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Abstract: In this paper, we apply the Homotopy perturbation transform method of the time-fractional Fornberg-
Whitham equation with Caputo-Fabrizio fractional derivative. We establish the existence and uniqueness solutions of 
the time-fractional Fornberg-Whitham equation using fixed point theory. The physical interpretation of the nonlinear 
models are also discussed through the semi analytical solutions, which demonstrate the effectiveness of the proposed 
method. Finally, 2D and 3D graphs of some derived solutions are depicted through suitable parameter values.
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1. Introduction
The development of fractional calculus and the study of Fractional differential equations (FDEs) as a separate 

field of mathematics didn’t happen until the late nineteenth and mid twentieth hundreds of years [1-2]. In the late 
nineteenth hundred years, the French mathematician Henri Liouville introduced the concept of fractional derivatives, 
integrals and published several papers on the topic. Around the same time, the German mathematician Felix Klein 
also made contributions to the development of fractional calculus. In the early 20th century, the Italian mathematician 
Umberto Grunwald and the Russian mathematician Mikhail Letnikov independently developed the Grunwald-
Letnikov definition of fractional derivatives, which paved the way for the study of FDEs [3-4]. The same definition 
was independently rediscovered and developed further by the German mathematician Gustav Riesz. In the mid-
20th century, the Italian mathematician Giuseppe Caputo introduced the Caputo Fabrizio fractional derivative, which 
became a widely used definition in the study of FDEs. Caputo’s work also laid the foundation for the development of 
numerical methods for solving FDEs [5]. Since then, the study of FDEs has continued to evolve and has been used to 
solve a wide range of difficulties in various fields, including physics, engineering, finance, and biology. The theory of 
FDEs is still a functioning area of exploration, with continuous endeavors to foster new techniques for addressing these 
conditions, to understand the properties of solutions, furthermore, to track down new applications in different fields. 
The Time fractional differential equations (TFDEs) are mathematical models used to describe phenomena that exhibit 
memory or hereditary effects, where the current state of the system depends not just on the immediately preceding 
state yet in addition on the historical backdrop of the framework over some drawn out time period. These equations 
are characterized by derivatives of non-integer order, called fractional derivatives, which capture the memory effects 
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[6-7]. The TFDEs have found a wide range of applications in different fields, including physical science, designing, 
money, and science, among others [8-9]. For instance, they have been utilized to show the engendering of signs in 
correspondence frameworks, the diffusion of pollutants in porous media, and the pricing of financial derivatives. The 
hypothesis of time-FDEs is a relatively recent development, and there is still ongoing research in this area to understand 
the properties and behavior of solutions of these equations, as well as to develop numerical methods for solving them 
efficiently and accurately [10-12]. The Fornberg-Whitham equation (FWEs) is a numerical model used to describe the 
propagation of waves in a medium that is not uniform, such as in shallow water waves. It was first introduced by Bengt 
Fornberg and Gerald Whitham in the early 1970s. Fornberg and Whitham was interested in studying the behavior of 
waves in shallow water, which can be affected by the varying depth of the water. They developed the FWEs to describe 
the changes in wave amplitude and speed as the water depth varies [13-15]. Different methods have been devised to 
solve the fractional differential equations analytically and numerically since they show the memory features of the 
system. Its non-linearity trait makes it very difficult to find an exact solution, and the discrete point findings of numerical 
approaches do not provide consistency. To address this problem, a number of researchers have provided techniques, 
such as the sine Gordon expansion method [16-19], the Homotopy analysis method [20-21], the Bernoulli sub-equation 
function method [22], the generalized exponential rational function method [23], the He’s variational iteration method 
[24-26], the Homotopy perturbation technique [27-29], the Chebyshev spectral collocation method [30], the rational 
sine-cosine and rational sinh-cosh methods [31], the conformable derivative [32], the timefractional Caputo derivative 
[33], the Atangana-Baleanu derivatives [34], the fractional residual power series method [35], the Residual Power Series 
Method [36], semi-analytic technique to deal with nonlinear fractional differential equations [37]. For more details we 
can refer to [38].

