ Q

Qi
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deg( ) deg( ) .R Rα α α′= ≤ ≤

Since R is a key polynomial, if we had deg(R) = deg(Rα), then we should have ( ) ( )R Rα <  ≥ ( ) ( )R Rα <  , which is a contradiction. 
Let us set λ := deg(R), so we have α ﹤ λ ≤ α', R ∈ Mλ and Rλ ∈ M. Since the polynomials in M are strictly ordered by their 
degrees and that Rα and Rα' are consecutive, then we have λ = α', and so Rα ﹤ Rα'.

So the set M is a sequence of immediate successors. By hypothesis, the sequence ( ) ( )R Rα α′< (M) is not cofinal, so there exists 
R∈ Λ such that ( ) ( )R Rα α′< (R) > ( ) ( )R Rα α′< (M ). But then there exists α such that R ∈ Mα and then ( ) ( )R Rα α′< (Rα) ≥ ( ) ( )R Rα α′< (R) > ( ) ( )R Rα α′< (Rα). It is a contradiction.

So there exists α ∈ Ω such that Mα does not have any maximal ideal. Then we have a sequence:

1 2( ) ( ) ( )i< <…< <…  Q Q Q

where Qi is an element of Mα for every integer i.
Let us show that the Qi are immediate successors. Let R∈Λ such that 1( ) ( ) and deg( ) deg( )i iR R α+< ≤ = Q Q . Since 

Qi is a key polynomial, by definition, deg(R) ≥ deg(Qi) = α. So deg(R) = deg(Qi+1) = α, and Qi+1 is of minimal degree for 
the property. Then for every integer i, we have Qi ﹤ Qi+1.

By hypothesis, the sequence of the Qi is a sequence of immediate successors, so the sequence ( )( )i i
 Q  is not cofinal. 

So there exists a key polynomial Q ∈ΛQ  such that ( ) ( )i> Q Q  for every integer i. Let R ∈ Mα, since Mα does not have 
a maximal element, there exists i such that ( ) ( ) ( )iR < <  Q Q . So there exists a key polynomial Q ∈ΛQ  such that 

( ) ( )Mα> Q . Then the polynomial Q is a limit key polynomial. 
Theorem 3.3.5 There exists a finite or infinite sequence (Qi)i ≥ 1 of key polynomials such that for each i the polynomial 

Qi+1 is either an optimal or a limit immediate successor of Qi and such that the sequence { )( }i Q  is cofinal in ( ) ( )R Rα α′< (Λ) where 
Λ is the set of key polynomials.

Proof. We know that x is a key polynomial. If for every key polynomial Q ∈ΛQ , we have ( ) ( )x ≥  Q , then the 
sequence { ( ) ( )R Rα α′< (x)} is cofinal in ( ) ( )R Rα α′< (Λ) and it is done. Otherwise, it exists a key polynomial Q ∈ΛQ  such that ( ) ( )R Rα α′< (x) ﹤ ( ) ( )R Rα α′< (Q). If 
it exists a maximal element among the key polynomials of same degree than Q, then we exchange Q by this element. By 
Proposition 2.12, it exists a finite sequence Q1 = x ﹤ ··· ﹤ Qp = Q of optimal (possibly limit) immediate successors which 
begins at x and ends at Q.

If for every key polynomial Q' '∈ΛQ , there exists a key polynomial of this sequence Qi such that ( ) ( )i '≥ Q Q , then 
the sequence { )( }i Q  is cofinal in ( ) ( )R Rα α′< (Λ) and it is over.

Otherwise there exists a polynomial Q' '∈ΛQ  such that for every integer i ∈ {1,..., p}, we have ( ) ( )i '≥ Q Q ﹤ ( ) ( )i '≥ Q Q . So 
( ) ( )p '< Q Q  and we use Proposition 2.12 again to construct a sequence of optimal (possibly limit) immediate successors 

which begins at Qp and ends at Q'. So we have a sequence Q1 = x ,..., Qr = Q' of optimal (possibly limit) immediate 
successors which begins at x and ends at Q'.

We iterate the process until the sequence { )( }i Q  is cofinal in ( ) ( )R Rα α′< (Λ). If Qi is maximal among the set of key 
polynomials of degree degX (Qi), then degX (Qi) ﹤ degX (Qi+1). If Qi ﹤lim Qi+1, we have again degX(Qi) ﹤ degX(Qi+1). In fact, the 
degree of the polynomials of the sequence stricly increase at least each two steps, so the process stops. 

Proposition 3.3.6 Assume that k = kν . There exists a finite or infinite sequence (Qi)i ≥ 1 of key polynomials such that 
for each i the polynomial Qi+1 is either an optimal or a limit immediate successor of Qi and such that the sequence { )( }i Q  
is cofinal in ( ) ( )R Rα α′< (Λ) where Λ is the set of key polynomials.

And this sequence is such that: if Qi ﹤ Qi+1, then the Qi-expansion of Qi+1 has exactly two terms.
Proof. We have Q1 = x, and we assume that Q1, Q2 ,..., Qi have been constructed. We note a := degx(Qi) and recall that

( )
( )

deg
in .

Qi
x

a
P a

G P Gν ν<
<

= ∑

If Qi is maximal in Λ, we stop. Otherwise, Qi is not maximal and so it has an immediate successor.
We set ( ){ }: min  such that  where i a ah hα ν∗

< <= ∈ ∈∆ ∆ Q  is the subgroup of Γ generated by the values of the 
elements of aG<

deg deg

in

Q1 Q2 Qi

Qi Qi+1

Qi

QiQ
Qi Q

Q

Qi

Q

Qi

Qi

Q'

Q'
Qi

Q'Qp

Qi

Qi

Qi
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In fact, there exists a polynomial f of degree strictly less than a such that ( ) ( ) ( ) 0i i fααν ν ν= = ≠Q Q .
Then, since k kν = , there exists c k∗∈  such that ( ) ( )in ini cfα

ν ν=Q .
We set Q i cfα= −Q Q . By the proof of Proposition 2.5, we have ( ) ( )i < Q Q .
Let us show that Qi ﹤ Q. We only have to show that Q is of minimal degree.
So let us set P a key polynomial such that ( ) ( )R Rα α′< (Qi) ﹤ ( ) ( )R Rα α′< (P).

Assume by contradiction that deg(P) ﹤ aα. We set 
1

0

j
j i

j
P p

α−

=

=∑ Q  the Qi-expansion of P. Then by the proof of 

Proposition 2.5, we have ( ) ( )
1

0
in in 0j

j i
j

p
α

ν ν

−

=

=∑ Q ( ) ( )
1

0
in in 0j

j i
j

p
α

ν ν

−

=

=∑ Q , which contradicts the minimality of α.

Then Q is of minimal degree and Qi ﹤ Q. Since it has just two terms in his Qi-expansion, it is an optimal immediate 
successor of Qi.

First case: α > 1. Then we set Qi+1:= Q and we iterate.
Second case: α = 1. Then all the elements of MQi

 have same degree than Qi. If MQi
 does not have a maximal element, 

then we do the same thing than in the proof of Proposition 2.12 and we set Qi+1 a limit immediate successor of Qi.
Otherwise, MQi

 has a maximal element Qi+1. This element has same degree as Qi, so we have Qi+1 = Qi − h with h of 
degree strictly less than the degree of Qi. Then it is an immediate successor of Qi which Qi-expansion admits uniquely two 
terms. So it is optimal, and this completes the proof. 

We now assume k = k kν = and consider ( ): i i
= Q  a sequence of optimal (possibly limit) immediate successors such that 

( )( )i i
 Q  is cofinal in ( ) ( )R Rα α′< (Λ) and such that if Qi ﹤ Qi+1, then the Qi-expansion of Qi+1 admits exactly two terms.

Remark 3.3.7 We keep the same hypothesis as in Example 1.8. Then { },z= Q .
Corollary 3.3.8 For every polynomial f , there exists an index i such that ( ) ( )

i
f fν ν=Q .

Proof. By Proposition 1.21, there exists a key polynomial Q such that ( ) ( )f fν ν=Q .
The sequence { ( ) ( )R Rα α′< (Qi)} being cofinal, there exists an index i such that

( ) ( ).i ≥ Q Q

By Proposition 1.20, ( ) ( ) and since ( ) ( ), we have ( ) ( )
i i

f f f f f fν ν ν ν ν ν≤ = =Q Q Q Q .
Remark 3.3.9 So, for every polynomial f, there exists a key polynomial Qi of the sequence ( ): i i

= Q such that f is non-
degenerate with respect to Qi.

Remark 3.3.10 Let i ∈Q . We don't assume here k kν= . 
We set ai := degx(Qi) and Γ﹤ai the group { }( )0

iaGν <  { }( )0
iaGν <  .

If ( ) ( ),  then 
ii a iν <∉Γ ⊗



 Q Q then ( ) ( ),  then 
ii a iν <∉Γ ⊗



 Q Q(Qi) is maximal in ( ) ( )R Rα α′< (Λ) and the sequence ( ): i i
= Q stops at Qi.

3.4 Monomialization of the key polynomials
We set K := k (u1 ,..., un−1) and we consider the extension K(un). We consider also a sequence of key polynomials ( ): i i

= Q as 
in the section 3.3.

In other words, ( )i i
= Q  is a sequence of optimal (possibly limit) immediate successors such that ( )( )i i

 Q  is cofinal 
in ( ) ( )R Rα α′< (Λ).

Let f be an element of R. We know that this element is non-degenerate with respect to a key polynomial of the 
sequence ( ): i i

= Q. We also know that every element non-degenerate with respect to a regular system of parameters is 
monomializable.

Then, to monomialize f , it is enough to monomialize the set of key polynomials of this sequence. We assume in this 
part that the residue field is k.
3.4.1 Generalities

Let ( ): , ,r r R u ν=  ( ): , ,r r R u ν=  ( ): , ,r r R u ν=  be the dimension of

1
( )

n

i
i

uν
=
∑ 

Qi

Qi Qi

Qi

Qi Qi Q

Qi

Qi

Qi

Q

Qi

Q

Qi

Qi Q

Q QQi Qi

Qi

Qi

Qi
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in Γ⊗


 . Renumbering, if necessary, we can assume that ( ) ( )1 , ,  ru uν ν…  are rationally independent and we consider ∆ 
the subgroup of Γ generated by ( ) ( )1 , ,  ru uν ν… .

Remark 3.4.1 Let (R,  u) → (R1,  u
(1)) be a framed blow-up. Then ( )( )1

1 1: , ,r r r R u ν≤ = ( )( )1
1 1: , ,r r r R u ν≤ = .

Remark 3.4.2 We will consider the framed local blow-ups

( ) ( )( ), , i
iR  u R  u→…→ →…

Then we write ( )( ): , ,i
i ir  r R  u  ν= .

We set E := {1,..., r, n} and { }(0) : min  such that ( )n
h

h h uα ν
∗∈

= ∈∆


. 

So (0) (0)

1
( ) ( )

r

n j j
j

u uα ν α ν
=

=∑  with, renumbering the (0)
iα  if necessary,

(0) (0)
1 , , 0sα α… ≥

and

(0) (0)
1, , 0s rα α+ … <

We set

1 1( , , , ) ( , , , )r n r nw w  w  w u  u  u= … = …

and

1 1 1( , , ) ( , , ),t r nv v  v u  u+ −= … = …

with t = n − r − 1.
We set ini ix uν= , and we have that x1 ,..., xr are algebraically independent over k in Gν . Let λ0 be the minimal 

polynomial of xn over k(x1,..., xr), of degree α.
We set:

(0)

1

,j
r

j
j

y xα
=

=∏

(0)

1

,j
r

j
j

y wα

=

=∏

(0)

nxz
y

α

=

and
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(0)

.nwz
y

α

=

We have

0 0X c yαλ = +

where 0c k∈ , and Z + c0 is the minimal polynomial λz of z over ( )1gr , , rk x xν … .

Indeed, [ ]
( )z

k Z
k kν λ
   so λz is of degree 1 in Z. Then λ0 is of degree α(0), and so α = (0)α .

Definition 3.4.3 We say that Qi is monomializable if there exists a sequence of blow-ups (R, u) → (Rl, u
(l)) such that 

in Rl , Qi can be written as ( )l
nu  multiplied by a monomial in ( ) ( )( )1 , ,

l

l l
ru u…  up to a unit of Rl, where ( )( ): , ,l

l lr r R u ν= ( )( ): , ,l
l lr r R u ν= .

We are going to show that there exists a local framed sequence that monomializes all the Qi.
We have Q1 = un, it is a monomial. By the blow-ups, Q1 stays a monomial. So we have to begin monomializing Q2.
Since we want to monomialize the key polynomials Qi of the sequence ( ): i i

= Q constructed earlier by induction on i, we 
are going to do something more general here: we consider an immediate successors (possibly limit) key element Q2 of Q1 

instead of immediate successor (possibly limit) key polynomial of Q1.
First, let us consider

0 0nw a b yα= +Q

where 0b R∈  such that b0 ≡ c0 modulo 0 and a R×∈m .
A priori, Q is not a key polynomial but we are going to prove that we can reduce this case to the case Q2 = Q by a 

local framed sequence independent of un.
3.4.2 Puiseux packages

Let

(0) (0)
1 1( , , , ) ( , , ,0, ,0)r n sγ γ γ γ α α= … = … …

and

(0) (0)
1 1( , , , ) (0, ,0, , , , ).r n s rδ δ δ δ α α α+= … = … − … −

We have

(0)
1

1

jn

j

r
n

n j r
j

j
j s

ww w w
w

α
δδδ

α=

= +

= =∏
∏

and

(0)

1

.j
s

j
j

w wαγ

=

=∏

Q
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So 
(0)

1

j

n
r

j
j

ww z
w w

αδ

γ
α

=

= =

∏
.

