
Contemporary Mathematics 3374 | Yangjun Chen

Research Article

An Efficient Algorithm for Solving the 2-MAXSAT Problem

Yangjun Chen

Department of Applied Computer Science, University of Winnipeg, Manitoba, Canada
Email: y.chen@uwinnipeg.ca

Received: 30 June 2023; Revised: 18 October 2023; Accepted: 1 November 2023

Abstract: In the maximum satisfiability (MAXSAT) problem, we are given a set V of m variables and a collection
C of n clauses over V. We will seek a truth assignment to maximize the number of satisfied clauses. This problem is
NP-hard even for its restricted version, the 2-MAXSAT problem, in which every clause contains at most two literals.
In this paper, we discuss an efficient algorithm to solve this problem. Its worst-case time complexity is bounded by

2log2 3
2O((log)).nmn m nm In the case that log2 nm is bounded by a constant, our algorithm is a polynomial algorithm. In

terms of Garey and Johnson, any satisfiability instance can be transformed to a 2-MAXSAT instance in polynomial time.
Thus, our algorithm may lead to a proof of P = NP.

Keywords: satisfiability problem, maximum satisfiability problem, NP-hard, NP-complete, conjunctive normal form,
disjunctive normal form

1. Introduction
The satisfiability problem is perhaps one of the most well-studied problems that arise in many areas of discrete

optimization, such as artificial intelligence, mathematical logic, and combinatorial optimization, to name a few. Given a
set V of Boolean (true/false) variables and a collection C of clauses over V, or, say, a logic formula in CNF (conjunctive
normal form), the satisfiability problem is to determine if there is a truth assignment that satisfies all clauses in C [1].
The problem is NP-complete even when every clause in C has at most three literals [2]. The maximum satisfiability
(MAXSAT) problem is an optimization version of satisfiability that seeks a truth assignment to maximize the number
of satisfied clauses [3]. This problem is NP-hard even for its restricted version, the so-called 2-MAXSAT problem, in
which every clause in C has at most two literals [4]. Its application can be seen in an extensive bibliography [5-10].

Over the past several decades, a lot of research on the MAXSAT has been conducted. Almost all of them are the
approximation methods [3, 7, 11-13, 21], such as (1-1/e)-approximation and 3/4-approximation [7], as well as the
method based on integer linear programming [9]. The only algorithms for an exact solution are discussed in [20, 21].
The worst-case time complexity of [21] is bounded by O(b22m), where b is the maximum number of occurrences of any
variable in the clauses of C, while the worst-case time complexity of [20] is bounded by max{O(2m), O*(1.2989n)}. Both
algorithms use the traditional branch-and-bound method to solve the satisfiability problem. Its main idea is to search for
a solution by letting a variable (or a literal) be 1 or 0. In terms of [7], any algorithm based on branch-and-bound runs in
O*(cm) time with c ≥ 2.

In this paper, we discuss an efficient algorithm to solve the 2-MAXSAT problem, working in a quite different way.

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2024 Yangjun Chen.
DOI: https://doi.org/10.37256/cm.5320243304
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4991-9558
mailto:y.chen@uwinnipeg.ca
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://doi.org/10.37256/cm.4220232500
https://creativecommons.org/licenses/by/4.0/

Volume 5 Issue 3|2024| 3375 Contemporary Mathematics

Its time complexity is bounded by 2log2 3
2O((log)),nmn m nm where n and m are the number of clauses and the number of

variables in C, respectively. In the case that log2 nm is bounded by a constant, the time complexity of our algorithm is
polynomial. In terms of Garey and Johnson [8], any satisfiability instance can be transformed to a 2-MAXSAT instance
in polynomial time. This shows a possibility of proving P = NP. For example, for a large problem with n = 32 and m =
64, 2log 11

2log 11nmnm = is still a manageable constant. But the running time of any existing method is > O(264), which is
obviously prohibitively high.

