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Abstract: This paper presents a numerical strategy for solving the nonlinear time fractional Burgers’s equation (TFBE) 
to obtain approximate solutions of TFBE. During this procedure, the collocation approach is used. The proposed 
numerical approximations are supposed to be a double sum of the products of two sets of basis functions. The two 
sets of polynomials are presented here: a modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer 
polynomial set. Some specific integers and fractional derivatives are explicitly given as a combination of basis functions 
to apply the proposed collocation procedure. This method transforms the governing boundary-value problem into a set 
of nonlinear algebraic equations. Newton’s approach can be used to solve the resulting nonlinear system. An analysis 
of the precision of the proposed method is provided. Various examples are presented and compared to some existing 
methods in the literature to prove the reliability of the suggested approach.
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1. Introduction
There exists a class of partial differential equations known as the nonlinear TFBE that combines nonlinearity and 

fractional derivatives. These equations are an extension of the traditional Burgers’ equation, which is a basic model in 
fluid dynamics and nonlinear wave phenomena [1]. Because of their importance in a variety of scientific disciplines, the 
study of the nonlinear TFBE has received a lot of attention. Burgers’ equations appear in fluid dynamics; the classical 
Burgers’ equation describes the propagation of shock waves in one-dimensional fluid flow. The TFBE provides a 
more realistic depiction of complex fluid behavior, such as turbulence and diffusion in porous media, by incorporating 
fractional derivatives. The Burgers’ equation is a simplified form of the Navier-Stokes equations for incompressible fluid 
flow. Understanding the behavior of solutions to the nonlinear time-fractional Burgers’ equation can provide insights 
into turbulence and shock wave formation in fluid dynamics. This equation can be used to describe heat conduction in 
materials with nonlinear thermal properties. It helps in studying heat transfer processes, especially in situations where 
heat conduction is not purely linear. The Burgers’ equation can be applied to modeling traffic flow, particularly in 
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congested traffic conditions. It helps in understanding the formation and propagation of traffic jams. In plasma physics, 
Burgers’ equation can describe the behavior of plasma waves and turbulence. It plays a role in understanding the 
dynamics of charged particles in plasmas. The Burgers’ equation is a prototypical equation for studying the behavior of 
nonlinear waves. It can be applied to various physical systems where wave phenomena are present, such as acoustics 
and optics. Moreover, Burgers’ equations and fractional Burgers’ equations have been used to model heat conduction 
in fractal materials. The fractional derivative captures the non-local aspect of heat conduction, making it possible to 
investigate heat transport in fractal media or materials with memory effects [2-4].

A number of fields, including physics, engineering, and computer science, use orthogonal polynomials. Orthogonal 
polynomials are commonly used in approximation theory, differential equations (DEs), and spectral methods [5, 6]. Due 
to their special properties, they are valuable tools for solving theoretical and practical problems that might otherwise be 
difficult to solve. For more information, see [7, 8].

Gegenbauer polynomials [9], also known as ultraspherical polynomials, this class of polynomials is a fundamental 
category of orthogonal polynomials with wide-ranging practical significance. They arise in the theory of special 
functions and are used to solve DEs. In addition, they have an important role to play in the study of quantum mechanics 
in many body systems, as they provide a natural basis for the expansion of certain functions, see [10, 11].

There are some reasons to use the Gegenbauer polynomials:
• These polynomials enjoy various interesting and useful features.
• High-accurate solutions are obtained if Gegenbauer polynomials are used as basis functions.
• The contributions using the Gegenbauer polynomials are few if compared to the contributions of the other 

polynomials.
Fractional differential operators are a type of nonlocal differential operator that involves fractional derivatives. For 

the history of the progress of fractional differential operators, one can consult [12, 13]. Fractional derivatives are natural 
extensions of classical derivatives and integrals see [14], and they become increasingly important in engineering and 
science disciplines. Today, fractional calculus has several potential uses outside of the realm of physics and engineering, 
including economics and biology, see [15, 16]. Also, fractional calculus has gained importance in recent years due to its 
ability to model and analyze complex phenomena that cannot be described by traditional integer order calculus see [17]. 
Research into this subject is ongoing, leading to the discovery of novel uses and advancements. Fore more studies, see 
[18-22].