Let us compute the value of wδ.

(0)

(0)

1

(0)

1

(0) (0)

1 1

(0)

1

1

( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

( ).

j

r

n j j
j s

r

n j j
j s

r r

j j j j
j j s

s

j j
j

s

j
j

w w w

u u

u u

w

w

w

δ

α

γ

ν αν α ν

αν α ν

α ν α ν

α ν

ν

ν

= +

= +

= = +

=

=

= −

= −

= −

=

=

=

∑

∑

∑ ∑

∑

∏

Theorem 3.4.4 There exists a local framed sequence

( ) ( ) ( )0 11
(1) ( )

1, , ,
l

l
lR  u   R  u     R  u

π ππ −

→ → →

                                                                                                                                             (6)

with respect to ν , independent of v, and that has the next properties:
For every integer i ∈ {1,..., l}, we write ( )( ) ( ) ( )

1: , ,i i i
nu u u= …  and we recall that k is the residue field of Ri .

(1) The blow-ups π0,..., πl − 2 are monomials.
(2) We have lz R×∈ .
(3) We set ( ) ( )( ) ( ) ( )

1: , , , ,l l l l
r nu w w v w= … . So for every integer j ∈ {1,..., r, n}, wj is a monomial in ( ) ( )

1 , ,l l
rw w…

multiplied by an element of lR× . And for every integer { } ( ) 11, , ,   where l r
jj  r w wη η +∈ … = ∈ .

(4) We have Q ( )l
nw y= ×Q .

Proof. We apply Proposition 3.2.4 to (wδ, wγ) and so we obtain a local framed sequence for ν , independent of v and 
such that wγ | wδ in Rl.

By Proposition 3.2.7 and the fact that wδ and wγ have same value, we have that wδ | wγ in Rl. In fact 1, lz  z R− ×∈ . So we 
have (2).

We choose the local sequence to be minimal, in other words the sequence made by π0,..., πl−2 does not satisfy the 
conclusion of the Proposition 3.2.4 for (wδ, wγ). Now we are going to prove that this sequence satisfies the five properties 
of Theorem 3.4.4. Let i ∈ {0,..., l }. We write ( )( ) ( ) ( ) ( )

1 , , ,i i i i
r nw w  w  w= … , with r = n − t −1 and define Ji, Ai, Bi, ji and Di 

similarly that we defined J, A, B,  j and D1, considering the i-th blow-up.
Since { }1, ,iD n⊂ … , we have ♯Di ≤ n. Hence ♯( ( { })) ,  so 1i i i i iA B j n A B n∪ ∪ ≤ + + ≤  . As the sequence is 

independent of v, this implies that iT A⊂ , and so ♯T ≤ ♯Ai. Then ♯T + 1 + ♯Bi ≤ n, so t + 1 ≤ n, and so r ≥ 0. By the 
minimality of the sequence, we know that if i ﹤ l, w wδ γ  in Ri, and so ♯Bi ≠ 0, hence r > 0.

For every integers i ∈ {1,..., l} and j ∈ {1,..., n}, we set ( )( ) ( )i i
j juβ ν= . For each i ﹤ l, πi is a blow-up along an ideal 

of the form ( )( )
i

i
Ju . Renumbering if necessary, we may assume that 1 ∈ Ji and that Ri+1 is a localisation of 

( )

( )
1

i

i
J

i i

u
R

u
 
 
  

 So we 

have { }( ) ( )
1 min

i

i i
jj J

β β
∈

= .

♯ ♯
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Fact 3.4.5 Let ( )1, , n
nX x x= … ∈  be a vector whose elements are relatively prime. Then there exists a matrix 

SL ( )nA∈   of determinant 1 such that X is the first line of A.
Proof. This proof is made by induction on n and using Bezout theorem. 
Lemma 3.4.6 Let i ∈ {0,..., l − 1}. We assume that the sequence π0, ... , πi − 1 of 3.4.1 is monomial.

We set ( ) ( )
( ) ( )

( ) ( ) and 
i i

i iw w w w
γ δγ δ= = and ( ) ( )

( ) ( )
( ) ( ) and 

i i
i iw w w w

γ δγ δ= = . Then
(1)

( )( ) ( ) ( ) 0,i i i
q q q

q E
γ δ β

∈

− =∑                                                                                                                                              (7)

(2) pgcd ( )( ) ( ) ( ) ( ) ( ) ( )
1 1 , , , 1i i i i i i

r r n n  γ δ γ δ γ δ− … − − = ,
(3) Every  -linear dependence relation between ( ) ( ) ( )

1 , , ,i i i
r n  β β β…  is an integer multiple of (7).

Proof.
(1) We have ( ) ( ) ( ) ( )

( ) ( )
( ) ( ),  hence 

i i
i iw w w w

γ δγ δν ν ν ν   = =   
   

. So, since ( )( ) ( ) ( ) ( )
1 , , ,i i i i

r nw w w w= … :

( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1

i ii i
j n j n

r r
i i i i

j n j n
j j

w w w w
γ γ δ δ

ν ν
= =

   
× = ×   

   
∏ ∏

in other words

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
.

r r
i i i i i i i i

j j n n j j n n
j j

w w w wγ ν γ ν δ ν δ ν
= =

+ = +∑ ∑

By definition of w(i), for every integer j ∈ {1,..., r, n}, we have ( ) ( ) ( ) ( ),  so ( )i i i i
j j j jw u wν β= = . Then:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
.

r r
i i i i i i i i

j j n n j j n n
j j
γ β γ β δ β δ β

= =

+ = +∑ ∑

Then ( )
{ }

( ) ( ) ( )

1, , ,
0i i i

j j j
j r n

γ δ β
∈ …

− =∑ .

(2) We do an induction. Case i = 0.
We have

( )
( )
( )

( ) ( ) ( ) ( ) ( ) ( )
1 1

(0) (0) (0) (0) (0) (0)
1 1

(0) (0) (0) (0) (0)
1 1

pgcd , , ,

pgcd , , ,

pgcd , , , , , , .

i i i i i i
r r n n

r r n n

s s r

  

  

   

γ δ γ δ γ δ

γ δ γ δ γ δ

α α α α α+

− … − −

= − … − −

= … … −

By definition

{ }(0) min  such that n
h

h hα α β
∗∈

= = ∈∆


such that min

pgcd

pgcd

pgcd
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and

(0)

1
.

r

n j j
j

αβ α β
=

=∑

So pgcd ( )(0) (0) (0) (0)
1 1, , , , , , 1s s rα α α α α+… … − = .

Case i > 0. We assume the result shown at the previous rank. We have γ(i) = γ(i−1)G (i), δ(i) = δ (i −1)G (i) and β (i) = β (i−1)F (i) 
where ( ) 1( ) ( ) ( )

1 and SL ( )i i i
rF G G

−

+= ∈   such that

( )

1   if                 
1   if  and 
0   otherwise.           

i
sq

s q
G q j s J

=
= = ∈



So (γ(i) − δ (i)) = (γ (i−1) − δ (i−1))G (i) = (γ − δ)G where G is a product of unimodular matrixes, and so G is unimodular.
By the case i = 0, (γ − δ) is a vector whose elements are relatively prime.
By (10) this vecteur can be complete as a base of  r+1, which, by a unimodular matrix, stay a base of  r+1. The 

vector   (γ(i) − δ(i)) is then a vector of this base, so its elements are relatively prime.
(3) Case i = 0 is the fact that β1,..., βr, βn generate a vector space of dimension r.
Let

1
1 1 1

1
: ( , , )  such tha   t 0 .

r
r

r j j r n
j

Z x x x xβ β+
+ +

=

= … ∈ +


=
 
 


∑

But (0)

1

r

n j j
j

αβ α β
=

=∑ , so:

( )1 (0)
1 1 1

1
( , , )  such that 0 .

r
r

r j r j j
j

Z x x x xα α β+
+ +

=

= … ∈ =
 

+ 
 

∑

Since β1, ..., βr are  -linearly independent elements, we have that Z is a free -module of rank 1, so it is generated by 
a unique vector. By point (1), the vector (γ − δ) is in Z, and by point (2), it is composed of relatively prime elements. This 
vector generates the free -module of rank 1.

Let i > 0. We already know that β (i) = β (i−1)F (i) = βF where F is a unimodular matrix, so an automorphism of r.
Let

( ) 1 () )
1 1 1

1

(: ( , , )  such that 0 . 
r

i r i
r j r n

j

i
jZ x x x xβ β+

+ +
=

 
+ 


= … ∈ =


∑

So

( ) 1
1 1 1

1
( , , )  such tha   t 0 ,

r
i r

r j r nj
j

Z x x x x FF ββ+
+ +

=

= … ∈ =
 

+ 
 

∑

such that 

otherwise.

andif
if

such that 

such that 

such that 



Contemporary Mathematics 318 | Julie Decaup

then

( ) 1
1 1 1

1
( , , )  such th at 0 .j

r
i r

r j r n
j

Z x x x x ββ+
+ +

=

= … ∈
 

+ 
 

=∑

Then the set Z (i) is a free  -module of rank 1 by the case i = 0. And we know by (3) that the vector (γ (i) − δ (i)) is a 
vector of Z (i) composed of relatively prime elements, so it generates Z (i). This completes the proof.

Lemma 3.4.7 The sequence (6) is not monomial.
Proof. Assume, aiming for contradiction, that it is. By induction on i, we have ri = r for every i ∈ {0,..., l }. We know 

that w(l ) is a regular system of parameters of Rl and that wδ and w γ divide each other in Rl.
We saw that

{ }

( ) ( 1) ( )

( )

1, ,

l l l

j

j l

G
G

γ γ
γ

−

∈ …

=
= ∏

and

{ }

( ) ( 1) ( )

( )

1, ,

.

l l l

j

j l

G
G

δ δ
δ

−

∈ …

=
= ∏

So δ (l) = γ(l).
But (γ(l) −δ (l) ) = ( γ − δ )G where G is a unimodular matrix, hence γ = δ , which is a contradiction.
Lemma 3.4.8 Let i ∈ {0, ..., l − 1} and assume π0, ... , πi −1 are all monomials. Then the following assertions are 

equivalent:
(1) The blow-up πi is not monomial.
(2) There exists a unique index q ∈ Ji \ {1} such that ( ) ( )

1
i i

qβ β= .
(3) We have i = l − 1.
Proof. (3) ⇒  (1) by Lemma 3.4.7.
(1) ⇒  (2) First, we prove the existence. We have { }( ) ( )

1 min
i

i i
jj J

β β
∈

= . So πi monomial { } ( ) ( )
11 i i

i i qB J β β⇔ = ⇔ >  for 
every q ∈ Ji \ {1}.

Since the blow-up is not monomial by hypothesis, there exists q ∈ Ji \ {1} such that ( ) ( )
1

i i
qβ β= .

Now let us show the unicity. Assume, aiming for contradiction, that there exist two difierent indexes q and q' in Ji \{1} 
such that ( ) ( ) ( ) ( )

1 10 and 0i i i i
q qβ β β β′− = − = .

Then we have two linear dependence relations between ( ) ( )
1 , ,i i

rβ β…  and the element ( )i
nβ , which are not linearly 

dependent. It is a contradiction by point (3.2) of Lemma 3.4.6.
(2) ⇒  (3)
By Remark 3.2.6, we write ( ) ( )

1  and  where i i
qw w w wµ= =   and µ are two colons of an unimodular matrix. Then ( ) ( )R Rα α′<  − µ is 

unimodular, so its total pgcd is one.
So

( ) ( )( ) ( )i i
s s q q

s E
w wµν µ β ν β

∈

= = =∑

and

( ) ( )
1 1( ) ( ) .i i

s s
s E

w wν β ν β
∈

= = =∑ 

such that 
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By hypothesis, ( ) ( )
1

i i
qβ β=  Then ( ) 0s s s

s E
µ β

∈

− =∑   and by points (3.1) and (3.2) of Lemma 3.4.6, and the fact that the 

total pgcd of µ − ( ) ( )R Rα α′<  is one, we have µ − ( ) ( )R Rα α′<  = ±(γ − δ).

So 
( )

( ) 1
( )
1

i
q
i

w
w w z

w
µ γ δ− ± − ±= = = , then either 1

1 1 or  i iz R z R−
+ +∈ ∈ .

To show that i = l − 1, we are going to show that i + 1 = l. And to do this, we are going to use the fact that l has been 
chosen minimal such that lz R×∈ . So let us show that 1iz R×

+∈ .
Since 1

1 1 or  i iz R z R−
+ +∈ ∈ , we know that wδ | wγ in Ri+1 or the converse. By Proposition 3.2.7 and the fact that wδ 

and wγ have same value, we have wδ | wγ in Ri+1 if and only if the converse is true. So 1iz R×
+∈ , and the proof is complete.

Doing an induction on i and using Lemma 3.4.8, we conclude that π0,..., πl − 2 are monomials. So we have the first 
point of Theorem 3.4.4.

It remains to show the points (3.1) and (3.2).
By Lemma 3.4.8 there exists a unique element { }1 1l lq J j− −∈   such that ( 1) ( 1)

1
l l

qβ β− −= , so we are in the case ♯Bl − 1 + 
1 = ♯Jl  − 1 − 1. Now we have to see if we are in the case 

1
0

lkt −
=  or in the case 

1
0

lkt −
= 1.