The main idea behind our algorithm can be summarized as follows:
1) Given a collection C of n clauses over a set of variables V, each containing at most two literals, construct a

formula D over another set of variables U, but in DNF (disjunctive normal form), containing 2n conjunctions with each
of them having at most two literals, such that there is a truth assignment for V that satisfies at least n* ≤ n clauses in C if
and only if there is a truth assignment for U that satisfies at least n* conjunctions in D.

2) For each Di in Di (i ∈ {1, ..., n}), construct a graph called a p*-graph to represent all those truth assignments σ
of variables such that under σ Di evaluates to true.

3) Organize the p*-graphs for all Di’s into a trie-like graph G. Searching G bottom up, we can find a maximum
subset of satisfied conjunctions in an almost polynomial time.

The organization of the rest of this paper is as follows: First, in Section 2, we restate the definition of the 2-MAXSAT
problem and show how to reduce it to a problem that seeks a truth assignment to maximize the number of satisfied
conjunctions in a formula in DNF. Then, we discuss our algorithm in Section 3. Section 4 is devoted to the analysis of
the time complexity of the algorithm. Finally, a short conclusion is set forth in Section 5.

2. 2-MAXSAT problem
We will deal solely with Boolean variables (that is, those that are either true or false), which we will denote by c1,

c2, etc. A literal is defined as either a variable or the negation of a variable (e.g., 7 11,c c¬ are literals). A literal ic¬ is true
if the variable ci is false. A clause is defined as the OR of some literals, written as 1 2(....)kl l l∨ ∨ ∨ for some k, where
each li (1 ≤ i ≤ k) is a literal, as illustrated in 1 11.c c¬ ∨ We say that a Boolean formula is in CNF if it is presented as an
AND of clauses: 1 ... (1).nC C n∧ ∧ ≥ For example, 1 7 11 5 2 3() ()c c c c c c¬ ∨ ∨ ¬ ∧ ∨ ¬ ∨ ¬ is in CNF. In addition, a DNF is an
OR of conjunctions: 1 2 ... (1).mD D D m∨ ∨ ∨ ≥ For instance, 1 2 1 11() ()c c c c∧ ∨ ¬ ∧ is in DNF.

Finally, the MAXSAT problem is to find an assignment to the variables of a Boolean formula in CNF such that the
maximum number of clauses are set to true or are satisfied. Formally:

2-MAXSAT
• Instance: A finite set V of variables, a Boolean formula 1 ... nC C C= ∧ ∧ in CNF over V such that each Ci has

0 | | 2iC< ≤ literals (i = 1, ..., n), and a positive integer n* ≤ n.
• Question: Is there a truth assignment for V that satisfies at least n* clauses?
In other words, we will find a maximum integer j such that j clauses in C can be satisfied under a certain truth

assignment : max{ |j kσ = there exists σ such that k clauses in C are satisfied under σ }.
In terms of [6], 2-MAXSAT is NP-complete.
To find a truth assignment σ such that the number of clauses set to true is maximized under σ , we can try all the

possible assignments and count the satisfied clauses as discussed in [16]. We may also use a heuristic method to find an
approximate solution to the problem, as described in [8].

In this paper, we propose a quite different method, by which, for 1 ... ,nC C C= ∧ ∧ we will consider another formula
D in DNF constructed as follows.

Let 1 2i i iC c c= ∨ be a clause in C, where ci1 and ci2 denote either variables in V or their negations. For Ci, define a
variable xi. and a pair of conjunctions: Di1, Di2, where

1 1

2 2

,

.

i i i

i i i

D c x

D c x

= ∧

= ∧ ¬

Contemporary Mathematics 3376 | Yangjun Chen

Let 11 12 21 22 1 2... .n nD D D D D D D= ∨ ∨ ∨ ∨ ∨ ∨
Then, given an instance of the 2-MAXSAT problem defined over a variable set V and a collection C of n clauses,

we can construct a logic formula D in DNF over the set V X∪ in polynomial time, where { | 1,..., }.iX x i n= = i = 1, ..., n}. D has
m = 2n conjunctions.