Spectral methods are numerical techniques utilized for solving DEs, particularly partial DEs. The method involves 
representing the solution to the partial differential equation in terms of certain special functions, often trigonometric 
or polynomial functions, and using a set of equations to determine the coefficients of these basis functions. With the 
spectral method, nonlinear partial DEs can be handled accurately and efficiently. The method is also well suited for 
problems with periodic boundary conditions, as the basis functions can be chosen to satisfy these conditions exactly. 
The spectral method has been widely applied in many fields; see [23-26].

The three main techniques for implementing spectral methods are collocation, Galerkin, and tau methods. The 
collocation method involves evaluating the differential equation at a set of discrete collocation points and requiring that 
the solution satisfy the differential equation at these points. It is common to choose the collocation points as the roots 
of a certain set of orthogonal polynomials see, for example, [27-31]. Many mathematical techniques can be used to 
solve the resulting system of equations, such as Newton’s method or Gaussian elimination, see [32, 33]. The Galerkin 
method involves multiplying the differential equation by a test function and integrating over the solution domain. The 
test function is chosen to satisfy certain properties, such as being orthogonal to the basis functions used to represent the 
solution. The resulting system of equations can be solved using techniques such as matrix inversion or iterative solvers, 
see [34-37]. As opposed to the Galerkin technique, which places constraints on which basis functions can be used, the 
tau method removes these limitations [38-41]. For more studies, see [42-49].

The main aims of the current article can be summarized in the following three-fold:
• Presenting a new technique for solving the TFBE via basis functions based on the shifted Gegenbauer 

polynomials by applying the spectral collocation method.
• Reducing the solution of the equation with its homogeneous initial and boundary conditions into a system of 

algebraic equations, then solving it using a suitable solver.
• Discussion of the error bound of the proposed method.
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In accordance with the aforementioned aspects, the advantage of the proposed method is:
By choosing the modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer polynomials set as 

basis functions, and taking a few terms of the retained modes, it is possible to produce approximations with excellent 
precision. Less calculation is required. In addition, the resulting errors are small.

In this study, we use the shifted Gegenbauer polynomials to numerically treat the TFBE. We summarize the Caputo 
fractional derivative and provide some properties and relations of the shifted Gegenbauer polynomials in Section 2 of 
our research. We solve the nonlinear TFBE using the collocation method in Section 3; we investigate the error bound in 
Section 4; we provide some illustrative examples in Section 5; and finally, we compare our approach to that of related 
works for the sake of illustrating the accuracy. The final results are presented in Section 6.

2. Summary on the Caputo fractional derivative
We give here some elementary properties of fractional calculus. In addition, some properties of the Gegenbauer 

polynomials and their shifted polynomials are accounted for.
Definition 1 [8, 14] In Caputo’s sense, the s fractional-derivative of h(z) is defined as:
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where N0 = {0} ∪ Z+. Also the notations ν    and Γ(x) represent the ceiling and gamma functions respectively.

2.1 Some fundamentals of the shifted Gegenbauer polynomials

The Gegenbaur polynomials Gm
ν(z) of degree m ∈ Z+ are real-valued functions associated with the parameter ν > 

1
2

−  [50].
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mP
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  (z) are the classical Jacobi polynomials and (ν)m is the Pochhammer symbol.

It is useful to define the shifted polynomials on [0, 1], as:
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The orthogonality relation of G̃k
ν(z) is given by
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where δn,m is the well-known Kronecker delta function.
The following two results are useful hereafter.
Lemma 1 [51] The Gegenbauer polynomials meet the following relation:
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Theorem 1 [52] Let m, p ∈ Z+ with m ≥ p ≥ 1. The derivative of G̃m
ν(z) are given by the formula

, ,
0

( )
( ),

p m p
m

 m pp

d G z
d G z

d x

ν
ν

−

=

= ∑
 







where

1

, ,

12 ( ) ( 2 )
2

( )!

p

m p

m p
d

m p

ν ν ν−  + Γ + + Γ + + + 
 = ×
− + −

  