We recall that ( 1)
1

lw w− =   and ( 1)  where l
qw wµ− =   and µ are two colons of a unimodular matrix such that µ − ( ) ( )R Rα α′<  =    

±(γ − δ ). So we have ( 1) ( 1)
1  and  l l

qx x x xµ− −= = , then

( ) ( )(0) (0)
1

( 1)
, , ,

( 1)
1

.r

l
q
l

x
x x x

x
α α αγ δµ

−
± … −± −−

− = = =

In other words

( )
(0)

1

( 1)
11 1 1

( 1)
1

.

j
r

l j
q j
l

n

x
x

z z
x x

α

α

±

−
±= − ±

−

 
 
 = = =
 
 
 

∏

Replacing ( 1) ( 1)
1  and  l l

qx x− −  if necessary, we may assume 
( 1)

( 1)
1

l
q
l

x
z

x

−

− = .

Since ( 1) ( 1)
1 , ,l l

r β β− −…  are linearly independent, we have q = n.
We recall that λ0 = X α + c0y where c0 ∈ k , and Z + c0 is the minimal polynomial λz of z on ( )1gr , , rk x  xν … . By 3.1.9, 

we have

( )
( 1) ( 1)

( ) ( )
0 0 0 0 0 0( 1) ( 1)

1 1

( ) .
l l

l l n n
n n n l l

u ww u u z z a b
u w

λ λ λ λ
− −

− −

   
′= = = = = = +   

   

Remark 3.4.9 We know that ( )0 0 0z z bλ = + g  where ( )0 0 0z z bλ = + g  is a unit and b0 ∈ R such that b0 ≡ c0 modulo m . Then we 
choose ( )0 0 0z z bλ = + g  = a0.

But nwz
y

α

= , so

( ) 0 0
0 0

l n n
n

w w a b yw a b
y y y

α α +
= + = =

Q

as desired in point (3.2).
Let us show the point (3.1). We apply Proposition 3.2.5 at i = 0 and i' = l. By the monomiality of π0 , ..., πl−2, we know 

that Di = {1,..., n} for each i ∈ {1, ..., l − 1}, and we know that Dl = {1,..., n}. We set uT = v.

Q
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For every j ∈ {1,..., r, n}, the fact that wj = uj is a monomial in ( ) ( )
1 , ,l l

rw w… , in other words in ( ) ( )
1 , ,l l

ru u…  multiplied 
by an element of lR×  is a consequence of Proposition 3.2.5.

The fact that for every integer j ∈ {1,..., r}, we have ( )l
jw wη=  is a consequence of the same Proposition. This 

completes the proof.
Remark 3.4.10 In the case Q2 = Q, we monomialized Q2 as desired.
Definition 3.4.11 [24] A local framed sequence that satisfies Theorem 3.4.4 is called a n-Puiseux package.
Let j ∈ {r + 1,..., n}. A j-Puiseux package is a n-Puiseux package replacing n by j in Theorem 3.4.4.
Lemma 3.4.12 Let 0nP u cα= +  be the un-expansion of an immediate successor key element of un.
There exists a local framed sequence (R, u) → (Rl, u

(l )) , independant of un, that transforms c0 in a monomial in 
( )( ) ( )

1 , ,l l
ru u… , multiplied by a unit of Rl .

In particular, after this local framed sequence, the element P is of the form 0 0nw a b yα + .
Proof. We will prove this Lemma in a more general version in Lemma 3.4.16.
Corollary 3.4.13 Let P be an immediate successor key element of un. Then P is monomializable.
Proof. If un  ﹤﹤ P, we use Lemma 3.4.12 to reduce to the case P = 0 0nw a b yα + . By Theorem 3.4.4, we can 

monomialize P.
Let G be a local ring essentially of finite type over k of dimension strictly less than n that is equipped with a valuation 

centered on G.
Theorem 3.4.14 Assume that for every ring G as above, every element of G is monomializable. 
We recall that ( )car 0 kν = . If limnu P , then P is monomializable.

Proof. We write 
0

N
j

j j n
j

P b a u
=

=∑  the un -expansion of P, with 
0

 and  
N

j
j j n

j
a R b u×

=

∈ =∑Q  a limite immediate successor   
of un.

By Theorem 2.17, we have ( ) 1
nuδ =Q . Then:

( ) ( ) ( )0 1 ,j
n j nb b u b uν ν ν= <

for every j > 1.
The elements ai are units of R, so for every j > 1 we have:

( ) ( ) ( )0 0 1 1 .j
n j j na b a b u a b uν ν ν= <

In fact, ( ) ( )1 1 0 0a b a bν ν<  and by hypothesis, after a sequence of blow-ups independent of un, we can monomialize    
ajbj for every index j, and assume that a1b1 | a0b0 by Proposition 3.2.7.

Then

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 0 1 .n j n jb b u b j u b j b bν ν ν ν ν ν ν= < + = + −

So ( ) ( ) ( ) ( )( )0 0 1jb b j b bν ν ν< + − .
In fact, ( ) ( )1

1 0
j j

jb b bν ν −< . So after a sequence of blow-ups independent of un, we have 1
1 0
j j

jb b b −∣ . After a n-Puiseux 
package (*) (R, u) → ··· → (R', u') in the special case α = 1, we obtain ( ) 1

0
 with  

N
j

j n j
j

P b u b b
=

′ ′ ′ ′= ∑ ∣  for every index j with 
1

0

1n
n

b uu
b

′ = + .

In fact, ( )1 1
1

 with  , ,n n
P u u u
b

ϕ ϕ −′ ′ ′= + ∈ …
′

. So 1 1
1

: , , ,n
Pu u u
b−

 
′′ ′ ′= … ′ 

 is a regular system of parameters of R'. Then, the 

sequence (R, u) → ··· → (R', u'') given by (*) changing uniquely the last parameter un after the last blow-up is still a local 
framed sequence. So P is monomializable. 

Remark 3.4.15 Since Q2 is an immediate successor (possibly limit) of un, this is in particular an immediate successor 
(possibly limit) key element of un. By Corollary 3.4.13, or Theorem 3.4.14, it is monomializable modulo Lemma 3.4.12.

'

Q

Q
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3.4.3 Generalization
Now we monomialized Q2, but we want to monomialize every key polynomial of the sequence ( ): i i

= Q. Here the key 
elements will be useful. Indeed, modified by the blow-ups which monomialized Q2, we cannot know if Q3 is still a key 
polynomial.

To be more general, we will show that if Qi i ∈Q  is monomializable, then Qi+1 is monomializable.
Assume that the polynomial Qi is monomializable after a sequence of blow-ups (R, u) → (Rl, u

(l)).
Let ∆l be the group ( ) ( )( ) { }( )1 1, , 0l l

nk u uν −…  . We set

{ }( ): min  such that .l
l n lh hα β= ∈∆

We set ( )( ) ( )in ,   and  l l
j j j j lX u  W wν λ= =  the minimal polynomial of Xn over ( ) ( )( )1 1gr , ,l l

nk u uν −…  of degree αl.
Since k kν=  there exists ( ) ( )( )0 1 1gr , ,l l

nc k u uν −∈ …  such that

( ) 0.l
l X X cαλ = +

Furthermore, we have Qi ( )  with  l
i nwω ω=Q  a monomial in W1, ..., Wrl multiplied by a unit. We set ( ): inνω ω= .

We know that Qi+1 is an optimal immediate successor of Qi so we denote by

1 0
l

i i bα
+ = +Q Q

the Qi-expansion of Qi+1 in k(u1,..., un−1 )[un] by Proposition 5.6 with ( )0 0inc bν= .
Since Qi 1 0 and  l

i n i iW bαω += = +Q Q Q , we have

( )( )1 0 .l

l l

li
n

bu
α

α αω ω
+ = +

Q

We know that both terms of the Qi-expansion of Qi+1 have same value. So these two terms are divisible by the same 
power of ω  after a suitable sequence of blow-ups (( )i∗ ) independent of ( )l

nu .
We denote by  1i+Q  the strict transform of Qi+1 by the composition of (( )i∗ ) with the sequence of blow-ups (( )i′∗ ) that 

monomialize Qi. We denote this composition by (ci). We write ( )
( )
( )( ), ,

ic
l

lR u R u→ .
We know that  1i+Q , the strict transform of Qi by (ci), is a regular parameter of Rl. Indeed, by Proposition 3.2.5, we know 

that every uj of R can be written as a monomial in ( ) ( )
1 , ,

l

l l
rw w… . In fact, the reduced exceptional divisor of this sequence of 

blow-ups is exactly ( )red
V ω . Then, since Qi i nW ω=Q , we have that the strict transform of Qi is  ( ) ( )l l

i n n nW w u= = =Q . So it 
is a key polynomial in the extension ( )( )( ) ( ) ( )

1 1, ,l l l
n nk u u u−… .

Let us show that  1
1

l

i
i αω

+
+ =

Q
Q .

We have

( )( ) ll l l
i nu

αα αω=Q

and also ( )l
nu ω . Thus  divides  l l

i
α αω Q  and all the non-zero terms of the Qi-expansion of Qi+1. Furthermore, it is the 

greatest power of ω  that divides all the terms, so 
1

1 is  
l

i
iαω

+
+

Q
Q , the strict transform of Qi+1 by the sequence of blow-ups.

Let G be a local ring essentially of finite type over k of dimension strictly less than n equipped with a valuation 
centered in G whose residue field is k.

Lemma 3.4.16 Assume that for every ring G as above, every element of G is monomializable.
Assume that 1  in i i+< Q Q .

such that min

Qi+1 Qi

QiQi+1

Qi+1

Qi+1

Qi

Qi

Qi+1
Qi+1

Qi

Qi
Qi+1 Qi+1

Qi+1Qi
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There exists a local framed sequence (Rl, u
(l )) → (Re, u

(e)) such that in Re, the strict transform of Qi+1 is of the form 
( )( ) 0 0,  where  

le
n eu R

α
τ η τ ×+ ∈ where ( )( ) 0 0,  where  

le
n eu R

α
τ η τ ×+ ∈  and η is a monomial in ( ) ( )

1 , ,
e

e e
ru u… .

Proof. By hypothesis, after a sequence of blow-ups independent of ( )l
nu , we can monomialize b0 and assume that it is 

a monomial in ( )( ) ( )
1 1, ,l l

nu u −…  multiplied by a unit of Rl.
For every g { }1, , 1lr n∈ + … −  we do a g-Puiseux package, and then we have a sequence

( ) ( )( ) ( ), ,l t
l tR  u R  u→

such that every ( )l
gu  is a monomial in ( )( ) ( )

1 , ,
t

t t
ru u… .

In fact, we can assume that b0 is a monomial in ( )( ) ( )
1 , ,

l

l l
ru u…  multiplied by a unit of Rl.

Since the strict transform  ( )( ) 0
1

l

l

l
i n

bu
α

αω
+ = +Q  is an immediate successor key element of  iQ . This completes the proof.

Remark 3.4.17 Lemma 3.4.12 is a special case of Lemma 3.4.16.
Let G be a local ring essentially of finite type over k of dimension strictly less than n equipped with a valuation 

centered in G whose residue field is k.
Theorem 3.4.18 Assume that for every ring G as above, every element of G is monomializable.
We recall that car ( ) 0kν = . If Qi is monomializable, there exists a local framed sequence

( ) ( ) ( ) ( )0 1 11
(1) ( ) ( )

1, , , ,
l l m

l m
l mR  u R  u R  u R  u

π π π ππ − −

→ → → → → 

                                                                                                                                             (8)

that monomializes Qi+1.
Proof. There are two cases.
First: Qi ﹤ Qi+1. Then we just saw that the strict transform  iQ i+1 of Qi+1 by the sequence (R, u) → (Rl, u

(l )) that 
monomializes Qi is an immediate successor key element of  ( )l

i nu=Q , and that we can reduce the problem to the hypotheses 
of Theorem 3.4.4 by Lemma 3.4.16. So we use Theorem 3.4.4 replacing Q1 by  iQ i and Q2 by  iQ i+1.

Then we have constructed a local framed sequence (8) that monomializes  iQ i+1 .
Second case: Qi ﹤lim Qi+1.
Then we saw that the strict transform  iQ i+1 of Qi+1 by the sequence (R, u) → (Rl, u

(l)) that monomialize  ( )l
i nu=Q . Then 

we apply Theorem 3.4.14 replacing Q1 by  iQ i and Q2 by  iQ i+1.

We have constructed a local framed sequence (8) that monomializes  iQ i+1.
Theorem 3.4.19 There exists a local sequence

( ) ( )0 1
( ), ,

s s
s

sR u R u
π π π−

→ → → 

                                                                                                                                             (9)

that monomializes all the key polynomials of ( ): i i
= Q.

More precisely, for every index i, there exists an index si such that in 
isR , Qi is a monomial in ( )isu  multiplied by a unit 

of 
isR .
Proof. Induction on the dimension n and on the index i and we iterate the previous process.

3.4.4 Divisibility
We consider, for every integer j, the countable sets

( )
( )

( ) ( )

1

: , with 
j

i
n

j j
j i i

i

u
α

α
=

 
= ∈ 
 
∏ S with

Qi+1 Qi

Qi+1

Qi

Qi Qi+1

Qi+1

Qi

Qi

Qi+1

Qi+1

Qi+1
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and

 ( ) ( ) ( ){ }1 2 1 2: , , with j j js s s sν ν= ∈ × ≤S S S

with the convention that for every { } (0)1, , ,  i ii n u u∈ … = .
The set  jS  being countable for every integer j, we can number its elements, and then we write  { }( ) : j

j m m
s

∈
=



S . We 
consider now the finite set

{ } { }( ) ( ) : ,  ,  .j m
j m js m j s m j′ = ≤ ∪ ≤S

Then ( )  j j j j
j j j∈ ∈ ∈

′× = =
  

  

S S S S  is a countable union of finite sets.