Concerning the relationship of C and D, we have the following proposition.
Proposition 1 Let C and D be a formula in CNF and a formula in DNF defined above, respectively. No less than n*

clauses in C can be satisfied by a truth assignment for V if and only if no less than n* conjunctions in D can be satisfied
by some truth assignment for V X∪ .

Proof. Consider every pair of conjunctions in 1 1: i i iD D c x= ∧ and 2 2 ({1,..., }).i i iD c x i n= ∧ ¬ ∈(i ∈ {1, ..., n}). Clearly, under
any truth assignment for the variables in V X∪ , at most one of Di1 and Di2 can be satisfied. If xi = true, we have Di1 = ci1
and Di2 = false. If xi = false, we have Di2 = ci2 and Di1 = false.

“⇒” Suppose there exists a truth assignment σ for C that satisfies p ≥ n* clauses in C. Without loss of generality,
assume that the p clauses are C1, C2, ..., Cp.

Then, similar to Theorem 1 of [11], we can find a truth assignment σ for D satisfying the following condition:
For each Cj = cj1 ∨ cj2 (

 j = 1, ..., p), if cj1 is true and cj2 is false under σ , (1) set both cj1 and xj to true for σ . If
cj1 is false and cj2 is true under σ , (1) set both cj2 to true, but xj to false for σ . If both cj1 and cj2 are true, do (1) or (2)
arbitrarily.

Obviously, we have at least n* conjunctions in D satisfied under σ .
“⇐” We now suppose that a truth assignment σ for D with q ≥ n* conjunctions in D is satisfied. Again, assume that

those q conjunctions are
1 21 2, ,..., ,

qb b qbD D D, ...,
1 21 2, ,..., ,

qb b qbD D D where each (1,...,)jb j q=(j = 1, ..., q) is 1 or 2.
Then, we can find a truth assignment σ for C satisfying the following condition:
For each (1,...,),

jjbD j q=(j = 1, ..., q), if bj = 1, set cj1 to true for σ ; if bj = 2, set cj2 to true for σ .
Clearly, under σ , we have at least n* clauses in C satisfied. The above discussion shows that the proposition holds.
Proposition 1 demonstrates that the 2-MAXSAT problem can be transformed, in polynomial time, into a problem

to find the maximum number of conjunctions in a logic formula in DNF. As an example, consider the following logic
formula in CNF:

(1)1 2 3 1 2 2 3 3 1() () ()C C C C c c c c c c= ∧ ∧ = ∨ ∧ ∨ ¬ ∧ ∨ ¬

Under the truth assignment 1 2 3{ 1, 1, 1},c c cσ = = = ={ }1 2 3 4 5 61, 1, 1, 1, 1, 1 , c c c c c c Dσ = = = = = = = }, C evaluates to true, i.e., Ci = 1 for i = 1, 2, 3. Thus, n* = 3.
For C, we will generate another formula, D, but in DNF, according to the above discussion:

11 12 21 22 31 32D D D D D D D= ∨ ∨ ∨ ∨ ∨

() ()1 4 2 4c c c c= ∧ ∨ ∧ ¬

() ()2 5 3 5c c c c∨ ∧ ∨ ¬ ∧ ¬

(2)() ()3 6 1 6 .c c c c∨ ∧ ∨ ¬ ∧ ¬

According to Proposition 1, D should also have at least n* = 3 conjunctions that evaluate to true under some truth
assignment. On the other hand, if D has at least three satisfied conjunctions under a truth assignment, then C should
have at least three clauses satisfied by some truth assignment, too. In fact, it can be seen that under the truth assignment,

{ }1 2 3 4 5 61, 1, 1, 1, 1, 1 , c c c c c c Dσ = = = = = = = has three satisfied conjunctions: D11, D21, and D31, from which the three
satisfied clauses in C can be immediately determined.

In the following, we will discuss an almost polynomial time algorithm to find a maximum set of satisfied
conjunctions in any logic formula in DNF, not only restricted to the case that each conjunction contains up to two
conjuncts.

Volume 5 Issue 3|2024| 3377 Contemporary Mathematics

3. Algorithm description
In this section, we discuss our algorithm. First, we present the main idea in Section 3.1. Then, in Section 3.2,

a recursive algorithm for solving the problem is described in great detail. The running time of the algorithm will be
analyzed in the next section.