3 2

1, , 2
2

1 ,
1 , 2 2 1
2

m p   m p 

F

p  

ν ν

ν ν

−
 
 
 
 
 
  


+

+


+ + + + +

+ + + +

  

 

where r Fs represents the celebrated generalized hypergeometric function given as [53]
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3. Collocation approach for the treatment of nonlinear TFBE
In this section, we will choose the basis functions that will be suitable to propose our shifted Gegenbauer 

collocation method (SGCM) to solve the nonlinear TFBE.
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(8)

(9)
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3.1 Basis functions Choice

We will consider the following two sets of basis functions ϕi(z) and ψj(t) as

( ) ( )
, 2( ) ( ) ( ),i i i iz G z G zν ν
νφ η += − 
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where ηi,ν is given in (6).
Now, we will give two important results regarding the basis functions ϕi(z) and ψi (z). More definitely, the first 

result expresses the first- and second-order derivatives of ϕi(z) as combinations of ψi (z). The second formula expresses 
the fractional derivatives of ψj(z) in terms of their original ones.

Corollary 1 Let i ∈ Z+. The first and second derivatives of ϕi(z) are given by the following two formulas:
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where dℓ,m, p are those given in (8).
Proof. Formula (25) is a direct consequence of (10) along with Formula (7) for p = 1, while Formula (13) is a 

direct consequence of (10) along with Formula (7) for p = 2.
Theorem 2 [11] In Caputo sense, the fractional derivative D (ν)ψ i(t) can be expressed as
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3.2 Collocation solution of the nonlinear TFBE

Our aim in this section is to use the modified shifted Gegenbauer collocation method to solve the following 
nonlinear TFBE [54]

2
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In this case, rather than solving (17) with (18), we can instead solve the modified equation (21) subject to (22).
Now, we will set
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Now, the residual R(z, t) of Eq. (21) has the following form
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To get the expansion coefficients cij, we use Theorem 2 and Corollary 1 to obtain the residual R(z, t) given by (26), 
then we apply the spectral collocation method [56], by forcing the residual R(z, t) to be zero at some collocation points (zi, 
tj), that is, we get

( , ) 0,   1, 2, , ,   1, 2, , 1,i jR z  t i  j    = = … = … + 

where {(zi, tj) : i = 1, 2, ..., M,  j = 1, 2, ..., M + 1} are the first distinct roots of ϕM+1(z ) and ψM+1(t) respectively.
Also, the initial condition (22) implies that
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Therefore, Eqs. (27) and (28) constitute (M + 1)2 non-linear system of equations. With the help of a numerical 
solver, this system can be solved.

Algorithm 1 Coding algorithm for the proposed scheme.
Input ξ, M, k1(z, t), k2(z, t), k3(z, t), k4(z, t) and f (z, t).
Step 1 Assume an approximate solution UM(z, t) as in (25).
Step 2 Compute R(z, t) as in (26).
Step 3 Apply the collocation method to obtain the system in (27) and (28).
Step 4 Use FindRoot command with initial guess {cij = 10-i-j, i, j : 0, 1, ..., M}, to solve the system in (27) to get cij.
Output UM(z, t).

4. Error bound
Given that the best approximation of v(z, t) is UM(z, t) ∈ VM, we may express the following using the concept of 

the best approximation:
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Inequality (29) also holds if BM(z, t) denotes the interpolating polynomial for v(z, t) at points (zi, tj), where zi are 
the zeros of ϕi(z), while tj are the roots of ψj(t). Procedures analogous to those in [32, 57] lead to
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The smoothness of v(z, t) on Ω = (0, 1)2 imples the existence of three constants v1, v2 and v3, in the sense that
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Therefore, inequality (32) along with Equations (33) and (34) enable us to get the following desired result
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This gives an upper bound of the absolute error for the approximate and exact solutions.