Now we fix a local framed sequence

( ) ( )( ), , .i
iR  u R  u→ →

Theorem 3.4.20 There exists a finite local framed sequence

( ) ( )( )( ): , , i

i

i qi
i i i qp R  u R  u +

+→ →

such that for every integer j ≤ i and for every element s of j ′S , the first coordinate of s divides its second coordinate 
in Ri+qi

.
Proof. Consider an integer j ≤ i and an element ( )1 2, js s s ′= ∈S . We want to construct a sequence of blow-ups such 

that at the end we have s1 | s2.
We know that   with ms m j∈ ≤S . All cases being similar, we may assume  js∈S  and then we have

( )
( )
,1( )

1
1

j
i

n
j

i
i

s u
α

=

=∏

and

( )
( )
,2( )

2
1

.
j

i
n

j
i

i

s u
α

=

=∏

By Proposition 3.2.4 applied to Ri instead of R, there exists a sequence (Ri, u
(i)) → ··· → (Ri+l, u

(i+l)) such that in Ri+l,       
s1 | s2 or s2 | s1. By definition 1 2( ) ( )s sν ν≤ , so we have s1 | s2 by Proposition 3.2.7.

By point 4 of Theorem 3.4.4, we know that j i l i l R×
+ +⊆S S . In other words every element of S j can be written zi+l si+l 

with  and i l i l i l i lz R s×
+ + + +∈ ∈S .

Let ( )3 4, js s ′∈S , be another pair of j ′S , let us say that it is still in  jS . We just saw that 3 4, i l i ls s R×
+ +∈ S . Units 

don't have an effect on divisibility, so we can only consider the part of s3 and s4 which is in i l+S . Hence we can iterate the 
Proposition 3.2.4 applying it to (Ri+l, u

(i+l)). So we constructed an other sequence of blow-ups

( ) ( )( ) ( ), ,i l i h
i l i hR  u R  u+ +
+ +→ →

such that Ri+h we have s3 | s4 or s4 | s3. Since 3 4( ) ( )s sν ν≤ , we know that s3 divides s4.

with
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We iterate the process for all the pairs of j ′S , and for every j ≤ i. This is a finite number of times since j ′S  has a 
finite number of elements for every j and since we consider a finite number of such sets. Then we obtain a finite sequence 
of blow-ups

( ) ( )( )( ), , i

i

i qi
i i qR  u R  u +

+→ →

such that for every integer j ≤ i and every s in j ′S , the first coordinate of s divides the second coordinate in Ri+qi
. 

The goal of the next theorem is to construct an infinite local framed sequence

( )( )( , ) , i
iR  u R  u→…→ …                                                                                           (10)

that monomializes all the key elements, as well as other elements specified below, and to ensure countably many 
divisibility conditions, also specified below. We will use the notation

( ) ( )
1 1: , , .i i

i nB k u u − = … 

Theorem 3.4.21 We recall that ( )car 0kν = . There exists an infinite sequence of blow-ups

( ) ( )( ), , m
mR  u R  u→ → → 

                                                                                                                                             (11)

that monomializes all the key polynomials, all the elements of Bi for every index i and that has the following property:

( )1 2 1 2 ,   such that in  we have .j j ij s s s  i R s s≥′∀ ∈ ∀ = ∈ ∃ ∈  ∣S

Proof. The first key polynomial is a monomial, so for it we do not need to do anything. For j = 0, the elements of 

0j ′ ′=S S  are just pairs of monomials in u. Let us consider 1 2 0( , )s s s ′= ∈S  and apply Proposition 3.2.4. We construct a 
sequence p0 : R → Rq0

 such that in Rq0
, we have s1 | s2 or s2 | s1. Since ( ) ( )1 2s sν ν≤ , we have s1 | s2. We do the same for all 

the elements of 0 ′S  (recall that the set 0 ′S  is finite), and by abuse of notation we still denote by p0 : R → Rq0
 the sequence 

obtained at the end. Now we have a sequence of blow-ups p0 : R → Rq0
 such that the first key polynomial is a monomial 

and such that for every s = (s1, s2) ∈  0 ′S , we have s1 | s2 in Rq0
.

We denote by ( )( )i
j j

P
∈

 the sequence of the generators of the ν -ideals of the Bi. For the moment we only monomialize 
(0)

0P  and still denote by p0 : R → Rq0
 the sequence of blow-ups that monomializes the first key polynomial (0)

0P  and such that for 
every s = (s1, s2) ∈  0 ′S , we have s1 | s2 in Rq0

.
 Arguing exactly as in the proof of Theorem 3.4.19, we show that there exists a sequence π(2) : Rq0

 → ... → R1 that 
monomializes the second key polynomial.

We have a sequence π(2) ◦ p0 : R → Rq0
 → R1 that monomializes the first two key polynomials, the element (0)

0P , and 
such that for every s = (s1, s2) ∈  0 ′S , we have s1 | s2 in Rq0

. Now, again by Proposition 3.2.4, we construct a sequence          
p1 : R1 → Rq1

 such that for every s = (s1, s2) ∈  1 ′S , we have s1 | s2 in Rq1
.

Now we monomialize all the ( )i
jP  for i, j ≤ 1 and still denote, by abuse of notation, by p1 : R1 → Rq1

 the sequence of 
blow-ups that monomializes these ( )i

jP  and such that for every s = (s1, s2) ∈  1 ′S , we have s1 | s2 in Rq1
.

Arguing exactly as in the proof of Theorem 3.4.19, we show that there exists a sequence of blow-ups π(3) : Rq1
 → ... 

→ R2 that monomializes the third key polynomial.
So we have a sequence π(3) ◦ p1 ◦ π(2) ◦ p0 : R → Rq0

 → Rq1
 → R2 that monomializes the first three key polynomials, 

the elements ( )i
jP  for i, j ≤ 1, and such that for every s = (s1, s2) ∈ 0 ′S  or 1 ′S , we have s1 | s2 in Rq0 

or in Rq1
. Now, again by 

Proposition 3.2.4, we construct a sequence p2 : R2 → Rq2
 such that for every s = (s1, s2) ∈ 2 ′S , we have s1 | s2 in Rq2

.
Now we monomialize all the ( )i

jP  for i, j ≤ 2 and still denote, by abuse of notation, by p2 : R2 → Rq2
 the sequence of 

such that in we have
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blow-ups that monomializes these ( )i
jP  and such that for every s = (s1, s2) ∈ 2 ′S , we have s1 | s2 in Rq2

.
Then we have a sequence p2 ◦ π(3) ◦ p1 ◦ π(2) ◦ p0 that monomializes the first three key polynomials, the elements ( )i

jP  
for i,  j ≤ 2, and such that for every s = (s1, s2) ∈ i ′S  for i ∈ {0, 1, 2} we have s1 | s2 in Rqi

. We iterate this process an infinite 
number of times. Hence we construct a sequence of blow-ups (R, u) → ··· → (Rm, u(m)) → ··· that monomializes all the key 
polynomials, all the generators ( )i

jP  (and so all the elements of the Bi) and that has the last property of the statement of the 
Theorem. 
3.5 Conclusion

Now we can prove the main result of this chapter, namely, simultaneaous embedded local uniformization for the local 
rings essentially of finite type over a field of characteristic zero.

A local algebra K essentially of field type over a field k that has k as residue field is an étale extension of

[ ]( )1
1 , ,
, , .

n
n u u

K k u u
…

′ = …

Let f  ∈ K be an irreducible element over k and

( ) [ ]1: , , .nI f k u u= …


The ideal I is a prime ideal of height 1, so I principal. We consider a generator f  of I. Then 
( ) ( )
K K

ff
′
  and each local 

sequence in 
( ) ( )
K K

ff
′
 induced a local sequence in 

( ) ( )
K K

ff
′
 .

So it is enough to prove local uniformization in the case of the rings k[u1, ..., un](u1,..., un) to prove it in the general case of 
algebras essentially of finite type over a field k.

Theorem 3.5.1 Let us consider the sequence

( ) ( )( ), , m
mR  u R  u→ → → 

of Theorem 3.4.21.
Then for every element f of R, there exists i such that in Ri , f is a monomial multiplied by a unit.
Proof. Let f ∈ R. By Theorem 3.3.5, there exists a finite or infinite sequence (Qi)i

 of key polynomials of the extension 
K(un), optimal (possibly limit) immediate successors, such that ( ( ) ( )R Rα α′< (Qi))i

 is cofinal in ( ) ( )R Rα α′< (Λ) where Λ is the set of key 
polynomials.

Then by Remark 3.3.9,  f  is non-degenerate with respect to one of these polynomials Qi. But we saw in Theorem 3.4.21 
that there exists an index l such that in Rl , all the Qj with  j ≤ i are monomials, hence f is non-degenerate with respect to a 
regular system of parameters of Rl .

Let N = (w1,..., ws) be a monomial ideal in u(l) such that ν ( N ) = ν ( f ) with w j monomials in u(l) such that                    
ν (w1) = min{ν (wj)}. By construction of the local framed sequence, there exists l' ≥ l such that in Rl' , w1 | wj for all j. So in 
Rl' ,  f is equal to w1 multiplied by a unit of Rl' . 

Theorem 3.5.2 (Embedded local uniformization). Let k be a zero characteristic field and  f  = ( f 1,..., f l) ∈  k [u1,..., un]
l 

be a set of l polynomials in n variables, that are irreducible over k. We set R := k[u1, ..., un](u1,..., un) and ν  a valuation centered 
in R such that k = kν . 

We consider the sequence (R, u) → ··· → (Rm, u(m)) → ··· of Theorem 3.4.21.
Then there exists an index j such that the subscheme of Spec(Rj) defined by the ideal ( f 1,..., f l) is a normal crossing 

divisor.
Proof. Renumbering, if necessary, we may assume

( ) ( ){ }1 min .jf fν ν=

By Theorem 3.4.21 there exists an index j1 such that in Rj1
 , the total transform of f1 is a monomial in u( j1), and so 

min
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defines a normal crossing divisor.
Now we look at the equation f2 in Rj1. By Theorem 3.4.21, there exists an index  j2 such that in Rj2, the total transform 

of f2 defines a normal crossing divisor.
In R2, the total transforms of  f1 and f2 define normal crossing divisors.
We iterate the process until the total transforms of  f1, ...,  fl define normal crossing divisors in Rjl.
By construction of the local framed sequence (R, u) → ··· → (Rm, u(m)) → ···, there exists j ≥ jl such that in Rj, we 

have f 1 | f i for every index i. 
Corollary 3.5.3 We keep the same notation and hypotheses as in the previous Theorem.
Then lim .iR Rν →

= .

4. Simultaneous local uniformization in the case of quasi-excellent rings for 
valuations of rank less than or equal to 2
4.1 Preliminaries

Let R be a local noetherian domain of equicharacteristic zero and ν  a valuation of Frac(R) of rank 1, centered in R 
and of value group Γ1. We are going to define the implicit prime ideal H of R for the valuation ν , which is a key object 
in local uniformization. Indeed, this ideal will be the ideal we have to desingularize. We are going to prove in this part 

that to regularize R, hence to construct a local uniformization, we only have to regularize 


 and H
RR
H

 and 
R
H

. At this point, the 
hypothesis of quasi excellence is very important: if R is quasi excellent, the ring  HR  is regular. So we will only have to 
monomialize the elements of 

R
H

.

4.1.1 Quasi-excellent rings and the implicit prime ideal
Definition 4.1.1 Let R be a domain. We say that R is a G-ring if for every prime ideal p of R, the completion 

morphism R R→p p
 is a regular homomorphism.

Definition 4.1.2 Let R be a local ring. Then R is quasi-excellent if R is a G-ring. More generally, if A is a ring, then A 
is quasi-excellent if A is a local G-ring whose regular locus is open for all A-algebra of finite type.

Proposition 4.1.3 [38] A local noetherian ring R is quasi-excellent if the completion morphism R R→  is regular.
Remark 4.1.4 Let R be a local ring. If R is a G-ring, then its regular locus is open. Since the class of G-rings is stable 

under passing to algebras of finite type, for every R-algebra A of finite type, the set Reg(A) is open.
Definition 4.1.5 We call the implicit prime ideal H of R the ideal 

{ }( )



0R

H P Rβ
β ν∈

=




. The ideal H is composed of the 
elements of R R→  whose value is greater than every element of Γ1.

Furthermore, the valuation ν  extends uniquely to a valuation ν  centered in 
R
H

 [47].
Proposition 4.1.6 Let R be a quasi-excellent local ring. Then  HR  is regular.
Proof. The ring R is a G-ring. Then for every prime ideal p of R, we have the injective map ( ) ( ) 

R Rκ κ ⊗p p  such 
that the fiber ( ) 

R Rκ ⊗p  is geometrically regular over ( ) ( ),  where :
R
R

κ κ = p

p

p p
p

. Since R is a domain, (0) is a prime 
ideal of R.