One of the important models is the time-fractional Fornberg-Whitham equation [13-14], as follows:

0
CF

tDαu − uxxt + ux = uuxxx − uux + 3uxuxx, t > 0, 0 < α ≤ 1.

here the nonlinear term uux in (1) to u2ux, He’s et al. introduced in [24] the modified fractional Fornberg-Whitham 
equation.

0
CF

tDαu − uxxxt + ux = uuxxx − u2ux + 3uxuxx, t > 0, 0 < α ≤ 1.

where 0
CF

tDαu Caputo Fabrizio fractional derivative of non-integer order of the function u(x, t). If we set α = 1, the 
fractional order FWEs is converted to the classical nonlinear FWEs. Homotopy perturbation transform method can solve 
a large class of linear and nonlinear functional equations analytically, semi-analytically, and numerically. By hybridizing 
homotopy perturbation transform method with general transform, it can get the same results with faster convergence and 
improved accuracy. To prove the efficiency of the proposed homotopy perturbation transform method, we demonstrate 
our technique to solve the the time-fractional Fornberg-Whitham equation as nonlinear FPDE.

The rest of the paper is organized as follows. In Section 2, we present basic results which are needed in the sequel. 
In Section 3, we introduce a of the homotopy perturbation transform method for solving nonlinear partial differential 
equations. In Section 4, we obtain existence and uniqueness of the solution to the time-fractional Fornberg-Whitham 
equation. Numerical examples are obtained in Section 5 to confirm the accuracy and effectiveness of the proposed 
technique. The last section contains the final thoughts.

2. Preliminaries
In this section, the author provides definitions of important terms and concepts related to the topic being studied [3-

4].
Definition 2.1 If Caputo fractional derivative characterize for α ≥ 0 & n ∈ N ∪ 0 is defined as below (see [10]).

0 0
1( ) ( ) ( ) .

( )
ntC

t n
dD u t t u d

n dt
α ξ ξ ξ

α
= −
Γ − ∫

(1)

(2)

(3)
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where 0C tDα Caputo fractional derivative and t ≥ 0.
Definition 2.2 Caputo Fabrizio fractional derivative [10], where u ∈ H1(a1, b1), b1 > 0, 0 < α < 1, defined as

( ) 00
( ) (1 )( ) [ ] ( ) .

11
t

t
CF MD u t exp u dα α α ξ ξ ξ

αα
− ′= −
−− ∫

with a normalize functions M(α) which is depend on α ∈ M(0) = M(1) = 1.
Definition 2.3 Let 0 < α < 1; for the Caputo Fabrizio fractional derivative sense, the fractional Integral of order α is 

given by [10],

0 0

2(1 ) 2( ) ( ) ( ) .
( )(2 ) ( )(2 )

tCF
tD u t u t u d

M M
α α α ξ ξ

α α α α
−

= +
− − ∫

Definition 2.4 If Laplace transform (LT) for order 0 < α < 1 and m ∈ N, Caputo Fabrizio fractional derivative given 
as [10],
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we get
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3. Using HPTM to solve a broad time fractional differential equation in the sense 
of caputo fabrizio fractional derivative

If FHPTM is a numerical technique applied for approximate answer of nonlinear FDEs and other numerical issues. 
It is an iterative method that starts with an initial approximation and then perturbs it until a solution is found. We look at 
the following problem, which consists of a differential equation and a Caputo Fabrizio fractional derivative:

( )
0

CF m
tD α+ u(x, t) + βu(x, t) + φu(x, t) = k(x, t), n − 1 < α + m ≤ n,

for the initial conditions

( ,  0) ( ),  0,  1,  2,   1.
l

ll

u x f x l n
t

∂
= = … −

∂

when we apply the Laplace transform’s derivative rule to equations (7-8), we get
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here

1
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(1 )1( ,  ) [ ( ) ( ) ( )] ( ,  ).m m
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α−
+ +

+ −
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Utilizing the inverse Laplace transform on Eq. (9), we yield’s

1
1

(1 )( ,  ) ( ,  ) [ ( ,  ) ( ,  )] ,n
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s
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+
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as a result of an infinite series