5. Some test problem
Several test problems are presented in this section to ensure that our algorithm is applicable and efficient.
Test Problem 1 [54] Consider the following TFBE:

2

1 2 3 42

( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),t
v z t v z t v z tD v z t k z t k z t v z t k z t v z t k z t v z t f z t

z zz
ξ ∂ ∂ ∂

+ + + + =
∂ ∂∂

(0, ) (1, ) 0,    0 1,v t v t t= = ≤ ≤

( ,0) 0,    0 1,v z z= ≤ ≤

2
4 2 22 sin(2 )( , ) 2 sin(2 )cos(2 ) 4 sin(2 ),

(3 )
t zf z t t z z t z

α π π π π π π
α

−

= + +
Γ −

and

( ) ( ) ( ) ( )1 2 3 4, 1,  , , 0,  , 1,k z t k z t k z t k z t= − = = =

whose exact solution is: v(z, t) = t 2sin(2πz).
For ξ = 0.75 and M = 16, both the approximate solution (AS) (left) and the exact solution (ES) (right) are depicted 

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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in Figure 1. Figure 2 displays the L∞ error for ξ = 0.75 and M = 16. The absolute error (AE) is displayed in Table 1 for ξ 
= 0.75, M = 16 at different t. Table 2 displays the maximum absolute error (MAE) for various ξ and M. A comparison 
of MAE between SGCM and the Chebyshev spectral collocation method (CSCM) in [54] and the method in [58] is 
tabulated in Table 3.

Figure 1. The AS (left) and ES (right) of Problem 1 at ξ = 0.75 and M = 16

Table 1. AE of Problem 1 at ξ = 0.75 and M = 16

ξ = 0.75

z t = 0.1 t = 0.5 t = 0.9 Upper bound of AE

0.1 1.57027 × 10-14 1.13295 × 10-12 4.66893 × 10-12

0.2 3.36502 × 10-14 2.33483 × 10-12 9.84501 × 10-12

0.3 5.67862 × 10-14 3.66857 × 10-12 1.58273 × 10-11

0.4 8.63745 × 10-14 5.11381 × 10-12 2.22814 × 10-11

0.5 1.27659 × 10-13 6.70571 × 10-12 2.86939 × 10-11 10-3

0.6 1.85665 × 10-13 8.44963 × 10-12 3.43515 × 10-11

0.7 2.60585 × 10-13 1.02305 × 10-11 3.50088 × 10-11

0.8 3.70313 × 10-13 1.24031 × 10-11 3.82523 × 10-11

0.9 5.21337 × 10-13 1.51795 × 10-11 2.3182 × 10-11

Approximate solution

1.0 1.00.0 0.0

0.0 0.0
-1.0 -1.0

-0.5
0.0
0.5
1.0

-0.5
0.0
0.5
1.0

0.5 0.5

0.5 0.5

1.0 1.0

t t

x x

Exact solution
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Figure 2. L∞ error of Problem 1 at ξ = 0.75 and M = 16

Table 2. MAE of Problem 1

M ξ = 0.5 ξ = 0.75 ξ = 0.9

4 5.88639 × 10-1 6.07029 × 10-1 6.17303 × 10-1

6 4.97866 × 10-2 5.42437 × 10-2 5.66217 × 10-2

8 1.5253 × 10-3 1.76304 × 10-3 1.90359 × 10-3

10 3.14771 × 10-5 3.82333 × 10-5 4.24249 × 10-5

12 4.69657 × 10-7 5.87349 × 10-7 6.63478 × 10-7

14 5.41993 × 10-9 6.91947 × 10-9 7.91579 × 10-9

16 5.88383 × 10-10 5.98725 × 10-10 2.34618 × 10-9

Table 3. MAE Comparison of different methods for Problem 1

ξ M SGCM M CSCM [54] Method in [58]

0.75 16 5.98725 × 10-10 15 8.1966 × 10-7 3.3291 × 10-5

0.9 16 2.34618 × 10-9 15 2.9875 × 10-6 3.735 × 10-5

L∞ error

1.0 0.0

0.0
0

2.0 × 10-10
4.0 × 10-10
6.0 × 10-10
8.0 × 10-10

0.5

0.5

1.0

t

x
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Figure 3. The AS (left) and L∞ error (right) of Problem 2 at ξ = 0.5 and M = 6