We write K := Frac(R), then we have the injective map 

RK K R⊗  such that the fiber 

RK R⊗  is geometrically 
regular over K. In other words the morphism 

RK K R⊗  is regular.
But R \ {0} and  HR \ H are two multiplicative subsets of  HR such that R \ {0}  \R H⊆ , since R ∩ H = {0}. Then,  HR  

is a localisation of  HRR \{0}. If we show that  HRR \{0} is regular, then  HR  will be also regular as a localization of a regular ring. 
By the universal property of tensor product, the ring  HRR \{0} is isomorphic to 

RK R⊗ , which is regular by hypothesis. This 
completes the proof. 
4.1.2 Numerical characters associated to a singular local noetherian ring

Let (S, q, L) be a local noetherian ring and µ a valuation centered in S. We write µ = µ2 ◦ µ1 with µ1 of rank 1. The 
valuation µ2 is trivial if and only if µ is also of rank 1. We denote by G the value group of µ and by G1 the value group of 
µ1. In fact G1 is the smallest isolated subgroup non-trivial of G. We set { }1:  such that ( )I x S x Gµ= ∈ ∉ , and then µ1 induces 
a valuation of rank 1 over S

I
. Let J  be the implicit prime ideal of 

ˆ
ˆ

S
IS

 for the valuation µ1 and J its preimage in Ŝ .
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Definition 4.1.7 We set

( )
ˆ

, : emb.dim .Se S
J

µ
 

=   
 

We assume that ( )2
1. Let , , nI v v v⊆ = …q  be a minimal set of generators of q. We have ( ) 1jv Gµ ∈  for every index j.

Definition 4.1.8 We have ( ) 1
1

n

j
j

v Gµ
=

⊆ ⊗∑   and we set

( ) ( )
1

, , : dim .
n

j
j

r S v vµ µ
=

 
=  

 
∑





Remark 4.1.9 We have r (S, v, µ) ≤ e (S, µ).
Now we consider M ⊂  {1, ..., n} and

( ) ( )( )1

(1) (1) (1)
1 1, , , , nS v S v v v→ = …

a framed blow-up along (vM). We set C' = {1, ..., n1} \ D1, where D1 is as in 3.1.3.

If the elements of vM are L-linearly independent in 2

ˆ
ˆ

S
J S+
q

q
, then there exists a partition of A that we denote by              

A'  A''. This partition is such that vM ∪  vA' are L-linearly independent modulo 2 ˆJ S+q  and vA'' is in the space generated by 
vJ ∪  vA' over L modulo 2 ˆJ S+q . As we know that { } 1

(1)
DA B jv v∪ ∪

′ = , we can identify A' ∪  B ∪  { j} with a subset of D1.
Now we set { }1 1 1:  such that ( )I x S x Gµ= ∈ ∉  and we consider 1J  the implicit prime ideal of 1

1 1

ˆ
ˆ

S
I S

 with respect to µ1 
and J1 its preimage in Ŝ1. We call q1 the maximal ideal of S1 and L1 its residue field.

Remark 4.1.10 We have e (S , µ) = n if and only if the elements of v are L-linarly independent in 
2

ˆ
ˆ

S
J S+
q

q
.

Theorem 4.1.11 If e (S , µ) = n, then:

( ) ( )1, , .e S  e S  µ µ≤

This inequality is strict once the elements of { }
(1)
A B j Cv ′ ′∪ ∪ ∪  are L1-linearly dependent in 1

2
1 1 1

ˆ
ˆ

S
J S+

1q

q
.

Proof. By definition, v(1) generates the maximal ideal q1 of S1, and so induces a set of generators of 


1
1

1

S
J

q . Since n1 ≤ n, 
by definition of a framed blow-up, we know that ♯C' ≤ ♯C.

Furthermore, we have e (S , µ) = ♯M + ♯A'. We also know that { }( )1

(1)
D A B jv ′∪ ∪  is in the L-vector space of { }

(1)
A B j Cv ′ ′∪ ∪ ∪  

modulo 2
1 1 1̂ J S+q .

So:

( ) { }1   ,   e S  A B j Cµ ′ ′≤ + + +   

1   A B   C′≤ + + +  
=   A M′ +  

( )= , .e S  µ

If in addition the elements of { }
(1)
A B j Cv ′ ′∪ ∪ ∪  are L1-linearly dependents in 1

2
1 1 1

ˆ
ˆ

S
J S+

1q

q
 then we have e (S1, µ) ﹤ ♯A' + ♯B +  

♯{ j} + ♯C' and so e (S1, µ) ﹤ e (S , µ).
Theorem 4.1.12 We have r (S1, v

(1), µ) ≥ r (S, v, µ).
Proof. This is induced by the two last points of Proposition 3.2.5. 

♯

♯

♯

♯

♯

♯

♯

♯ ♯

emb.dim

dim
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Corollary 4.1.13 Once e (S , µ) = n, we have

( ) ( ) ( )( ) ( ) ( ) ( )( )(1)
1 1 1, , , , , , , , , , .e S   e S  r S  v  e S   e S  r S  v  µ µ µ µ µ µ− ≤ −

The inequality is strict if e (S1, µ) ﹤ n.
Remark 4.1.14 We are doing an induction on the dimension n. We saw that this dimension decreases by the sequence 

of blow-ups.
If it decreases strictly, then it will happen a finite number of time and the proof is finished.
Then, after now, we assume this dimension to be constant by blow-up. In other words for all framed sequence S → S1, 

we assume that e (S , µ) = e (S1, µ) = n.
Similarly, we may assume that r (S, v, µ) = r (S1, v

(1), µ).
4.2 Implicit ideal

Let (R, m , k) be a local quasi excellent ring equicharacteristic and let ν  be a valuation of rank 1 of its field of 
fractions, centered in R and of value group Γ1. We denote by H the implicit prime ideal of R for the valuation ν .

By the Cohen structure Theorem, there exists an epimorphism Φ from a complete regular local ring A 


 k[[u1,...,un]] 

of field of fractions K into R̂
H

. Its kernel I is a prime ideal of A.

We consider µ a monomial valuation with respect to a regular system of parameters of AI. It is a valuation on A 
centered in I such that kµ = κ( I ) where κ( I ) is the residue field of I. Then we set  :ν ν µ= 

, hence we define a valuation on 
A. Let Γ be the group of ν .

Then, Γ1 is the smallest non-trivial isolated subgroup of Γ and we have:

( ){ }1 such that  .I f A fν= ∈ ∉Γ

Definition 4.2.1 Let π : (A, u) → (A', u' ) be a framed blow-up and σ : A' → A'  be the formal completion of A'. The 
composition σ ◦ π is called formal framed blow-up.

A composition of such blow-ups is called a formal framed sequence.
Let (A, u) → (A1, u

(1)) → ··· → (Al, u
(l)) a formal sequence, that we denote by (*).

Definition 4.2.2 The formal sequence(A, u) → (A1, u
(1)) → ··· → (Al, u

(l)) is said defined on Γ1 if for every integers        
i ∈  {0,..., l − 1} and q ∈  Ji, we have ( )( )

1
i

quν ∈Γ .

Now we consider ( ) ( )
1 , ,i i

i i nA k u u  …    and we denote by strict
iI  the strict transform of I in Ai.

Definition 4.2.3 We call formal transformed of I in Ai, and we denote it by Ii, the preimage in Ai of the implicit ideal   
of 

strict
i

i

A
I

.

Let vi be the greatest integer of {r, ..., n} such that 

( )( ) ( )
1 , , 0

i

i i
i i vI k u u  ∩ … =  

and we set

( ) ( )
1: , , .

i

i i
i i vB k u u  = …  

Definition 4.2.4 Let P be a prime ideal of A. We call  -th symbolic power of P the ideal ( )( ) : PP P A A= ∩  .
Equivalently, we have { }( )  such that  such that P x A y A P xy P= ∈ ∃ ∈ ∈  .
It is the set composed by the elements that vanish with order at least   in the generic point of V(P).
Let G be a complete ring of dimension strictly less than n and let θ be a valuation centered in G, of value group Γ.
We consider Γ1 the first non trivial isolated subgroup of Γ and ( ){ }1:  such that g G gθ= ∈ ∉Γg .

      

   
         g

∩

such that    

   

[[

[[ ]]

]][[

]]
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The next result will help us to prove the simultaneous local uniformization by induction.
Proposition 4.2.5 Assume that:
(1) In the formal sequence (A, u) → (A1, u

(1)) → ··· → (Al, u
(l)), there exists a formal framed subsequence

( ) ( )( ): , , i
iA u A uπ →

such that vi ﹤ n − 1.
(2) For every ring G as above, every element in G \ g (2) is monomializable by a formal framed sequence defined on 

Γ1.
Then for every element f of A \ I (2), there exists a formal sequence

( ) ( )( ), , l
lA u A u→ →

defined over Γ1 such that f can be written as a monomial in ( ) ( )
1 , ,l l

nu u…  multiplied by an element of lA× .
Proof. We assume that there exists a formal framed sequence

( ) ( )( ): , , i
iA u A uπ →

such that vi ﹤ n − 1. It means that vi + 1 ﹤ n. By definition of vi, we know that ( )( ) ( )
1 1: , , 0

i

i i
i i i vI k u u +

  = ∩ … ≠  g . So we 
consider an element g in (2) (2) ( ) ( )

1 1where :,  , ,
i

i i
i i i i i i vC C k u u +

  ⊆ = …   g g g . Since vi + 1 ﹤ n, the ring Ci is of dimension 
strictly less than n. So we can use the second hypothesis on the element g in the ring Ci.

Hence there exists a formal sequence defined over Γ1

( )( ) ( )( )( ) ( )
1 1 1, , , , , ,

i

i i
i v vC u u S u u ′+ ′ ′ ′… → → …

where v' ≤ vi + 1, and such that g can be written as a monomial in 1, , vu u ′′ ′…  multiplied by an element of S'×.
Since g i∈g , there exists a regular parameter of S', say ( ) 1,  such that v vu uν′ ′′ ′ ∉Γ . Indeed, g i∈g  = Ii ∩ Ci, so g ∈ Ii 

hence it belongs to I. Equivalently, itsatisfies ν (g) / ∉  Γ1. Since g can be written as a monomial in the generators of the 
maximal ideal of S' , one of these generator which appears in the factorization of g must be in I. Hence ( )|, 1

S ie S vν
′

′ < + .
Replacing every ring O which appears in

( )( ) ( )( )( ) ( )
1 1 1, , , , , ,

i

i i
i v vC u u S u u ′+ ′ ′ ′… → → …

by ( ) ( )
2 , ,

i

i i
v nO u u+

  …   , we obtain a formal sequence

( ) ( )( ) ( ): , ,i l
i lA u A uπ ′ → →

independent of ( ) ( ) ( ) ( )
2 2, , ,  with , ,

i i

i i i i
v n l v nu u A S u u+ +

  ′… = …   . But we know that ( ) ( )|, 1,  and so ,
S i le S v e A nν ν
′

′ < + < .
Let f be an element of A \ I (2). Its image under π' ◦ π is an element of Al, whose dimension is strictly less than n. Since 

all the Ai are quasi-excellent, we have ( )2
i if A I∉   and we can use again the second hypothesis. Hence we constructed a 

formal sequence π' ◦ π such that f can be written as a monomial in the generators of the maximal ideal of Al multiplied by a 
unit of Al. This completes the proof.

Now, we assume that for every formal sequence (A, u) → (A1, u
(1)) → ··· → (Al, u

(l)) and for every integer i, we have 
vi ∈ {n − 1, n}.

   

   
   

      

∩

[[ ]]

[[ ]]

[[ ]]
[[ ]]
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So for every integer i, we have ( ) ( )
1 1, , (0)i i

i i nI k u u −
  ∩ … =   .

We consider a complete local ring G of dimension strictly less than n and a valuation θ of rank 1 centered in G.
Lemma 4.2.6 Assume that for every ring G as above, there exists a formal framed sequence that monomializes every 

element of G.
Then I is of height at most 1.
Proof. If I = (0), the proof is finished. So we assume I ≠ (0) and we consider f ∈ I \ {0}. We write

0

j
j n

j
f a u

∞

=

=∑

with aj ∈ k[[u1,..., un−1]]. We consider an integer N big enough such that every aj with j > N is in the ideal generated by         
(a0, ..., aN). Now let us consider

{ } ( ) ( ){ }{ }0
: min 0, ,  such that min .j ss N

j N a aδ ν ν
≤ ≤

= ∈ … =

We set ( ) [ ]1 1: , ,  and :nu u u B k u−  = … =   . Since B is a complete local ring of dimension strictly less than n, by 
hypothesis we can construct a formal sequence ( ) ( ), ,B u B u′ ′→  such that for every j ∈ {0,..., N}, the element aj is a 
monomial in u′. By Propositions 3.2.4 and 3.2.7, we can construct a local framed sequence ( ) ( ), ,B u B u′ ′ ′′ ′′→  such that   
aδ | aj for every j ∈ {0,..., N} in B'', since aδ has minimal value. So we have a sequence

( ) ( ) ( ), , , .B u B u B u′ ′ ′′ ′′→ →

We compose with the formal completion and obtain

( ) ( ), ,B u B u′′ ′′→

in which we still have aδ | aj  for every j ∈ {0,..., N}.
We replace again all the rings O of the sequence ( ) ( ), ,B u B u′′ ′′→  by O[[un]], and obtain a sequence (A, u) → (A', u') 

independent of un and in which we still have aδ | aj  for every j ∈ {0,..., N}.
We recall that for every index i, we have

( ) ( )
1 1, , (0).i i

i i nI k u u −
  ∩ … =  

If we denote by I' the formal transform of I in A' , we obtain  (0)I B′ ′′∩ = . We know that f I
aδ

′∈ , and by Weierstrass 
preparation Theorem, f xy

aδ

=  where x is a unit of A', and y is a monic polynomial in un of degree δ. Then the morphism 


AB
I
′

′′ →
′
 is injective and finite.