3.1 Main idea

To develop an efficient algorithm to find a truth assignment that maximizes the number of satisfied conjunctions in
a formula 1 ..., ,nD D D= ∨ ∨ where each Di (i = 1, ..., n) is a conjunction of variables (),c V∈ we need to represent each
Di as a variable sequence. For this purpose, we introduce a new notation:

()*, true, j j jc c c= ∨ ¬ = true

which will be inserted into Di to represent any missing variable j ic D∈ (i.e., ,jc V∈ but not appearing in Di).
Obviously, the truth value of each Di remains unchanged.

In this way, the above D can be rewritten as a new formula in DNF as follows:

1 2 3 4 5 6D D D D D D D= ∨ ∨ ∨ ∨ ∨

() () () ()()* * * *
1 2 3 4 5 6, , , ,c c c c c c= ∧ ∧ ∧ ∧ ∧

(3)

() () () ()()

() () () ()()

() () () ()()

() () () ()()

() () () ()()

* * *
1 2 3 4 5 6

* * * *
1 2 3 4 5 6

* * * *
1 2 3 4 5 6

* * * *
1 2 3 4 5 6

* * * *
1 2 3 4 5 6

,* , , ,

, , , ,

, , , ,

, , , ,

, , , ,

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

∨ ∧ ∧ ∧ ¬ ∧ ∧

∨ ∧ ∧ ∧ ∧ ∧

∨ ∧ ∧ ¬ ∧ ∧ ¬ ∧

∨ ∧ ∧ ∧ ∧ ∧

∨ ¬ ∧ ∧ ∧ ∧ ∧ ¬

Doing this enables us to represent each Di as a variable sequence, but with all the negative literals removed. It is
because if the variable in a negative literal is set to true, the corresponding conjunction must be false.

See Table 1 for illustration.
First, we pay attention to the variable sequence for D2 (the second sequence in the second column of Table 1), in

which the negative literal 4c¬ (in D2) is eliminated. In the same way, you can check all the other variable sequences.
Now it is easy for us to compute the appearance frequencies of different variables in the variable sequences, by

which each (c, *) is counted as a single appearance of c while any negative literals are not considered, as illustrated in
Table 2, in which we show the appearance frequencies of all the variables in the above D.

According to the variable appearance frequencies, we will impose a global ordering over all variables in D such
that the most frequent variables appear first, but with ties broken arbitrarily. For instance, for the D shown above, we
can specify a global ordering like this: 2 3 1 4 5 6 .c c c c c c→ → → → →

Contemporary Mathematics 3378 | Yangjun Chen

Table 1. Conjunctions represented as sorted variable sequences

Conjunction Variable sequences Sorted variable sequences

D1 () () () ()* * * *
1 2 3 4 5 6, , , ,c c c c c c⋅ ⋅ ⋅ ⋅ ⋅ () () () ()* * *

2 3 1 4 5 6#. , , ,* , $c c c c c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅

D2 () () ()* *
1 2 3 5 6, , ,*c c c c c⋅ ⋅ ⋅ ⋅ () () ()*

2 3 1 5 6# ,* , ,* $c c c c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅

D3 () () ()* * *
1 2 3 4 5 6, , ,c c c c c c⋅ ⋅ ⋅ ⋅ ⋅ () () ()*

2 3 1 4 5 6# ,* ,* , $c c c c c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

D4 () () () ()* * *
1 2 4 6, , ,* ,c c c c⋅ ⋅ ⋅ () () () ()*

2 1 4 6# ,* ,* ,* , $c c c c⋅ ⋅ ⋅ ⋅ ⋅

D5 () () () ()* * * *
1 2 3 4 5 6, , , ,c c c c c c⋅ ⋅ ⋅ ⋅ ⋅ () () () ()* *

2 3 1 4 5 6# , ,* ,* , $c c c c c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

