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Abstract: This paper presents a numerical strategy for solving the nonlinear time fractional Burgers’ equation (TFBE)
to obtain approximate solutions of TFBE. During this procedure, the collocation approach is used. The proposed
numerical approximations are supposed to be a double sum of the products of two sets of basis functions. The two
sets of polynomials are presented here: a modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer
polynomial set. Some specific integers and fractional derivatives are explicitly given as a combination of basis functions
to apply the proposed collocation procedure. This method transforms the governing boundary-value problem into a set
of nonlinear algebraic equations. Newton’s approach can be used to solve the resulting nonlinear system. An analysis
of the precision of the proposed method is provided. Various examples are presented and compared to some existing
methods in the literature to prove the reliability of the suggested approach.
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1. Introduction

There exists a class of partial differential equations known as the nonlinear TFBE that combines nonlinearity and
fractional derivatives. These equations are an extension of the traditional Burgers’ equation, which is a basic model in
fluid dynamics and nonlinear wave phenomena [1]. Because of their importance in a variety of scientific disciplines, the
study of the nonlinear TFBE has received a lot of attention. Burgers’ equations appear in fluid dynamics; the classical
Burgers’ equation describes the propagation of shock waves in one-dimensional fluid flow. The TFBE provides a
more realistic depiction of complex fluid behavior, such as turbulence and diffusion in porous media, by incorporating
fractional derivatives. The Burgers’ equation is a simplified form of the Navier-Stokes equations for incompressible fluid
flow. Understanding the behavior of solutions to the nonlinear time-fractional Burgers’ equation can provide insights
into turbulence and shock wave formation in fluid dynamics. This equation can be used to describe heat conduction in
materials with nonlinear thermal properties. It helps in studying heat transfer processes, especially in situations where
heat conduction is not purely linear. The Burgers’ equation can be applied to modeling traffic flow, particularly in
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congested traffic conditions. It helps in understanding the formation and propagation of traffic jams. In plasma physics,
Burgers’ equation can describe the behavior of plasma waves and turbulence. It plays a role in understanding the
dynamics of charged particles in plasmas. The Burgers’ equation is a prototypical equation for studying the behavior of
nonlinear waves. It can be applied to various physical systems where wave phenomena are present, such as acoustics
and optics. Moreover, Burgers’ equations and fractional Burgers’ equations have been used to model heat conduction
in fractal materials. The fractional derivative captures the non-local aspect of heat conduction, making it possible to
investigate heat transport in fractal media or materials with memory effects [2-4].

A number of fields, including physics, engineering, and computer science, use orthogonal polynomials. Orthogonal
polynomials are commonly used in approximation theory, differential equations (DEs), and spectral methods [5, 6]. Due
to their special properties, they are valuable tools for solving theoretical and practical problems that might otherwise be
difficult to solve. For more information, see [7, 8].

Gegenbauer polynomials [9], also known as ultraspherical polynomials, this class of polynomials is a fundamental
category of orthogonal polynomials with wide-ranging practical significance. They arise in the theory of special
functions and are used to solve DEs. In addition, they have an important role to play in the study of quantum mechanics
in many body systems, as they provide a natural basis for the expansion of certain functions, see [10, 11].

There are some reasons to use the Gegenbauer polynomials:

* These polynomials enjoy various interesting and useful features.

* High-accurate solutions are obtained if Gegenbauer polynomials are used as basis functions.

* The contributions using the Gegenbauer polynomials are few if compared to the contributions of the other
polynomials.

Fractional differential operators are a type of nonlocal differential operator that involves fractional derivatives. For
the history of the progress of fractional differential operators, one can consult [12, 13]. Fractional derivatives are natural
extensions of classical derivatives and integrals see [14], and they become increasingly important in engineering and
science disciplines. Today, fractional calculus has several potential uses outside of the realm of physics and engineering,
including economics and biology, see [15, 16]. Also, fractional calculus has gained importance in recent years due to its
ability to model and analyze complex phenomena that cannot be described by traditional integer order calculus see [17].
Research into this subject is ongoing, leading to the discovery of novel uses and advancements. Fore more studies, see
[18-22].