0
( ,  ) ( ,  ).n

n
n

u x t p u x t
∞

=
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for nonlinear term is decomposable like

0
( ,  ) ( ,  ).n

n
n

u x t p H x tϕ
∞

=

= ∑

Hn are He’s polynomials that can be evaluated using the formula below [27].
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we substitute (12) and (13) into (9), yields
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we obtained following approximations by equating the terms with similar powers in p in Eq. (15)
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Finally, we derive the semi-analytic answer as a truncated series of approximations as
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Equation (16) represents a series solution, which converge very fast.
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4. Analysis of existence and uniqueness for the timefractional fornberg-whitham 
equation

The fixed-point hypothesis is utilize to exhibit the presence and uniqueness of the answer for the given numerical 
model by means of the CFFD with no solitary part are important in this segment. Consider the time-fractional FWEs as 
follows:

0
CF

tDαu = uuxxx − uux + 3uxuxx − ux + uxxt, 0 ≤ α < 1, t > 0.

u(x, 0) = h(x).

eq. (17) is composed as yield’s:

u(x, t) − u(x, 0) = I α[uuxxx − uux + 3uxuxx − ux + uxxt].

The following is how eq. (18) is changed into the Volterra integral equation:

[ ]2(1 )( ,  ) ( ,  0) 3
(2 ) ( ) xxx x x xx x xxtu x t u x uu uu u u u u

M
α

α α
−

− = − + − +
−

[ ]
0

2 3  .
(2 ) ( )

t

xxx x x xx x xxtuu uu u u u u d
M
α τ

α α
+ − + − +

− ∫

The objective is to demonstrate that Lipschitz condition (LC) is satisfied by the operator ϕ(x, t, u). In other words, 
we need to choose a constant that is positive L in such a way that

‖ϕ(x, t, u) − ϕ(x, t, v)‖ ≤ L‖u − v‖.

The operator (ϕ) meets the Lipschitz condition requirements. Let u and v are two constrained functions. Then, 
positive constants S and T exist in such a way ‖u‖ ≤ S, ‖v‖ ≤ T now have.

‖ϕ(x, t, u) − ϕ(x, t, v)‖ = ‖(uxxt − vxxt) − (ux − vx) + (uuxxx + 3uxuxx − vvxxx − 3vxvxx) − (uux − vvx)‖.

Using triangular inequality characteristics, the above becomes

‖ϕ(x, t, u) − ϕ(x, t, v)‖ ≤ ‖(u − v)xxt‖ − ‖(u − v)x‖ + ‖12(u2 − v2)xxx‖ − ‖12(u2 − v2)x‖.

We can get Q1and Q2 ∈ R+ using the Lipschitz of the function derivative.

‖(u − v)x‖ ≤ Q1‖(u − v)‖.

‖(u − v)xxt‖ ≤ 2
1Q Q2‖(u − v)‖.

and

‖12(u2 − v2)xxx‖ ≤ 3
1

1
2

Q ‖(u − v)(u + v)‖,

                       ≤ 3
1

1
2

Q ‖(u − v)‖(‖u‖‖v‖),

                       ≤ 3
1

1
2

Q (S + T)‖(u − v)‖.
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by substituting Eqs. (22-23) and (24) into equation (21), we get

2
2 1 1

1 2 1( ,  ,  ) ( ,  ,  ) ( )) ( ) ( ) .
2 2

Q Qx t u x t v Q Q Q S T S T u vφ φ
 

− ≤ + + + + + − 
 

‖ ‖ ‖ ‖

therefore

‖ϕ(x, t, u) − ϕ(x, t, v)‖ ≤ L‖(u − v)‖.

where

2
2 1 1

1 2 1 ( )) ( )
2 2

Q QL Q Q Q S T S T= + + + + +

This demonstrates the Lipschitz condition for ϕ.
Proposition 1 If the following conditions are met,

2 (1 ) 2 1.
(2 ) (2 ) ( )
L Lt

M
α α
α α α
−

+ <
− −

If TFFWEs with beginning condition (1), for example, admits uniqueness and continuous solutions.
Proof. When we consider Eq. (18),
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This implies the recurrence formula

		              u0(x, t) = u(x, 0).