D6 () () () ()* * * *
2 3 4 5, , , ,c c c c⋅ ⋅ ⋅ () () () ()*

2 3 4 5# ,* ,* , ,* $c c c c⋅ ⋅ ⋅ ⋅ ⋅

Table 2. Appearance frequencies of variables

Variables c1 c2 c3 c4 c5 c6

Appearance
frequencies 5/6 6/6 5/6 5/6 5/6 5/6

Following this general ordering, each conjunction Di in D can be represented as a sorted variable sequence, as
illustrated in the third column of Table 1, where the variables in a sequence are ordered in terms of their appearance
frequencies, such that more frequent variables appear before less frequent ones. In addition, a start symbol # and an end
symbol $ are used as sentinels for technical convenience. In fact, any global ordering of variables works well (i.e., you
can specify any global ordering of variables), based on which a graph representation of assignments can be established.
However, ordering variables according to their appearance frequencies can greatly improve efficiency when searching
the trie (to be defined in the next subsection) constructed over all the variable sequences for conjunctions in D.

Later on, by variable sequence, we always mean a sorted variable sequence. Also, we will use Di and the variable
sequence for Di interchangeably without causing any confusion.

In addition, for our algorithm, we need to introduce a graph structure to represent all those truth assignments for
each Di (i = 1, …, n) (called a p*-graph), under which Di evaluates to true. In the following, however, we first define the
simple concept of p-graphs for ease of explanation.

Definition 1 (p-graph). Let 0 1 1... k kc c c cα += … 0 1 1... k kc c c cα += be a variable sequence representing a Di in D as described above (with
0 #c = and 1 $).kc + = A p-graph over α is a directed graph in which there is a node for each (0, ..., 1)jc j k= + and an

edge for 1(,)j jc c + for each {0,1,..., }.j k∈ 1, …, k}. In addition, there may be an edge from cj to cj+2 for each {0,..., 1}j k∈ - …, k - 1} if
cj+1 is a pair of the form (c, *), where c is a variable name.

In Figure 1(a), we show such a p-graph for 1 2 3 1 4 5 6#.(,*).(,*). . .(,*).(,*).$.D c c c c c c= Beside a main path going
through all the variables in D1, there are four off-path edges (edges not on the main path), referred to as spans attached to
the main path, corresponding to 2 3 5(,*), (,*), (,*),c c c and 6(,*),c respectively. Each span is represented by the subpath
covered by it. For example, we will use the subpath 0 1 2, ,v v v< > (subpath going three nodes: v0, v1, and v2) to stand
for the span connecting v0 and 2 1 2 3; , ,v v v v< > for the span connecting v2 and 3 4 5 6; , ,v v v v< > for the span connecting
v4 and v6, and 5 6 7, ,v v v< > for the span connecting v6 and v7. By using spans, the meaning of ‘*’s (it is either 0 or 1) is
appropriately represented since along a span we can bypass the corresponding variable (then its value is set to 0), while
along an edge on the main path we go through the corresponding variable (then its value is set to 1).

Volume 5 Issue 3|2024| 3379 Contemporary Mathematics

v0 #

v1 c2

v2 c3

v3 c1

v4 c4

v5 c5

v6 c6

v7 $

(a)

v0

v1

v2

v3

v4

v5

v6

v7

#

c2

c3

c1

c4

c5

c6

$

(b)

Figure 1. A p-path and a p*-path

In fact, what we want is to represent all those truth assignments for each Di (i = 1, …, n) in an efficient way, under
which Di evaluates to true. However, p-graphs fail to do so since when we go from a node v to another node u through
a span, u must be selected. If u represents a (c, *) for some variable name c, the meaning of this ‘*’ is not properly
rendered. It is because (c, *) indicates that c is optional, but going through a span from u to (c, *) makes c always
selected. So, the notation (c, *), which is used to indicate that c is optional, is not correctly implemented.