Hence ( ) ( )dim dim 1. Since dimA B n A n
I
′  ′′ ′= = − = ′ 

, we have ( ) ( ) ( )ht ht dim dim ( 1) 1AI I A n n
I
′ ′ ′≤ = − = − − = ′ 

. 

This completes the proof.
Corollary 4.2.7 (of Lemma 4.2.6). We keep the same hypothesis as in Lemma 4.2.6. Let I = (h).
There exists a formal framed sequence (A, u) → (A', u') such that in A', the strict transform of h is a monic polynomial 

of degree δ.
From now on, we assume that h is a monic polynomial of degree δ.
Proposition 4.2.8 We keep the same hypothesis as in Lemma 4.2.6. Let I = (h). The polynomial h is a key polynomial.

such that

∩

[[ ]]

[[ ]]

]][[
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Proof. By definition, ( ){ }1 such that I f A fν= ∈ ∉Γ , so ( ) 1hν ∉Γ . Further-more, for every non-zero integer b, we 
have ( ) 1bhν ∂ ∈Γ  since h is a generator of I, hence has the smallest degree among all the elements of I and so bh I∂ ∉ .

Then ( ) 1h ∉Γ .
Let P be a polynomial such that deg (P) ﹤ deg(h). To show that h is a key polynomial, it remains to prove that             

 (P) ﹤  (h).
By the minimality of deg(h), we still have P ∉  I and so ν (P) ∈ Γ1. So for every non-zero integer b, we also have 

( ) 1bPν ∂ ∈Γ . Then  (P) ∈ Γ1.
Assume, aiming for contradiction, that  (P) ≥  (h).
Then −  (P) ≤  (h) ≤  (P) and since Γ1 is an isolated subgroup, Γ1 is a segment and so  (h) ∈ Γ1. Contradiction.
Hence,  (P) ﹤  (h) and h is a key polynomial. 
Now we are going to monomialize the key polynomial h.
As in the previous part, we construct a sequence (Qi) i ≥ 1 of key polynomials such that for each i the polynomial Qi+1 

is either an optimal or a limit immediate successor of Qi that begins with x and ends with h. So since  (h) is maximal in 
( )Λ , we stop. Then we have a finite sequence (Qi) i ≥ 1 of key polynomials such that for each i the polynomial Qi+1 is either 

an optimal or a limit immediate successor of Qi that begins with x and ends with h.
In the case I = (0), we construct again a sequence (Qi) i ≥ 1 of key polynomials such that for each i the polynomial Qi+1 

is either an optimal or a limit immediate successor of Qi such that  ( ( ): i i
= Q) is cofinal in  (Λ).

Since we don't assume k = kν  in this part, we need a generalization of the monomialization Theorems of the Part 3, 
paragraph 7.
4.3 Monomialization of key polynomials

Here we consider the ring A 


 k[[u1,...,un]] and a valuation ν  centered in A of value group Γ. For more clarity, we 
recall some previous notation.

Let r be the dimension of 
1

( ) in 
n

i
i

uν
=

Γ⊗∑


  . Renumbering if necessary, we may assume that ν (u1),..., ν (ur) are 
rationaly independent and we consider ∆ the subgroup of Γ generated by ν (u1),..., ν (ur).

We set E := {1,..., r, n} and

{ }(0) : min  such that ( ) .nu
α

α α αν
∗∈

= ∈∆


So (0) (0)

1
( ) ( )

r

n j j
j

u uα ν α ν
=

=∑  with

(0) (0)
1 , , 0sα α… ≥

and

(0) (0)
1, , 0.s rα α+ … <

We set

1 1( , , , ) ( , , , )r n r nw w w w u u u= … = …

and

1 1 1( , , ) ( , , ),t r nv v v u u+ −= … = …

   
      

   
   

such thatmin
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with t = n − r − 1.
We write ini ix uν= , and so x1,..., xr are algebraically independent over k in Gν . Let λ0 be the minimal polynomial of    

xn over k [x1,..., xr], of degree α. If xn is transcental, we set λ0 := 0.
We consider

(0)

1

,j
r

j
j

y xα
=

=∏

(0)

1

,j
r

j
j

y wα

=

=∏

(0)

nxz
y

α

=

and

(0)

.nwz
y

α

=

Let 0 (0)
: .d α
α

= ∈

If λ0 ≠ 0, we have

0 (0)
0

0
0

d
d q q

q
q

c y X αλ −

=

=∑

where 
0

0
,  1 and 

d
q

q d q
q

c k c c Z
=

∈ = ∑  is the minimal polynomial of z over Gν .

We are going to show that there exists a formal framed sequence that monomializes all the Qi. We have Q1 = un so we 
have to begin by monomializing Q2 .

First, let us consider

0 (0)
0

0

d
d q q

q q n
q

a b y w α−

=

=∑Q

where bq ∈ R such that bq ≡ cq modulo m and aq ∈ A×.
Then we will show that we can reduce the problem to this special case.
Let

(0) (0)
1 1( , , , ) ( , , ,0, ,0)r n sγ γ γ γ α α= … = … …

and

(0) (0) (0)
1 1( , , , ) (0, ,0, , , , ).r n s rδ δ δ δ α α α+= … = … − … −

Q
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We have

(0)

(0)
1

1

jn

j

r
n

n j r
j

j
j s

ww w w
w

α
δδδ

α=

= +

= =∏
∏

and

(0)

1

.j
s

j
j

w wαγ

=

=∏

So 
(0)

(0)

1

j

n
r

j
j

ww z
w w

αδ

γ
α

=

= =

∏
.

Let us compute the value of wδ.

(0) (0)

1
( ) ( ) ( )  

r

n j j
j s

w w wδν α ν α ν
= +

= − ∑

(0) (0)

1
( ) ( )

r

n j j
j s

u uα ν α ν
= +

= − ∑
(0) (0)

1 1
( ) ( )

r r

j j j j
j j s

u uα ν α ν
= = +

= −∑ ∑
(0)

1
( ) 

s

j j
j

uα ν
=

= ∑
(0)

1
( ) 

s

j j
j

wα ν
=

= ∑
. ( )wγν=

Theorem 4.3.1 There exists a local framed sequence

( ) ( ) ( )0 11
(1) ( )

1, , ,
l

l
lA u A u A u

π ππ −

→ → →
                                                                           (12)

with respect to ν , independent of v, that has the following properties:
For every integer i ∈ {1,..., l}, we write ( )( ) ( ) ( )

1 , ,
i

i i i
nu u u= …  and denote by ki the residue field of Ai. 

(1) The blow-ups π0,..., πl−2 are monomial.
(2) We have lz A×∈ .
(3) We have

0if 0
1 otherwise.l

n
n

n
λ ≠

=  −

if

otherwise.
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(4) We set

( )
( )

( ) ( ) ( )
1 0( )

( ) ( )
1

, , , ,  if 0

, , , otherwise.

l l l
r nl

l l
r

w w v w
u

w w v

λ … ≠= 
…

For every integer j ∈ {1,..., r, n}, wj is a monomial in ( ) ( )
1 , ,l l

rw w…  multiplied by an element of lA× . And for every 
integer j ∈ {1,..., r}, ( ) 1where  l r

jw wη η += ∈ .
(5) If 0( )

0 0,  then dl
nw yλ ≠ = ×Q .

Proof. We apply Proposition 3.2.4 to (wδ, wγ) and obtain a local framed sequence for ν , independent of v, such that      
wγ | wδ in Al. 

By Proposition 3.2.7 and the fact that wδ and wγ have same value, we have wδ | wγ in Rl. In fact 1, lz z A− ×∈ . So we 
have the point (2).

We choose the sequence to be minimal, it means that the sequence composed by π0,..., πl−2 does not satisfy the 
conclusion of Proposition 3.2.4 for (wδ, w γ). We are now going to show that this sequence satisfies the conclusion of 
Theorem 4.3.1. Let i ∈ {0,..., l}. We write ( )( ) ( ) ( ) ( )

1 , , , ,  with 1 0
i i

i i i i
r n i iw w w w r n t= … = − − > . For every integers i ∈ {0,..., l} 

and { }1, , ij n∈ … , we write ( )( ) ( )i i
j juβ ν= . For all i ﹤ l, πi is a blow-up along an ideal of the form ( )( )

i

i
Ju . Renumbering if 

necessary, we may assume that 1 ∈ Ji and that Ai+1 is a localization of 
( )

( )
1

i

i
J

i i

u
A

u
 
 
  

. Hence, { }( ) ( )
1 min

i

i i
jj J

β β
∈

= .

Lemma 4.3.2 Let i ∈ {0,..., l − 1}. We assume that the sequence π0,..., πi−1 of (12) is monomial.
We write ( ) ( )

( ) ( )
( ) ( ) and 

i i
i iw w w w

γ δγ δ= = . Then:
(1) ri = r,
(2)

( )( ) ( ) ( ) 0,i i i
q q q

q E
γ δ β

∈

− =∑                                                                                                                                             (13)

(3) gcd ( )( ) ( ) ( ) ( ) ( ) ( )
1 1 , , , 1,i i i i i i

r r n nγ δ γ δ γ δ− … − − =
(4) Every  -linear dependence relation between ( ) ( ) ( )

1 , , ,i i i
r nβ β β…  is an integer multiple of (13).

Proof.
(1) It is enough to do an induction on i and use Remark 3.1.6.

(2) We have ( ) ( )w wγ δν ν= , in other words ( ) ( )
( ) ( )

( ) ( )
i i

i iw w
γ δ

ν ν   =   
   

. Since ( )( ) ( ) ( ) ( )
1 , , ,

i i

i i i i
r nw w w w= … ,      

we have:

( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1

.
i ii ii i

j jn ni i

i i

r r
i i i i

j n j n
j j

w w w w
γ δγ δ

ν ν
= =

   
× = ×   

   
∏ ∏

So we have

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
.

i i

i i i i

r r
i i i i i i i i

j j n n j j n n
j j

w w w wγ ν γ ν δ ν δ ν
= =

+ = +∑ ∑

By definition of w(i), for every integer { }1, , ,i ij r n∈ …   , we have ( ) ( )i i
j jw u= . So ( )( ) ( )i i

j jwν β= . Then:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
.

i i

i i i i

r r
i i i i i i i i

j j n n j j n n
j j
γ β γ β δ β δ β

= =

+ = +∑ ∑

if

otherwise.
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Hence ( )
{ }

( ) ( ) ( )

1, , ,
0.

i i

i i i
j j j

j r n
γ δ β

∈ …

− =∑
But ri = ni − t − 1 = r, so ni = r + t + 1 = n, and:

( )
{ }

( )
{ }

( ) ( ) ( ) ( ) ( ) ( )

1, , , 1, , ,
  

i i

i i i i i i
j j j j j j

j r n j r n
γ δ β γ δ β

∈ … ∈ …

− = −∑ ∑

( )( ) ( ) ( ) i i i
j j j

j E
γ δ β

∈

= −∑
 0.=

(3) Same proof as in Theorem 3.4.4.
Lemma 4.3.3 The sequence ( ) ( ) ( )0 11

(1) ( )
1, , ,

l
l

lA u A u A u
π ππ −

→ → →
 

 of Theorem 4.3.1 is not monomial.
Proof. Same proof as Lemma 3.4.7. 
Lemma 4.3.4 Let i ∈ {0,..., l  − 1} and we assume that π0,..., πi−1 are all monomial. Then following properties are 

equivalent:
(1) The blow-up πi is not monomial.
(2) There exists a unique index { } ( ) ( )

11  such that .i i
i qq J β β∈ =

(3) We have i = l − 1.
Proof. Same proof as Lemma 3.4.8. 
Using induction on i and Lemma 4.3.4, we conclude that π0,...,  πl−2 are monomial. This proves the first point of the 

Theorem.
It remains to prove the last three points.
By Lemma 4.3.4 we know that there exists a unique element { }1 1l lq J j− −∈   such that ( 1) ( 1)

1
l l

qβ β− −= , hence we are in 
the case ♯Bl −1 + 1 = ♯Jl−1 − 1. We now have to see if 

1
0

lkt −
=  or 1.

We recall that ( 1) ( 1)
1  and where  l l

qw w w wµ− −= =   and µ are two columns of a unimodular matrix such that 
( )µ γ δ− = ± − . So ( 1) ( 1)

1So  and l l
qx x x xµ− −= = , then

( ) ( )(0) (0) (0)
1

( 1)
, , ,

( 1)
1

.r
l

q
l

x
x x x

x
α α αγ δµ

−
± … −± −−

− = = =

In other words

( )
(0)

(0)

1

( 1)
11 1 1

( 1)
1

.

j
r

l j
q j
l

n

x
x

z z
x x

α

α

±

−
±= − ±

−

 
 
 = = =
 
 
 

∏

So we can assume 
( 1)

( 1)
1

l
q
l

x
z

x

−

− = .

The case 
1

0
lkt −
= = 1 corresponds to the fact that z is transcendantal over k, in other words λ0 = 0. The case 

1
0

lkt −
= = 

0 corresponds to the fact that z is algebraic over k, in other words λ0 ≠ 0. The third point of the Theorem is then a 
consequence of 3.1.9.

Since ( 1) ( 1)
1 , ,l l

rβ β− −…  are linearly independent, we have q = n. By 3.1.9, if  λ0 ≠ 0, we have
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( )
( 1) ( 1)

( ) ( )
0 0 0 0( 1) ( 1)

01 1

( ) .
l l d

l l in n
n n n i il l

i

u ww u u z a b z
u w

λ λ λ λ
− −

− −
=

   
′= = = = = =   

   
∑

Remark 4.3.5 We have ( )0
0

d
i

i i
i

z c b zλ
=

=∑  where ci are units. Then we choose to set ci = ai for every index i.