1 10
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t

n n nu x t x t u x t u d
M M
α αφ φ τ

α α α α− −
−

= +
− − ∫

for

( ,  ) lim ( ,  ).nn
u x t u x t

→∞
=

( ,  ) ( ,  )u x t u x t=  solutions is now shown to be a continuous. Let us begin by establishing

Un(x, t) = un(x, t) − un−1(x, t),

it is self-evident

0
( ,  ) ( ,  ).

n

n m
m

u x t U x t
=

= ∑

In addition, we have gone into much deeper detail.
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[ ] [ ]1 2 1 20
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We obtain by applying the norm to both sides of Eq. (31) as well as the triangular inequality

1( ,  ) ( ,  ) ( ,  )n n nU x t u x t u x t−= −‖ ‖ ‖ ‖
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which is the same as
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When the recursive theory is used to Eq.(34), the result is
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illustrated solution exists & is being implemented.
It demonstrates that
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Let us consider solutions for Eq.(1).
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As a result of Eq (37), the differences Ren(x, t) amid u(x, t) and un(x, t) should converge to zero as n → ∞, as shown 
below.
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now we have
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Consequently, when n → ∞, then ℜn → 0 while the RHS provides
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= 

We can proceed with the information shown above u(x, t) = u(x, t), Because the answer to Eq. (1) is sustained,
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as a result of applying LC to ϕ,
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while taking the limit n → ∞ then the initial condition
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therefore, for the sake of essential character, assume u and v to be are two distinct solution to Eq. (1). The LC for ϕ then 
yields
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Then the theorem is established.

5. Numerical examples
In this part, we show how the HPTM works by putting it through two starting worth issues connected with the first 

and adjusted time-fractional FWEs.
Example 1 For the time-fractional Fornberg-Whitham equation with the following initial condition [13].

1
24( ,  0) .

3
x

u x e=

we get the LT on the two sides of Eqs. (1, 47)

[ ]
1
2 (1 )4[ ( ,  )] 3 .

3
x

xxx x x xx x xxt
s su x t e uu uu u u u u

s s
α+ − = + − + − + 

 
 

using the inverse of (LT) in Eq. (48),

[ ]
1

12 (1 )4( ,  ) 3 .
3

x
xxx x x xx x xxt

s su x t e uu uu u u u u
s

α−  + −  = + − + − +    
 

Furthermore, we denote the answer as an unending chain represented

0
( ,  ) ( ,  ).m

m
u x t u x t

∞

=

= ∑

and non-linear period uuxxx, uux and uxuxx can be decomposed by using He’s polynomials [27] as

0
( ,  ) .m xxx

m
H x t uu

∞

=

=∑

We can without much of a stretch assess the He’s polynomials’ parts. The first few components of Hm are written 
as

H0(u) = u0Dxxxu0,

H1(u) = u0Dxxxu1 + u1Dxxxu0,

H2(u) = u0Dxxxu2 + u1Dxxxu1 + u2Dxxxu0,



for H′m we find that

0
( ,  ) .m x

m
H x t uu

∞

=

′ =∑

H′0(u) = u0Dxu0,

H′1(u) = u0Dxu1 + u1Dxu0,

(47)

(48)

(49)

(50)

(51)