Spectral methods are numerical techniques utilized for solving DEs, particularly partial DEs. The method involves
representing the solution to the partial differential equation in terms of certain special functions, often trigonometric
or polynomial functions, and using a set of equations to determine the coefficients of these basis functions. With the
spectral method, nonlinear partial DEs can be handled accurately and efficiently. The method is also well suited for
problems with periodic boundary conditions, as the basis functions can be chosen to satisfy these conditions exactly.
The spectral method has been widely applied in many fields; see [23-26].

The three main techniques for implementing spectral methods are collocation, Galerkin, and tau methods. The
collocation method involves evaluating the differential equation at a set of discrete collocation points and requiring that
the solution satisfy the differential equation at these points. It is common to choose the collocation points as the roots
of a certain set of orthogonal polynomials see, for example, [27-31]. Many mathematical techniques can be used to
solve the resulting system of equations, such as Newton’s method or Gaussian elimination, see [32, 33]. The Galerkin
method involves multiplying the differential equation by a test function and integrating over the solution domain. The
test function is chosen to satisfy certain properties, such as being orthogonal to the basis functions used to represent the
solution. The resulting system of equations can be solved using techniques such as matrix inversion or iterative solvers,
see [34-37]. As opposed to the Galerkin technique, which places constraints on which basis functions can be used, the
tau method removes these limitations [38-41]. For more studies, see [42-49].

The main aims of the current article can be summarized in the following three-fold:

* Presenting a new technique for solving the TFBE via basis functions based on the shifted Gegenbauer
polynomials by applying the spectral collocation method.

* Reducing the solution of the equation with its homogeneous initial and boundary conditions into a system of
algebraic equations, then solving it using a suitable solver.

* Discussion of the error bound of the proposed method.
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In accordance with the aforementioned aspects, the advantage of the proposed method is:

By choosing the modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer polynomials set as
basis functions, and taking a few terms of the retained modes, it is possible to produce approximations with excellent
precision. Less calculation is required. In addition, the resulting errors are small.

In this study, we use the shifted Gegenbauer polynomials to numerically treat the TFBE. We summarize the Caputo
fractional derivative and provide some properties and relations of the shifted Gegenbauer polynomials in Section 2 of
our research. We solve the nonlinear TFBE using the collocation method in Section 3; we investigate the error bound in
Section 4; we provide some illustrative examples in Section 5; and finally, we compare our approach to that of related
works for the sake of illustrating the accuracy. The final results are presented in Section 6.

2. Summary on the Caputo fractional derivative

We give here some elementary properties of fractional calculus. In addition, some properties of the Gegenbauer
polynomials and their shifted polynomials are accounted for.
Definition 1 [8, 14] In Caputo’s sense, the s fractional-derivative of /(z) is defined as:

o
CT(l-s)

D’h(z) jo (z=8)" "W (t)dt, s> 0, z> 0, (1)

where —1<s<¢{ e 7"
D! meets the following properties for £ — 1 <s<{,{ € Z":

Db =0, bisaconstant. (2)

0, iffe N, and Z<fs—|,
Ds l — 3
2 Z ﬂz“, ifte N, and (2[s], )

rt—s+1
where A, = {0} U Z". Also the notations [ v | and I'(x) represent the ceiling and gamma functions respectively.

2.1 Some fundamentals of the shifted Gegenbauer polynomials

The Gegenbaur polynomials G,(z) of degree m € Z" are real-valued functions associated with the parameter v >

_l [50] m
2 .

1 1

where P,EV 2 2) (z) are the classical Jacobi polynomials and (v),, is the Pochhammer symbol.

It is useful to define the shifted polynomials on [0, 1], as:
Gl (2)=G"(2z-1).