Table 4. The AE of Problem 2 at ξ = 0.5 and M = 6

ξ = 0.5

z t = 0.1 t = 0.5 t = 0.9 Upper bound of AE

0.1 3.56876 × 10-12 1.3226 × 10-10 4.85373 × 10-10

0.2 7.47866 × 10-12 2.71041 × 10-10 9.86737 × 10-10

0.3 1.14878 × 10-11 4.08283 × 10-10 1.47383 × 10-9

0.4 1.5952 × 10-11 5.50699 × 10-10 1.9652 × 10-9

0.5 2.19936 × 10-11 7.23597 × 10-10 2.5398 × 10-9 10-5

0.6 2.89658 × 10-11 9.07452 × 10-10 3.1321 × 10-9

0.7 3.55229 × 10-11 1.06493 × 10-9 3.62127 × 10-9

0.8 4.57097 × 10-11 1.29296 × 10-9 4.32441 × 10-9

0.9 6.08531 × 10-11 1.61788 × 10-9 5.32715 × 10-9

Test Problem 2 [54] Consider the following TFBE:

2

1 2 3 42

( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),t
v z t v z t v z tD v z t k z t k z t v z t k z t v z t k z t v z t f z t

z zz
ξ ∂ ∂ ∂

+ + + + =
∂ ∂∂

where

0.0
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0

L∞ error
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x
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t

Approximate solution
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t
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0.00

(43)
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2 2(0, ) , (1, ) , 0 1,v t t v t et t= = < ≤

( ,0) 0, 0 1,v z z= < ≤

2
2 2 22( , ) ,

(3 )

z
z zt ef z t t e t e

ν

ν

−

= + −
Γ −

and

( ) ( ) ( ) ( )1 2 3 4, 1,  , , 0,  , 1,k z t k z t k z t k z t= − = = =

and v(z, t) = t2ez is the exact solution.

Table 5. MAE of Problem 2

M ξ = 0.5 ξ = 0.7 ξ = 0.9

2 1.28593 × 10-3 1.24513 × 10-3 1.2074 × 10-3

4 4.29418 × 10-6 4.38206 × 10-6 4.44536 × 10-6

6 6.58415 × 10-9 7.03846 × 10-9 7.45864 × 10-9

Table 6. MAE Comparison of different methods for Problem 3

ξ M SGCM M CSCM [54] Method in [58]

0.75 16 7.03846 × 10-9 8 4.1575 × 10-5 2.24523 × 10-4

0.9 16 7.45864 × 10-9 10 4.7521 × 10-5  2.32565 × 10-4

Figure 3 displays the (AS) (left) and L∞ error (right) at ξ = 0.5 and M = 6. Table 4 dispalys the AE for ξ = 0.5 and 
M = 6 at different t. In addition, MAE for various ξ and M are displayed in Table 5. MAE comparison between SGCM 
and CSCM in [54] and [58] is tabulated in Table 6.

Test Problem 3 [54] Consider the following TFBE:

2

1 2 3 42

( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),t
v z t v z t v z tD v z t k z t k z t v z t k z t v z t k z t v z t f z t

z zz
ξ ∂ ∂ ∂

+ + + + =
∂ ∂∂

where

2 2(0, ) , (1, ) 0 1,v t t v t t t= = − ≤ <

(48)

(44)

(45)

(46)

(47)

(49)
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( ,0) 0, 0 1,v z z= ≤ ≤

2
4 2 22 ( )( , ) ( ) ( ) ( ),

(3 )
t cos zf z t t cos z sin z t cos z

ν π π π π π π
ν

−

= − +
Γ −

and

( ) ( ) ( ) ( )1 2 3 4, 1,  , , 0,  , 1,k z t k z t k z t k z t= − = = =

with the exact solution: v(z, t) = t 2cos(πz). Figure 4 displays the AS (left) and ES (right) for ξ = 0.5 and M = 14. 
L∞ error at ξ = 0.5 and M = 14 are displayed in Figure 5. The AE at ξ = 0.5 and M = 14 at different values of t are 
presented in Table 7. Table 8 presents the MAE at different values of ξ and M. A comparison of MAE between SGCM 
and method in [54] and [58] is tabulated in Table 9.