But since 
(0)

nwz
y

α

= , we have

( )0 (0)
0

(0)
0

0 0

( ) 0

0

d i
d ii

d i i n
l n i

n i i d d
i

a b y w
ww a b

y y y

α
α

−

=

=

 
 = = =
 
 

∑
∑ Q

and the point (3.3) is proven.
So it remains to prove the point (3.2).
We apply Proposition 3.2.5 to i = 0 and i' = l. By the monomiality of π0,...,  πl−2, we know that Di = {1,..., n} for every       

i ∈ {1,..., l − 1}.
We know that Dl = {1,..., n} if λ ≠ 0 and Dl = {1,..., n − 1} otherwise. Here we set again uT = v.
By Proposition 3.2.5, for every j ∈ {1,..., r, n}, wj = uj is a monomial in ( ) ( )

1 , ,l l
rw w…  (or equivalently in ( ) ( )

1 , ,l l
ru u… )  

multiplied by an element of lA× .
Same thing for the fact that for every integer j ∈ {1,..., r}, we have ( )l

jw wη= . This completes the proof. 
Remark 4.3.6 In the case Q2 = Q, we constructed a local framed sequence such that the total transform of Q2 is a 

monomial. We will bring us to this case.
Definition 4.3.7 [24] A local framed sequence that satisfies Theorem 4.3.1 is called a n-generalized Puiseux package.
Let j ∈ {r + 1,..., n}. A  j-generalized Puiseux package is a n-generalized Puiseux package replacing n by j in Theorem 

4.2.1.
Remark 4.3.8 We consider (A, u) → ··· → (Ai, u

(i)) → ... a j-generalized Puiseux package, with j ∈ {r + 1,..., n}.
We replace each ring of this sequence by its formal completion, hence we obtain o formal framed sequence that we call a 
formal j-Puiseux package. So Theorem 4.3.1 induces a formal n-Puiseux package that satisfies the same conclusion as in 
Theorem 4.3.1.

Since we want to do an induction, now we will assume until the end of Theorem 4.3.14, that we know how to 
monomialize every complete local equicharacteristic quasi excellent ring G of dimension strictly less than n equipped with 
a valuation of rank 1 centered in G by a formal framed sequence. This hypothesis is called Hn.

Lemma 4.3.9 Let 
( )un

j
j n

j S P
P c u

∈

= ∑  the un-expansion of an optimal immediat successor key element of un.

There exists a formal framed sequence (A, u) → (Al , u
(l)) that transforms each coeficient cj in a monomial in 

( )( ) ( )
1 , ,l l

ru u… , multiplied by a unit of Al.
Hence, after this sequence, P can be written like ( )0 (0)

0

0

d i
d i

i i n
i

a b y wα−

=
∑ .

Proof. We will prove a more general result in 4.3.12.
Theorem 4.3.10 If limnu P , then P is monomializable.
Proof. Same proof as Theorem 3.4.14. 
Lemma 4.3.11 There exists a formal framed sequence

( ) ( )( ), , l
lA u A u→

such that in Al, the strict transform of the polynomial Q2 is a monomial.
Proof. If un ﹤ Q2, we use Lemma 4.3.9 and Theorem 4.3.1 to conclude. Otherwise, un ﹤lim Q2 and so we use Theorem 

3.4.14. 
We constructed a formal framed sequence that monomializes Q2. But we want one that monomializes all the key 

Q
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polynomials of ( ): i i
= Q.

Now we are going to show that if we constructed a formal framed sequence (A, u) → (Al, u
(l)) that monomializes Qi, 

then we can associate another (Al, u
(l)) → (As, u

(s)) such that in As, the strict transform of Qi+1 is also a monomial.
Let ∆l be the group ( ) ( )( ) { }( )1 1, , 0l l

l nk u uν −…   and

{ }( ): min  such that .l
l n lh hα β= ∈∆

We set ( )( ) ( )in ,  l l
j j j jX u W wν= =  and λl the minimal polynomial of Xn over ( ) ( )( )1 1gr , ,l l

l nk u uν −…  of degree αl.
We know that Qi ( )  with l

i nwω ω=Q  a monomial in W1,..., Wr multiplied by a unit. We set ( ): inνω ω= .
If Qi lim 1i i+<Q Q Qi+1, we use Theorem 4.3.10 and the proof is finished. So we assume that Qi+1 is an optimal immediate 

successor of Qi.
We write 

1

1
( ) 0ii

s
j j

i j i j i
j S j

a a
+

+
∈ =

= =∑ ∑
Q Q

Q Q Q  the Qi-expansion of Qi+1 in ( ) ( )( ) ( )( )1 1, ,l l l
l n nk u u u−… .

We have 1 ( )
1 1 0  and since s s l

i i s i i na a wω−
+ −= + + + =Q Q Q Q , we have

( ) ( ) 1( ) ( )1 1 0 .
s sl li s

n ns s

a au u
ω ω ω

−+ −= + + +

Q

We know that for every index j such that aj ≠ 0, we have

( ) ( )1 .
i

j
j i iaν ν += QQ Q

So all non-zero terms of the Qi-expansion of Qi+1 have same value. Then, by hypothesis Hn, all these terms are 
divisible by the same power of ω  after an appropriate sequence of blow-ups ( i∗ ) independent of ( )l

nu .
We denote by  1i+Q  the strict transform of Qi+1 by the composition of ( i∗ ) with the sequence ( i′∗ ) that monomializes 

Qi. We denote this composition by (ci).
We know that  1i+Q , the strict transform of Qi by (ci), is a regular parameter of the maximal ideal of Al. Indeed, by 

Proposition 3.2.5, we know that each uj of A can be written as a monomial on ( ) ( )
1 , ,l l

rw w… . In fact, the reduced exceptional 
divisor of this sequence is exactly ( )red

V ω . Hence, as we know that Qi ( )l
i nw ω=Q , we do have that the strict transform of Qi 

is  ( ) ( )l l
i n nw u= =Q . So it is a key polynomial in the extension ( )( )( ) ( ) ( )

1 1, ,l l l
l n nk u u u−… .

Let us show that  1
1

i
i sω

+
+ =

Q
Q .

We have as = 1 and ( )( ) ss s l
i nuω=Q  and also ( )l

nu ω , so sω  divides the term s
s ia Q  and so all the non-

zero terms of Qi-expansion of Qi +1. Furthermore, it is the biggest power of ω  that divides each term, hence 

( ) ( ) 1( ) ( )1 1 0s sl li s
n ns s

a au u
ω ω ω

−+ −+ + +

Q  is  1i+Q  the strict transform of Qi+1 by the sequence of blow-ups, that satisfies  

1i i+Q Q  
by hypothesis.

Let G be a complete local equicharaceristic ring of dimension strictly less than n equipped with a valuation centered 
in G.

Lemma 4.3.12 We assume that for every ring G as above, every element of G is monomializable.
Assume that Qi 1  in i i+< Q Q .
Then there exists a local framed sequence (Al, u

(l)) → (Ae, u
(e)) such that in Ae, he strict transform of Qi+1 is of the form 

0

s
q

q q n
q

Xτ η
=
∑ , where  and q e qRτ η×∈  are monomials in ( ) ( )

1 , ,e e
ru u… .

Proof. By hypothesis, after a sequence of blow-ups independent of ( )l
nu , we can monomialize the aj and assume that 

they are monomials in ( )( ) ( )
1 1, ,l l

nu u −… multiplied by units of Al.
For every g ∈ {r + 1,..., n − 1}, we do a generalized g-Puiseux package as in Theorem 4.3.1, hence we have a 

sequence

such thatmin

Qi+1

Qi+1

Qi+1Qi

Q Q

Q Q Qi

Qi+1

Q Qi+1Qi

Qi+1

Qi

Qi

Qi+1
Qi+1

Qi+1QiQi+1
Qi+1

Q Q

Qi+1
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( ) ( )( ) ( ), ,l t
l tA u A u→

such that each ( )( ) ( ) ( )
1 is amonomial in , ,l t t

g ru u u… .
In fact we can assume that the aj are monomials in ( )( ) ( )

1 , ,l l
ru u…  multiplied by units of Al.

Since the strict transform

 ( ) ( ) 1( ) ( )1 1 0
1

s sl li s
i n ns s

a au u
ω ω ω

−+ −
+ = = + + +

Q
Q

is an immediate successor key element of  1i+Q , this completes the proof. 
Remark 4.3.13 Lemma 4.3.9 is a particular case of Lemma 4.3.12.
Theorem 4.3.14 We still assume Hn.
We recall that car ( ) 0kν =  If Qi is monomializable, then there exists a formal framed sequence

( ) ( ) ( ) ( )0 1 11
(1) ( ) ( )

1, , , ,
l l m

l m
l mA u A u A u A u

π π π ππ − −

→ → → → →                                                                                                                                              (14)

that monomializes Qi+1.
Proof. There are two cases.
The first one: Qi ﹤ Qi+1.
Then the strict transform  1i+Q  of Qi+1 by the sequence (A, u) → (Al, u

(l)) that monomializes Qi is an immediate 
successor key element of  ( )

l

l
i nu=Q , and by Lemma 4.3.12 we just saw that we can bring us to the hypothesis of Theorem 

4.3.1. So we use Theorem 4.3.1 replacing Q1 by  1i+Q  and Q2 by  1i+Q .
The last one: Qi ﹤lim Qi+1.
We apply Theorem 4.3.10 replacing un by  1i+Q  and P by  1i+Q . 
As in the previous part, we consider, for every integer j, the countable sets

( )
( )

( ) ( )

1

: , with 
j

i
n

j j
j i i

i

u
α

α
=

 
= ∈ 
 
∏ S

and

( ) ( ) ( ){ }1 2 1 2: , , with j j js s s sν ν= ∈ × ≤S S S

assuming that for every { } (0)1, , ,  i ii n u u∈ … = .
The set S j is countable for every j, so we can number its elements, and set S j { }( ): j

m m
s

∈
=



. Now we consider the finite 
set

{ } { }( ) ( ): ,  , .  j m
j m js m j s m j′ = ≤ ∪ ≤S

Hence ( )j j j j
j j j∈ ∈ ∈

′× = =
  

  

S S S S  is a countable union of finite sets.

Since we consider all the elements according uniquely to the variable un, and more generally according to ( )i
nu , and 

since we do an induction on the dimension, we have to know how to monomialize the elements of ( ) ( )
1 1: , ,i i

i nB k u u − = …  .
Theorem 4.3.15 Let A 


 k[[u1,...,un]] equipped with a valuation ν  centered in A.

We recall that car ( ) 0kν = . There exists a formal sequence

    

        

    

with

with

Qi+1

Qi

Qi+1

Qi+1

Qi

Qi

Qi Qi+1

Qi+1
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( ) ( )0 1
( ), ,

s s
s

sA u A u
π π π−

→ → →                                                                                                                                              (15)

that monomializes all the key polynomials of ( ): i i
= Q and all the elements of the Bi for all i. Furthermore, the sequence has the 

property:

( )1 2 1 2 ,   such that  in .j j ij s s s  i s s A≥′∀ ∈ ∀ = ∈ ∃ ∈  ∣S

In other words for every index l, there exists an index pl such that in 
lpA , Ql is a monomial in ( )lpu  multiplied by a unit 

of 
lpA .
Proof. To show that we can choose the sequence (15) such that

( )1 2 1 2 ,    such that  in ,j j ij s s s i s s A≥′∀ ∈ ∀ = ∈ ∃ ∈  ∣S

and that all the elements of the Bi are monomialized, we do the same thing than in Theorem 3.4.21.
Then we do an induction on the dimension n and on the index i and we iterate the above process. 
Corollary 4.3.16 Let A 


 k[[u1,...,un]] equipped with a valuation ν  centered in A, of value group Γ. We assume

( ){ } ( ) ( )1 such that 0 ,I a A a hν= ∈ ∉Γ = ≠

where Γ1 is the smallest isolated subgroup of Γ. We recall that car ( ) 0kν = .
There exists a formal framed sequence

( ) ( )( ), , l
lA u A u→…→ →…

such that in Al, the polynomial h can be written as a monomial multiplied by a unit.
Proof. The sequence ( ): i i

= Q has been constructed to contain h, so we just have to use Theorem 4.3.15. 
4.4 Reduction

Let (R, m, k) be a local quasi excellent equicharacteristic ring and let ν  be a valuation of its field of fractions, of rank 1, 
centered in R and of value group Γ1.

We denote by H  the implicit ideal of R.
We are going to see that in this case, we just have to regularise 

R
H

.
We consider { }1: , , sf f= … ⊆ m , and assume that f1 has minimal value.
Remark 4.4.1 We consider  

11R R R R→ → → 1 a formal framed blow-up and we denote by H' the strict transformed 
of H  in R1.

Then we define 1H  as the preimage in R 1 of the implicit ideal of 




1

1

R
H R′

.
We iterate this contruction for every formal framed sequence.
Theorem 4.4.2 We recall that car ( ) 0kν = . There exists a formal framed sequence

( ) ( ) ( )( )(0) ( ) ( ) ( )
0 0 1, , , , , , , ,i i i

i n iR u k R u k R u u u k= → → = …

such that:
(1) The ring 



i

i

R
H

 is regular, 

(2) For every index j, we have that fj mod ( )iH  is a monomial in u(i) multiplied by a unit of 


i

i

R
H

,

(3) For every index j, we have f1 mod ( )iH  |  fj mod ( )iH  in 


i

i

R
H

.