The orthogonality relation of é,f(z) is given by
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7T (2v +n)

[[G(=)G ()=~ ) T =

Opm> 4
2Y T w+n) T (W)’ T(n+1) ™" @
where J, , is the well-known Kronecker delta function.
The following two results are useful hereafter.
Lemma 1 [51] The Gegenbauer polynomials meet the following relation:
Y ” 4v(v+k+1) 2 vl
G (z2)-n, .G (z2)= (1-z)G " (2), 5
2 (2) M 102(2) (2v+k)(2v+k+1)\ )G (2) Q)
where 7, is given by
__ (k+D(k+2) _ ©)
Qv+ ) Qv+k+1)
Theorem 1 [52] Let m, p € Z" with m > p > 1. The derivative of G~,:,'(z) are given by the formula
d’Gy(2) e
v &l G g
where
277 (v +€)F(€+v +;jr(£+m +p+2v)
d(‘ mp X
e (—l+m-p)!
1
f—m+p,v+£+5,2v+f+m+p
35 1], (®)
v+f+p+%,2v+2€+l
where , F; represents the celebrated generalized hypergeometric function given as [53]
F (pp Py Dy xj _ S (P), (P2), o (p,),, X" ) 9)
qlaqzs.“’qs m=0 (%)m(qz)m(%)m m'

3. Collocation approach for the treatment of nonlinear TFBE

In this section, we will choose the basis functions that will be suitable to propose our shifted Gegenbauer
collocation method (SGCM) to solve the nonlinear TFBE.
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3.1 Basis functions choice

We will consider the following two sets of basis functions ¢,(z) and () as
#(2)=G"(2)-n,, G (2), (10)

v, (H)=G" (), (1n

where 7, , is given in (6).

Now, we will give two important results regarding the basis functions ¢,(z) and y;(z). More definitely, the first
result expresses the first- and second-order derivatives of ¢,(z) as combinations of y;(z). The second formula expresses
the fractional derivatives of ;(z) in terms of their original ones.

Corollary 1 Let i € Z". The first and second derivatives of ¢,(z) are given by the following two formulas:

dg() &

=2.d,,G{(2)- mde 121 Gi (2), (12)
dx k=0
d ¢ (z . .
DI NNCIER I W (o) (13)
where d,, , are those given in (8).

Proof. Formula (25) is a direct consequence of (10) along with Formula (7) for p = 1, while Formula (13) is a
direct consequence of (10) along with Formula (7) for p = 2.
Theorem 2 [11] In Caputo sense, the fractional derivative D™y,(¢) can be expressed as

DMy (1) = i‘)s"”"”’” v (0), i=[v],[v]+1., (14)
=
where
;0 (15)
and

i+k

0 _ DTG+ DG () (2v)

ki, jvy T

al(+2v)(i—-k)I(v +%)k F'k-v+1)

PG Vo (2v)j+,1“(v+;jl“(k+l+v—v+1]
)

=0 l!(j—l)!(v+;j TQv+k+1-v+1)
1

, j=0,12,.... (16)
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3.2 Collocation solution of the nonlinear TFBE

Our aim in this section is to use the modified shifted Gegenbauer collocation method to solve the following
nonlinear TFBE [54]

azv(z 1)

( ,0) 6v(z 1)

va(z +k(z,1) +ky(z,0)v(z,t) + Iy (2,1) v(z,t)+k,(z,t)v(z,t) = f(z,0), (17)
directed to the following conditions:
v(z,0) =u,(2), z€[0,1],
v(0,1) = g,(t), v(1,1) = g, (1), 1 €[0,1], (18)
where 0 <¢< 1 and k,(z, ¢), 1 <i<4and f(z, t) are given continuous functions.
Now, consider the following substitution [55]:
Wz, 1) = U(z,0)+ U(z, 1), (19)
where
Uz 1) = (1-2)g, (1) + 28, 1), (20)
that transforms Eq. (17) with (18) into the following modified one:
2
DUz, 1)+ K, (2, t)m+k (2,)U(z,0) + Kk (2, t)abI(z Dz, 1) +k,(z,)U(z t)aU(z D fizn, @
governed by the conditions:
U(z,0) =uy(2) = (1-2)g,(0) - 2g,(0), z €[0,1],
UO,0)=Uu(,1)=0, r€[0,1], (22)
where
277
£z = F(z,6) = DEU(z )~k (2,0 L&D “(Z D (o) U(z0) k(2 t)au(z D7t
—k, (z,t)a(z,t)@. (23)
Z