(52)
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for mH ′′ we find that

0
( ,  ) .m xxx

m
H x t uu

∞

=

′′ =∑

( )0 0 0 ,x xxH u D u D u′′ =

( )1 0 1 1 0 ,x xx x xxxH u D u D u D u D u′′ = +

2 0 2 1 1 2 0( ) ,x xx x xxx x xxxH u D u D u D u D u D u D u′′ = + +



using Eqs. (51)-(54) in Eq. (50) gives

0 0 0
( ) ( ) 3 ( ) .m m m

m m m
m m m

p H u p H u p H u
∞ ∞ ∞

= = =

 
′ ′′× + − + 

 
∑ ∑ ∑

1
12

0 0 0

(1 )4( ,  ) ( ,  ) ( ,  )
3

x m m
m m m

m m mxxt x

s su x t e p p u x t p u x t
s

α∞ ∞ ∞
−

= = =

     + − = + −      
        

∑ ∑ ∑ 

when quotients of the equal powers of p are compared, as follows

1
0 2

0
4: ( ,  ) ,
3

x
p u x t e=

1 /2
1

2: ( ,  ) (1 ),
3

xp u x t e tα α= − − +

( ) ( )2 /2 /2 2 2 /2 /2 /2
2

1 1: ( ,  ) 1 2 ( 1 ) 2 4 4
6 6

x x x x xp u x t e e t e e eα α α α= − + − − + − − + +

( )/ 2 /2 /21 4 8 3 8 ,
6

x x xe t e eα α α+ − − + +



following the same procedure, the remaining iterates u(x, t) can be calculated easily. Hence, the numerical solution is 
written as

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ...

Example 2 As the starting value problem, the modified time-fractional FornbergWhitham equation (2) is utilised, 
for the initial condition [13].

23( ,  0) ( 15 5)sec ( ).
4

u x h cx= −

(53)

(55)

(56)

(54)

H′2(u) = u0Dxu2 + u1Dxu1 + u2Dxu0,


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with a constant c

1 10(5 15).
20

c = −

The LT on both sides Eq. (2), as follows

2 2(1 )3[ ( ,  )] ( 15 5)sec ( ) 3 .
4 xxx x x xx x xxt

s su x t h cx uu u u u u u u
s s

α+ −   = − + − + − +    
 

Using the inverse of (LT) in Eq. (57),

2 1 2(1 )3( ,  ) ( 15 5)sec ( ) 3 .
4 xxx x x xx x xxt

s su x t h cx uu u u u u u u
s

α−  + −    = − + − + − +     
 

In addition, we address the arrangement as a perpetual series as follows

0
( ,  ) ( ,  ).m

m
u x t u x t

∞

=

= ∑

and the non-linear term uuxxx, uux and uxuxx can be decomposed by using He’s polynomials [27] as

0
( ,  ) .m xxx

m
H x t uu

∞

=

=∑

Evaluation of the elements of the He’s polynomials is simple. The first few components of Hm are written as

H0(u) = u0Dxxxu0,

H1(u) = u0Dxxxu1 + u1Dxxxu0,

H2(u) = u0Dxxxu2 + u1Dxxxu1 + u2Dxxxu0,



for H′m we find that

2

0
( ,  ) .m x

m
H x t u u

∞

=

′ =∑

2
0 0 0( ) ,xH u u D u′ =

2
1 0 1 0 1 0( ) 2 ,x xH u u D u u u D u′ = +



for mH ′′ we find that

(57)

(58)

(59)

(60)

(61)

(62)
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0
( ,  ) .m xxx

m
H x t uu

∞

=

′′ =∑

( )0 0 0 ,x xxH u D u D u′′ =

( )1 0 1 1 0 ,x xx x xxxH u D u D u D u D u′′ = +

2 0 2 1 1 2 0( ) ,x xx x xxx x xxxH u D u D u D u D u D u D u′′ = + +



using Eqs. (59)-(63) in Eq. (58) gives

( ) 2 1

0 0 0

(1 )4( ,  ) 5 5 sech( ) ( ,  ) ( ,  )
3

m m
m m m

m m mxxt x

s su x t cx p p u x t p u x t
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α∞ ∞ ∞
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= = =

     + − = − + −      
        

∑ ∑ ∑ 

0 0 0
( ) ( ) 3 ( ) .m m m

m m m
m m m

p H u p H u p H u
∞ ∞ ∞

= = =

 
′ ′′× + − + 

 
∑ ∑ ∑

when we compare we obtain the coefficients of identical powers of p.