   

   

such that in

such that in

such that
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Proof. Set n := e(R, ν ) and u := (y, x) with

( )1: , , n ny y y −= …


and

( )1: , , nx x x= …

such that the images of the xj in 
R
H

 induce a minimal set of generators of 
H
m

 and such that y generates H .
We do an induction on (ni, ni − ri, vi).

We saw the existence of the surjection Φ from A 


 k[[u1,...,un]] to 
R
H

, of kernel ( ){ } ( )1 such that SpecI f A f Aν= ∈ ∉Γ ∈ 
( ){ } ( )1 such that SpecI f A f Aν= ∈ ∉Γ ∈  where ν  is defined as in section 4.2. We denote by L the field of fractions of A.

If v0 ﹤ n − 1, then we do the same thing as in Proposition 4.2.5 and we strictly decrease e(A, ν ).
The we can assume v0 ∈ {n − 1, n}.
Assume v0 = n − 1.
Then we know that I = (h) and that there exists a formal framed sequence ( ) ( )( ), ,A x A x→ 



 that monomializes h by 
Corollary 4.3.16. So one of the generators that appears in its decomposition must be in I



. Hence there exists ( )
px   such 

that ( )( ) 1pxν ∉Γ . So by Theorems 4.2.5 and 4.1.11, there exists a local framed sequence that decreases strictly e(A, ν ), so 
this case can happen a finite number of time, and we bring us at the case I = (0). It means the case where 

A
I

 is regular.
Case I = (0). For every fj, we have ν ( fj ) ∈ Γ1. So the element fj is a non-zero formal series and by Weierstrass 

preparation Theorem, we know that we can see it like a polynomial in xl with coeffcients in k[[x1,..., xn−1]]. We construct 
a sequence of key polynomials in the extension k((x1,..., xn−1))(xn) as in previous section. In other words this sequence is a 
sequence of optimal (possibly limit) immediate successors which is cofinal in ( ) ( )R Rα α′< (Λ), where Λ is the set of key polynomials. 
So the element  fj is non-degenerate with respect of one of these polynomials that all are monomializable by the above part. 
Hence there exists a local framed sequence (A, x) → (Ai, x

(i)) such that in Ai, the strict transform of  fj is a monomial in x(i)

multiplied by a unit of Ai.
If there exists a formal framed sequence such that vi ﹤ n − 1, then by Proposition 4.2.5, we can conclude by induction.
Iterating the case I = (0), we assure the existence of a local framed sequence such that all the strict transforms of the 

fj are monomials multiplied by units. Doing another blow-up if necessary, we assume that there exists of a local framed 
sequence (A, x) → (A', x') such that all the strict transforms of the fj are monomials only in 1, , rx x′ ′… .

By Proposition 3.2.4, we can assume that for every j and every p, we have either fj | fp or fp | fj.
So we have a local framed sequence

( ) ( ) ( )0 1
(1) ( )

1 1, , , , , ,
i

i
i iA x k A x k A x k

ρ ρρ

→ → →

that monomializes the fj and such that for all j and q, we have fj | fq or the converse.
By the minimality of ν ( f1), in Ai, we have f1 | fj for every j.
We have also two maps

( )


( ), , , , , , ,RR u k x k A x k
H

 
→ ←  

 

and we know that 
A R

I H
  since I = Ker(Φ). Hence, looking at the strict transform of 

A R
I H
 at each step of the sequence          

{ρj}0 ≤ j ≤i
, we obtain a local framed sequence
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( )
 

( )0 1
(1) ( )

1 1, , , , , , .
i

i
i i

R x k R x k R x k
H

ρ ρρ 
→ → →  

 
 



So we have the diagram:





( )
 

( )

( ) ( ) ( )

0 1

0 1

(1) ( )
1 1

(1) ( )
1 1

, , , , , , .

, , , , , ,

i

i

i
i i

i
i i

R x k R x k R x k
H

A x k A x k A x k

ρ ρρ

ρ ρρ

 
→ → →  

 
↑ ↑ ↑ ↑

→ → →

 





Similarly, either 
A R

I H

 is regular, or the sequence {ρj} can be chosen such that e(R, µ) strictly decreases.

So after a finite sequence of blow-ups, we bring us to the case where 


i

i

R
H

 is regular. Hence we can assume 


i

i

R
H

 regular 
and consider f1,..., fs elements of R \ {0} such that ( ) ( ){ }1 1

min jj s
f fν ν

≤ ≤
= . We know that the fj are all monomials in the u(i) and 

that f1 mod ( )iH  |  fj mod ( )iH . This completes the proof.
Theorem 4.4.3 Let R be a local quasi excellent domain and H be his implicit prime ideal. We assume that 

R
H

 is 
regular.

We recall that car ( ) 0kν = . There exists a sequence of blow-ups defined over R that resolves the singularities of R.
Proof. The ring  HR  is regular by Proposition 4.1.6. So we know that there exist elements  ( )1, , gy y…  of H HR  that 

form a regular system of parameters of  HR .
By definition of H HR , it means that there exist y1,..., yg elements of H and b1,..., bg elements of R H  such that for 

every index i, we have  i
i

i

y y
b

= .

The bi are elements  of HR× , so

 ( )   ( ) 1
11

1

, , , , , , .H H H
yyy y R R y y R

b b
 

… = … = …  
 

g
gg

g

Then we have some elements (y1,..., yg) of H that form a regular system of parameters of  HR .
Now we consider (x1,..., xt) some elements of R H  whose images ( )1, , tx x…  modulo H form a regular system of 

parameters of 
R
H

.

If ( y1,..., yg) generate H, then  HR is regular. Indeed, in this case, ( y1,..., yg, x1,..., xt) generate  

R R= ⊗m m , which is the 
maximal ideal of  HR.

So

( )dim .R t≤ +g

We know that

( ) ( )dim htHR H= =g

and

g

dim

dim
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dim ht .Rt
H H

   
= =      

   

m

Then

( ) ( )im ht d  R = m

( )


h ht tH
H

 
≥ +   

 

m

 t= +g

( ). dim R≥

Then dim ( HR) = g + t and ( y1,..., yg, x1,..., xt) is a minimal set of generators of m , and so  HR is regular.
Now we assume that (y1,..., yg) do not generate H in  HR. So let us set (y1,..., yg, yg+1,..., yg+s) some elements that generate 

H in  HR.
We consider 





2
: H

H

H RV
H R

=  that is a vector space of dimension g = ht (H) over the residue field of H since  HR  is regular.
We know that y1,..., yg+s generate V and that

( )dim ,s V+ > =g g

so there exist elements a1,..., ag+s of  HR such that 



2
1 1 .Hg s g sa y a y H R+ ++…+ ∈

In other words there exist a1,..., ag+s in  HR and ( ) 

, 1 ,
in  Hi j i j g s

b R
≤ ≤ +

 in ( ) 

, 1 ,
in  Hi j i j g s

b R
≤ ≤ +

 such that

1 1 ,
1 ,

.s s i j i j
i j s

a y a y b y y+ +
≤ ≤ +

+…+ = ∑g g
g

We may assume

( ) ( ){ }1 1
min ii s

a aν ν
≤ ≤

=

and also that for every i, the element ai is not in H or is zero.
Since the ai are in  HR, we look at them modulo H. By Theorem 3.4.21, we know that the classes ia  of ai modulo H are 

monomialisable in 
R
H

 and that for every i, we have 1   ia a∣ .
Hence after a sequence of blow-ups, we have that 1   ia a∣ is a monomial 

1

i

t
c
i

i

w x
=

=∏  in x multiplied by a unit.

If we can show that a1 divides all the bi, j, then we could generate H in  HR by (y2,..., yg+s).
Iterating, we could generate H in  HR by g  elements, and it would be over.
So let us show that we can do a sequence of blow-ups such that at the end a1 divides all the bi, j.

dim

dim

dim

dim

min
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For every index { }  

1

11, , ,  there exists  such that i in n

i ii s n y
−

>∈ … + ∈ ∈ m mg . We set 
{ }

{ }
1, ,

: max ii s
N n

∈ … +
=

g
, and then 

for every { } 1, , ,  
N

ii s y∈ … + ∉mg .
We have a map R →  HR and we know that for every integer c, we have 

c cR∩ =m m . Hence we have an isomorphism 




cc

R R
→

m m

.
 
So for all { } 1, , ,  

N

ii s y∈ … + ∉mg , there exists zi ∈ R whose class modulo m N+2 is sent on yi by this map. Hence zi mod            

( m N+2) = yi. Increasing N if necessary, we may assume ( ) ( )1

N
aν ν>m .

More precisely ( ) ( )2

1 1 where , ,  and , , N
i i i i i s i ty z h h z z x xζ ζ+= + + ∈ … ∈ …g .

After a sequence of blow-ups independent of (z1,..., zg+s), we may assume that w, and so a1, divides all the ζi.

We do c1 blow-ups of (z1,..., zg+s, x1). Each z1 is transformed in a zi which is of the form 1
1

i
c

z
x .

We do c2 blow-ups of (z1,..., zg+s, x2). Each zi is transformed in a zi which is of the form 
2 1 2

2 1 2

i i
c c c

z z
x x x

= .
We iterate until doing c t blow-ups of

( )( 1) ( 1)
1 , , , .t t

s tz z x− −
+… g

So we transformed zi in ( )t
iz  which is of the form 

1

iz
a .

Then a1 divides all the ( )t
iz  , and so all the ( )t

ih  and the ( )t
iy . The bi, j are elements of  HR , so after this sequence 

of blow-ups, since the strict transform of H is generated by the ( )t
iy , we have that a1 divides all the bi, j, and the proof              

is finished.
4.5 Conclusion

We know are going to give the principal results of this part. First we recall a fundamental result of Novacoski and 
Spivakovsky [42].

Theorem 4.5.1 Let S be a noetherian local ring. If the local uniformization Theorem is true for every valuation of 
rank 1 centered in S, then it is true for any valuation centered in S.

So we just have to consider valuations of rank 1.
Theorem 4.5.2 Let S be a noetherian equicharacteristic quasi excellent singular local ring of characteristic zero. We 

consider µ a valuation of rank 1 centered in S.
There exists a formal framed sequence

( ) ( )( ), , i
iS u S u→…→ →…

such that for j big enough, Sj is regular and for every element s of S, there exists i such that in Si, s is a monomial.
Proof. We consider S  the formal completion of S and H its implicit prime ideal. By Cohen structure Theorem, there 

exists an epimorphism Φ from a complete regular local ring R in S . We consider H  the preimage of H in R. We extend 
now µ to a valuation ν  centered in R by composition with a valuation centered in H .

By Proposition 4.1.6 we know that  HS  is regular, and by Theorem 4.4.3 it is enough to show that 
S
H

 is also regular.

We know that 
S R
H H
  , so we just have to regularize 

S R
H H
  . We conclude withTheorem 4.3.15. 

Now we prove the principal result of this part: the simultaneous embedded local uniformization for local noetherian 
quasi excellent equicharacteristic rings.

Theorem 4.5.3 Let R be a local noetherian quasi excellent complete regular ring and ν  be a valuation centered in R.
Assume that ν  is of rank 1 or 2 but composed of a valuation ( f )-adic where f is an irreducible element of R. We 

assume car ( ) 0kν = .
There exists a formal framed sequence

( ) ( )( ), , l
lR u R u→…→ →…

'

' ' ' ''

ni-1 ni

c

c

N

N
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such that for every element g of R, there exists i such that in Ri, g is a monomial.
Proof. We consider the ring 

( )
RA
f

= . The valuation ν  is of rank 2 composed of valuation ( f )-adic, so ν  can be 

written µ ◦ θ where θ is the valuation ( f )-adic.
So we have a valuation µ centered in A of rank 1. By Theorem 4.5.2, we can regularize A, and so there exists a local 

framed sequence ( ) ( )( ), , i
iR u R u→…→  such that in Ri,  f is a monomial. In Ri, we also have that every element g of R can 

be written ( )( ) ( ) where 
ai i

n nu h u=g  is the strict transform of  f and h is not divisible by ( )i
nu . We apply another time Theorem 

4.5.2 to construct a local framed sequence which monomialize h. This completes the proof. 
Corollary 4.5.4 We keep the same notations and hypothesis as in the previous Theorem.
Then lim iR

→
 is a valuation ring.

Remark 4.5.5 The restriction on the rank of the valuation was setted to give an autosuffcient proof. Otherwise, there 
exists a countable sequence of polynomials χi such that every ν -ideal Pβ is generated by a subset of the χi. Assume the 
embedded local uniformization Theorem.

Then there exists a local (respectively formal) framed sequence  (R, u) → ··· → (Ri, u
(i)) → ... that has following 

properties:
(1) For i big enough, Ri is regular.

(2) For every finite set { }1, , sf f… ⊆ m  there exists i such that in Ri, every fj is a monomial and f1 |  fj.
Then for every element g in R, there exists i such that in Ri, g is a monomial.

5. Index
( ) ( )R Rα α′< ν(P), 10

Framed blow-up, 37

G-ring, 66
Generalized Puiseux package, 77

Immediate successor key polynomial, 22
Immediate successors key elements, 38
Independent framed blow-up, 37

Key element, 38
Key polynomial, 10

Limit immediat successor key polynomial, 25
Limit immediate successor key elements, 39
Limit key polynomial, 46

Monomial framed blow-up, 37
Monomializable, 51

Non-degenerate elements, 36
Optimal immediate successor key polynomial, 25

Puiseux package, 57
Quasi excellent ring, 66
Truncated valuation, 11
Valuation, 9
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