In this case, rather than solving (17) with (18), we can instead solve the modified equation (21) subject to (22).
Now, we will set
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S =span{g (2, (1), 1,j=0.1... M},
V={UeS,, UO,n=Ul1=0, 0<r<I1}. (24)

then any function U(z, t) € V,, can be approximated as

M M
Upn(2,0=2 D ;¢ (2w, (1) (25)

i=0 j=0

Now, the residual R(z, t) of Eq. (21) has the following form

R(z.t)=Df U,, (zt)+k(zt) M(zt)+k(zt)u (z,1)

+k,(z, t) M(z DU, (z,t)+k,(z,HU,, (2, t) M(z t)— f(z,0). (26)

To get the expansion coefficients c;, we use Theorem 2 and Corollary 1 to obtain the residual R(z, #) given by (26),
then we apply the spectral collocation method [56], by forcing the residual R(z, ) to be zero at some collocation points (z;,
t,), that is, we get

R(z,t)=0, i=1,2,.. .M, j=12,... M+, @7

i7"

where {(z;,£):i=1,2,.., M, j=1,2,.., M + 1} are the first distinct roots of ¢ ,..,(z) and () respectively.
Also, the 1n1tlal condition (22) implies that

Uy, (2,0) =1y (z) - (1-2,) gy (0)—z,8,(0), i :1,.., M+1, (28)

Therefore, Eqs. (27) and (28) constitute (M + 1)* non-linear system of equations. With the help of a numerical
solver, this system can be solved.

Algorithm 1 Coding algorithm for the proposed scheme.

Input & M, k\(z, 1), ky(z, 1), ky(z, 1), ki(z, ?) and f(z, ?).

Step 1 Assume an approximate solution U,,(z, ?) as in (25).

Step 2 Compute R(z, f) as in (26).

Step 3 Apply the collocation method to obtain the system in (27) and (28).

Step 4 Use FindRoot command with initial guess {c; = 107,4,7:0,1, ..., M}, to solve the system in (27) to get c;-
Output U,,(z, 1).

4. Error bound

Given that the best approximation of v(z, #) is U,,(z, t) € V,,, we may express the following using the concept of
the best approximation:

|v(z,t)-U, (z,) ||, < | v(z,8) = B\, (z,0) ||,.. ¥V By (z,t)eV,,. (29)
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Inequality (29) also holds if B,(z, ) denotes the interpolating polynomial for v(z, #) at points (z;

» 1), where z; are
the zeros of ¢(z), while #; are the roots of w;(¢). Procedures analogous to those in [32, 57] lead to

AR UR)) PR ENT)
V(Z,Z)—BM(Z,I) dx MH(M-l-l)'H( M+1(M 1)11—[(
N2y, 1) H( —z )H(;_t ). (30)

a M+latM+l ((M+l)')

where 7,77 € [0, 1] and u, 4 € [0, 1].
Now,

M
1v(z,t) = B, (z,0) ||, < max aj\/mv(77’t)| T2l + max |6M+lv(z ﬂ)| HH’ o=l
M e IPYIVEL | (M+1)! & t)eQ| oM | (M+1)!
M M
x| EICRE A U Gl G
(z,1)eQ axM+] a[M+] ((M+l)')2

The smoothness of v(z, #) on Q = (0, 1)’ imples the existence of three constants v,, v, and v;, in the sense that

oMz, p)

at/\/lﬂ

2M+2 AA
SV, max %
ox"" ot

(z,0)eQ

<. (32)

To minimize the factor || H,/\:Ao (z-2z,)||,,, with the aid of Lemma 1 and the one-to-one mapping z 2%(x+1)
between the intervals [-1, 1] and [0, 1], we get

min max
z;€[0,1] z€[0,1]

H(z z;)

mln
xie[-1,1 ve[ 11]

(x X;)

1 M+1 M
=| - min max X—X
(2] xie[-11]xe[-1,1] H ( ’)

i=0

(33)

M+1 v
1
- [Ej min max Py (%) ,

xie[-1,1]xe[-1,1] a;\/t

2" (v + M +1)
Qv+ M-D2v+ M)T()['(M)

where x; are the roots of ¢,, (x) and a),, =— is the leading coefficient of ¢y,  (x)=

4v(v+ M)
Qv+ M-DHQ2v+ M)

1-x) Gy ().