( )0 2
0

4: ( ,  ) 5 5 sech( )
3

p u x t cx= −

( ) ( )( )31 2 6
1

1284: ( ,  ) (1 ) 5 5 sech( ) 5 5 *sech( ) tanh( )
3 27

p u x t t cx c cx cxα α= − + × − − + + − +

( ) ( )( ) ( )2 2 4 2 2 28 168 5 5 sech( ) tanh( ) 5 5 *sech( ) 5 5 sech( ) tanh( )
3 3

c cx cx c cx c cx cx× − − + − − + + × − +

( ) ( )( ) ( )2 3 4 3 2 364 324 5 5 sech( ) 5 5 *sech( ) tanh( ) 5 5 *sech( ) tanh( ) ,
3 3 3

cx c cx cx c cx cx+ − + − + × − − +



By proceeding in this fashion, we may obtain the excess part iterations formulas.
Due to this, the best-guess solution are

0
( ,  ) ( ,  )m

m
u x t u x t

∞

=

= ∑

6. Conclusion and applications
We establish the existence and uniqueness of the time-fractional FWEs using fixed point theory. The FWEs 

and its time-fractional counter part provide valuable insights into wave propagation in dispersive media with long-
range interactions. The equations describe the behavior of waves in a variety of physical systems, including shallow 
water, fluid flow, and signal processing. The nonlinearity of the medium and the fractional derivative term in the time-
fractional FWEs lead to interesting phenomena such as the formation of solitary waves and long-term memory effects, 
which have been studied extensively by researchers. By selecting appropriate auxiliary parameters α. The Homotopy 
perturbation transform method (HPTM) gives a straightforward explanation for changing and managing the series 

(63)

(64)

(65)
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solution’s convergence. It is worth noting that the proposed method might also be utilised to solve the TFFWEs, which 
incorporates Caputo-Fabrizio fractional derivative (CFFD) of order 0 < α ≤ 1, as in the HPTM [3-4]. The investigation 
has shown that the offered methodologies and the problem’s exact answers are most closely related. These cuttingedge 
techniques demand less time and computational effort while producing results that are quantitatively more accurate. 
According to the research mentioned, the suggested methodologies can easily be modified to address different scientific 
and engineering issues. Ahead, 2D & 3D figure (1-4) of different arrangements were displayed to show the actual parts 
of the procured cures.

The time-fractional FWEs have a great many applications in different fields, including fluid dynamics, atmospheric 
science, and traffic flow. Some of the applications are:

• Water waves: The equation is used to simulate the propagation of long water waves like tsunamis and ocean 
swells. This can help researchers better understand how these types of waves behave and make predictions about their 
possible impact.

• Traffic flow: The equation is often used to analyze traffic flow on motorways and roads. It can be used to simulate 
the spread of congestion and its impact on traffic flow.

• Atmospheric science: In atmospheric science, the equation is utilized to show the advancement of atmospheric 
waves, such as Rossby waves and gravity waves. These waves fun a crucial preface in the dynamics of the atmosphere 
and have a significant impact on weather patterns.

• Plasma physics: In space physics, the time-fractional FWEs is also used to analyze plasma waves. It is used to 
simulate the behavior of plasma waves in the solar wind and the magnetospheres of planets.

These are just a few of the many uses for the time-fractional FWES. It is a powerful tool for studying wave 
behavior in complicated systems and its application is projected to grow in the future.

Figure 1. (a) The 2D graph of the HPTM u(x, t) among different values of α = 0.25, α = 0.5, α = 0.75 and α = 1. (b) The 3D graph of the exact solution 
u(x, t)
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Figure 2. For the time-fractional Fornberg-Whitham equation with the first initial condition (Eq. (47)) of Eq. (1), HPTM result for ϕ(x, t) is, 
respectively (a) α = 0.25, (b) α = 0.5, (c) α = 0.75 and (d) α = 1

Figure 3. (a) The 2D graph of the HPTM u(x, t) among different values of α = 0.25, α = 0.5, α = 0.75 and α = 1. (b) The 3D graph of the exact solution 
u(x, t)
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Figure 4. For the time-fractional Fornberg-Whitham equation with the first initial condition (Eq. (56)) of Eq. (1), HPTM result for ϕ(x, t) is, 
respectively (a) α = 0.25, (b) α = 0.5, (c) α = 0.75 and (d) α = 1
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