Figure 4. The AS (left) and ES (right) of Problem 3 at ξ = 0.5 and M = 14

Figure 5. L∞ error of Problem 3 at ξ = 0.5 and M = 14
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Table 7. The AE of Problem 3 at ξ = 0.5 and M = 14

ξ = 0.5

z t = 0.1 t = 0.5 t = 0.9 Upper bound of AE

0.1 2.81893 × 10-17 9.29812 × 10-16 3.27516 × 10-15

0.2  6.80879 × 10-17 1.95677 × 10-15 6.85563 × 10-15

0.3 1.11022 × 10-16 2.98372 × 10-15 1.06026 × 10-14

0.4 1.63064 × 10-16 4.09395 × 10-15 1.46411 × 10-14

0.5 2.14861 × 10-16 5.26777 × 10-15 1.88168 × 10-14 10-14

0.6 2.7452 × 10-16 6.56766 × 10-15 2.33147 × 10-14

0.7 3.38271 × 10-16 8.07687 × 10-15 2.88936 × 10-14

0.8 3.8294 × 10-16 9.4022 × 10-15 3.59157 × 10-14

0.9 4.48643 × 10-16 1.13728 × 10-14 4.90302 × 10-14

Table 8. MAE of Problem 3

M ξ = 0.1 ξ = 0.5 ξ = 0.9

2 2.48361 × 10-1 2.31915 × 10-1 2.16388 × 10-1

4 7.13976 × 10-3 7.65207 × 10-3 7.94323 × 10-3

6 9.81572 × 10-5 1.16576 × 10-4 1.3222 × 10-4

8 6.75632 × 10-7 9.04135 × 10-7 1.1282 × 10-6

10 3.05052 × 10-9 4.46111 × 10-9 6.01078 × 10-9

12 1.06736 × 10-11 1.6286 × 10-11 2.30448 × 10-11

14 2.14525 × 10-12 1.0002 × 10-13 1.0002 × 10-13

Table 9. Comparison of the MAE for Problem 3

ξ M SGCM M CSCM [54] Method in [58]

0.5 14 1.0002 × 10-13 10 9.2905 × 10-7 8.167 × 10-6

0.75 14 1.52464 × 10-13 15 6.7610 × 10-7 3.443 × 10-6

0.9 14 2.27302 × 10-13 25 5.1574 × 10-5 4.065 × 10-6
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6. Conclusion
Our study introduced a spectral collocation algorithm explicitly designed for solving the time-fractional 

Burgers’ Equation (TFBE). Our approach is grounded in utilizing shifted Gegenbauer polynomials and their modified 
counterparts, which serve as the basis functions for our numerical method. The central concept behind our method 
revolves around employing the collocation technique to transform the TFBE into a system of algebraic equations, 
making it amenable to solution through well-established numerical procedures. Our findings have demonstrated that 
the presented spectral collocation method exhibits high accuracy and can yield results that are on par with, or even 
superior to, existing numerical methods for tackling the TFBE. This achievement underscores the potential of our 
approach as a powerful tool for addressing not only the TFBE but also other important nonlinear differential equations 
encountered in various scientific and engineering contexts. Our future endeavors are poised to further enhance and 
deepen our understanding of this method in light of our promising results. Specifically, we intend to comprehensively 
evaluate and discuss the convergence conditions associated with our spectral collocation algorithm. This analysis will 
provide valuable insights into the circumstances under which our method excels and helps identify situations where 
it may require further refinement. Furthermore, we are keenly interested in investigating the possible presence of 
ghost solutions, a phenomenon studied in prior research [26, 59]. By exploring this aspect, we aim to elucidate any 
peculiarities or unexpected behavior that might arise when employing our method in specific scenarios. In doing so, we 
aim to refine our algorithm, ensuring its robustness and applicability across a broader spectrum of nonlinear differential 
equations, ultimately advancing the field of numerical analysis and computational mathematics. All codes were written 
and debugged by Mathematica 12 on Dell Inspiron 15, Processor: Intel (R) Core(TM) i5-5200U CPU @ 2.20 GHz 2.20 
GHz, 8 GB Ram DDR3, and 1024 GB storage.
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