1 —
In addition, || Hj:o (t=1,) ., , can be minimized by means of the one-to-one mapping ¢ = E(t +1) between [-1, 1]
and [0, 1] to get
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1 M+ ' l//}(,m(t_)
mm max H(t 1) = _min _max |[————|, (34)
t;€[0,1]€[0,1] fel-L17e[-11] ijvl
where b}, = 2T M) is the leading coefficient of (t)=G%,,,(f) and 7, are the zeros of v, (7)
MU TN(M+2) g Vit i i Wi (0).
It is known that
n = max 4v(v+/\/l)1"(2v+./\/l—l)' (35)
xe[-11 rQv+2)r(m
Also,
v | — _ (ZV)M+1
= max v @)= = MeD! (36)
Therefore, inequality (32) along with Equations (33) and (34) enable us to get the following desired result
1 M+l 1 M+l 1 M+l
B e () e (3) me
vz, -Uy(zD LS v, 0 ty =7 T (7
ay (M+1)! by, (M+1)! ayby (M+1))
This gives an upper bound of the absolute error for the approximate and exact solutions.
5. Some test problem
Several test problems are presented in this section to ensure that our algorithm is applicable and efficient.
Test Problem 1 [54] Consider the following TFBE:
Div(z,0) +k (2 t)a V(Z D 4z 1)+ (2,0) ( D2+, (2, 0)0(= t)av(z D) _ 720, (38)
v(0,)=v(1,1)=0, 0<¢<], (39)
v(z,0)=0, 0<z<], (40)
2-a
T(oty = 2L S0CR2) o 8 Gin(2rz) cos(2rz) + 4’ sin(272), (41)
IrG-oa)
and
k, (Z,t) =-1, k, (z,t) =k, (z,t) =0, k, (Z,t) =1, (42)

whose exact solution is: v(z, ) = t’sin(27z).
For £=0.75 and M = 16, both the approximate solution (AS) (left) and the exact solution (ES) (right) are depicted
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in Figure 1. Figure 2 displays the L, error for £ = 0.75 and M = 16. The absolute error (AE) is displayed in Table 1 for &
=0.75, M = 16 at different ¢. Table 2 displays the maximum absolute error (MAE) for various ¢ and M. A comparison
of MAE between SGCM and the Chebyshev spectral collocation method (CSCM) in [54] and the method in [58] is
tabulated in Table 3.

Approximate solution Exact solution

1.0 ¢
0.5

0.0
-0.5

-1.0 §
0.0

Figure 1. The AS (left) and ES (right) of Problem 1 at £=0.75 and M = 16

Table 1. AE of Problem 1 at =0.75 and M = 16

£=0.75
z t=0.1 t=0.5 t=0.9 Upper bound of AE
0.1 1.57027 x 10™ 1.13295 x 10™ 4.66893 x 107

0.2 3.36502 x 10™ 2.33483 x 10" 9.84501 x 107"

0.3 5.67862 x 10 3.66857 x 107" 1.58273 x 10

0.4 8.63745 x 10™ 5.11381 x 107" 222814 x 10™

0.5 1.27659 x 10" 6.70571 x 1077 2.86939 x 10™ 10°

0.6 1.85665 x 107 8.44963 x 107 3.43515 x 10™

0.7 2.60585 x 10 1.02305 x 10™ 3.50088 x 10

0.8 370313 x 107" 1.24031 x 10™ 3.82523 x 10™

0.9 521337 x 10" 1.51795 x 10™ 23182 x 10"
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8.0x 10"
6.0 x 107"

4.0%x10"
2.0x10M

0.0

L, error

10 00

Figure 2. L, error of Problem 1 at £=0.75 and M =16

Table 2. MAE of Problem 1

M =05 £=0.75 =09

4 5.88639 x 10" 6.07029 x 10" 6.17303 x 10"

6 4.97866 x 10 5.42437 x 10” 5.66217 x 107

8 1.5253 x 10° 1.76304 x 10” 1.90359 x 10”

10 3.14771 x 10° 3.82333 x 10° 4.24249 x 10°

12 4.69657 x 107 5.87349 x 107 6.63478 x 107

14 5.41993 x 10” 6.91947 x 10” 7.91579 x 10°

16 5.88383 x 10 5.98725 x 10 234618 x 10”

Table 3. MAE Comparison of different methods for Problem 1
& M SGCM M CSCM [54] Method in [58]

0.75 16 5.98725 x 10 15 8.1966 x 10”7 3.3291 x 107
0.9 16 2.34618 x 10” 15 2.9875 x 10°° 3.735 % 10°
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Approximate solution

L, error

Figure 3. The AS (left) and L, error (right) of Problem 2 at = 0.5 and M =6

Table 4. The AE of Problem 2 at = 0.5 and M =6

=05
z t=0.1 t=0.5 t=09 Upper bound of AE
0.1 3.56876 x 10" 1.3226 x 107 4.85373 x 107
0.2 7.47866 x 107" 271041 x 10™ 9.86737 x 10"
0.3 1.14878 x 10™ 4.08283 x 10 1.47383 x 107
0.4 1.5952 x 10™ 5.50699 x 10 1.9652 x 10”
0.5 2.19936 x 10" 7.23597 x 10 2.5398 x 107 10°
0.6 2.89658 x 10™ 9.07452 x 10™° 3.1321 x 107
0.7 3.55229 x 10™ 1.06493 x 107 3.62127 x 10”
0.8 4.57097 x 10™ 1.29296 x 107 4.32441 x 107
0.9 6.08531 x 10™ 1.61788 x 107 532715 x 10°
Test Problem 2 [54] Consider the following TFBE:
va(z, H+k(z, t)% +ky(z,0)v(z,8) + ks (2, t)%v(z, ) +k,(z,t)v(z, t)% = 17(2, 1), (43)
Z

where
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wWO0,0) =t v(l,t)=et’, 0<t<I, (44)

W(z,00=0, 0<z <1, (45)
f(z,0) :ﬂ+t2ezz —i%e, (46)
Ir'cG-v)
and
ki(z,0) =1, ky(z,t) = ky (2,¢) =0, k, (z,¢) =1, (47)

and v(z, 1) = £’¢" is the exact solution.

Table 5. MAE of Problem 2

M £=05 £=0.7 £=09

2 1.28593 x 10° 1.24513 x 10” 1.2074 x 107
4 429418 x 10 438206 x 10 4.44536 x 10
6 6.58415 x 107 7.03846 x 107 7.45864 x 107

Table 6. MAE Comparison of different methods for Problem 3

¢ M SGCM M CSCM [54] Method in [58]
0.75 16 7.03846 x 10” 8 4.1575 x 107 2.24523 x 10™
0.9 16 7.45864 x 10” 10 47521 x 107 2.32565 x 10™

Figure 3 displays the (AS) (left) and L,, error (right) at £ = 0.5 and M = 6. Table 4 dispalys the AE for £ = 0.5 and
M = 6 at different ¢. In addition, MAE for various ¢ and M are displayed in Table 5. MAE comparison between SGCM
and CSCM in [54] and [58] is tabulated in Table 6.

Test Problem 3 [54] Consider the following TFBE:

DEv(z,0)+k (,1) azv(i’” 0+ (20 2D koD - Tz, (48)
0z 0z 0z
where
wO0,0) =1, v(,t)=—t* 0<t<], (49)
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v(z,0)=0, 0<z<1, (50)

f(z,t)= m —zt*cos(nz)sin(rz) + m’t*cos(nz), (51)
ra-v)
and
k, (z,t) =-1, k, (Z,t) =k, (z,t) =0, k, (z,t) =1, (52)

with the exact solution: v(z, f) = t’cos(nz). Figure 4 displays the AS (left) and ES (right) for &= 0.5 and M = 14.
L, error at £ = 0.5 and M = 14 are displayed in Figure 5. The AE at £ = 0.5 and M = 14 at different values of ¢ are
presented in Table 7. Table 8 presents the MAE at different values of ¢ and M. A comparison of MAE between SGCM
and method in [54] and [58] is tabulated in Table 9.

Approximate solution Exact solution

Figure 4. The AS (left) and ES (right) of Problem 3 at £=0.5 and M = 14

L, error

10 00

Figure 5. L, error of Problem 3 at £= 0.5 and M = 14
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Table 7. The AE of Problem 3 at &= 0.5 and M = 14

£=05
z t=0.1 t=0.5 t=09 Upper bound of AE
0.1 2.81893 x 107" 9.29812 x 10™° 3.27516 x 107"
0.2 6.80879 x 1077 1.95677 x 107" 6.85563 x 107"
0.3 1.11022 x 10™° 2.98372 x 107" 1.06026 x 10™
0.4 1.63064 x 107 4.09395 x 107" 1.46411 x 10™
0.5 2.14861 x 107" 526777 x 107" 1.88168 x 10™ 10
0.6 2.7452 x 107 6.56766 x 107" 2.33147 x 10
0.7 3.38271 x 107 8.07687 x 107" 2.88936 x 10
0.8 3.8294 x 107 9.4022 x 107 3.59157 x 10™
0.9 4.48643 x 107" 1.13728 x 10™ 4.90302 x 10
Table 8. MAE of Problem 3
M £=0.1 £=05 £=09
2 2.48361 x 10 2.31915 x 10" 2.16388 x 10"
4 7.13976 x 10” 7.65207 x 107 7.94323 x 10”
6 9.81572 x 107 1.16576 x 10 1.3222 x 10™
8 6.75632 x 107 9.04135 x 107 1.1282 x 10°
10 3.05052 x 107 446111 x 10° 6.01078 x 107
12 1.06736 x 107" 1.6286 x 10™" 2.30448 x 10™
14 2.14525 x 107 1.0002 x 10" 1.0002 x 107
Table 9. Comparison of the MAE for Problem 3
¢ M SGCM M CSCM [54] Method in [58]
0.5 14 1.0002 x 10™ 10 9.2905 x 107 8.167 x 10°°
0.75 14 1.52464 x 10 15 6.7610 x 107 3.443 x 10°
0.9 14 2.27302 x 107 25 5.1574 x 107 4.065 x 10
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6. Conclusion

Our study introduced a spectral collocation algorithm explicitly designed for solving the time-fractional
Burgers’ Equation (TFBE). Our approach is grounded in utilizing shifted Gegenbauer polynomials and their modified
counterparts, which serve as the basis functions for our numerical method. The central concept behind our method
revolves around employing the collocation technique to transform the TFBE into a system of algebraic equations,
making it amenable to solution through well-established numerical procedures. Our findings have demonstrated that
the presented spectral collocation method exhibits high accuracy and can yield results that are on par with, or even
superior to, existing numerical methods for tackling the TFBE. This achievement underscores the potential of our
approach as a powerful tool for addressing not only the TFBE but also other important nonlinear differential equations
encountered in various scientific and engineering contexts. Our future endeavors are poised to further enhance and
deepen our understanding of this method in light of our promising results. Specifically, we intend to comprehensively
evaluate and discuss the convergence conditions associated with our spectral collocation algorithm. This analysis will
provide valuable insights into the circumstances under which our method excels and helps identify situations where
it may require further refinement. Furthermore, we are keenly interested in investigating the possible presence of
ghost solutions, a phenomenon studied in prior research [26, 59]. By exploring this aspect, we aim to elucidate any
peculiarities or unexpected behavior that might arise when employing our method in specific scenarios. In doing so, we
aim to refine our algorithm, ensuring its robustness and applicability across a broader spectrum of nonlinear differential
equations, ultimately advancing the field of numerical analysis and computational mathematics. All codes were written
and debugged by Mathematica 12 on Dell Inspiron 15, Processor: Intel (R) Core(TM) i5-5200U CPU @ 2.20 GHz 2.20
GHz, 8 GB Ram DDR3, and 1024 GB storage.
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