For this reason, we introduce another concept, p*-graphs, described as below.
Let s1 = < v1, …, vk > and s2 = < u1, …, ul > be two spans attached to the same path. We say s1 and s2 are overlapped

if u1 = vj for some

j ∈ {1, …, k - 1}or if 1 jv u ′= for some j' ∈ {1, …, l - 1}. For example, in Figure 1(a), < v0, v1, v2 >

and < v1, v2, v3 > are overlapped. < v4v5, v6 > and < v5, v6, v7 > are also overlapped.
Here, we notice that if we had one more span, < v3, v4, v5 >, for example, it would be connected to < v1, v2, v3 >

but not overlapped with < v1, v2, v3 >. Being aware of this difference is important since the overlapped spans imply the
consecutive ‘*’s, just like < v1, v1, v2 > and < v1, v2, v3 >, which correspond to two consecutive ‘*’s: (c2, *) and (c3, *).
Therefore, the overlapped spans exhibit some kind of transitivity. That is, if s1 and s2 are two overlapped spans, the s1 ∪
s2 must be a new but bigger span. Applying this operation to all the spans over a p-path, we will get a ‘transitive closure’
of overlapped spans. Based on this observation, we give the following definition.

Definition 2 (p*-graph). Let P be a p-graph. Let p be its main path, and S be the set of all spans over p. Denote by
S* the ‘transitive closure’ of S. Then, the p*-graph with respect to P is the union of p and S*, denoted as * *.P p S= ∪

In Figure 1(b), we show the p*-graph with respect to the p-graph shown in Figure 1(a). Concerning p*-graphs, we
have the following lemma.

Lemma 1 Let P* be a p*-graph for a conjunction Di (represented as a variable sequence) in D. Then, each path
from # to $ in P* represents a truth assignment, under which Di evaluates to true.

Proof. (1) Corresponding to any truth assignment σ , under which Di evaluates to true, there is definitely a path
from # to $ in p*-path. First, we note that under such a truth assignment, each variable in a positive literal must be set
to 1, but with some ‘*’s set to 1 or 0. Especially, we may have more than one consecutive ‘*’s that are set 0, which are
represented by a span that is the union of the corresponding overlapped spans. Therefore, for σ , we must have a path
representing it.

(2) Each path from # to $ represents a truth assignment, under which Di evaluates to true. To see this, we observe
that each path consists of several edges on the main path and several spans. Especially, any such path must go through
every variable in a positive literal since for each of them there is no span covering it. But each span stands for a ‘*’ or

Contemporary Mathematics 3380 | Yangjun Chen

more than one successive ‘*’s.

3.2 Algorithm

To find a truth assignment to maximize the number of satisfied sjD′ in D, we will first construct a trie-like structure
G over D and then search G bottom-up to find answers.

Let 1 2*, *,..., *nP P P be all the p*-graphs constructed for all sjD′ in D, respectively. Let pj and Sj* (j = 1, ..., n) be
the main path of Pj* and the transitive closure over its spans, respectively. We will construct G in two steps. In the first
step, we will establish a trie [13], denoted as T = trie(R) over R = {p1, ..., pn}, as follows.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R) is a single node. If |R| > 1, R is split into m (possibly
empty) subsets R1, R2, ..., Rm so that each Ri (i = 1, …, m) contains all those sequences with the same first variable name.
The tries: trie(R1), trie(R2), ..., trie(Rm) are constructed in the same way except that at the kth step, the splitting of sets
is based on the kth variable name (along with the global ordering of variables). They are then connected from their
respective roots to a single node to create trie(R).

In Figure 2, we show the trie constructed for the variable sequences given in the third column of Table 1. In such a
trie, special attention should be paid to all the leaf nodes, each labelled with $, representing a conjunction (or a subset of
conjunctions, which can be satisfied under the truth assignment represented by the corresponding main path.)

#
v0

(1, 18)

c2

v1
(2, 17)

c3

v2
(3, 12)

c1

v3
(4, 8) c4

v11
(12, 11)

c5

v8
(9, 7) c5

v12
(3, 10)

c6

v9
(10, 6) $

v13
(14, 9)

$
v10

(11, 5)

c1 (15, 16)
v14

c4 (16, 15)
v15

c6 (17, 14)
v16

$ (18, 13)
v17

D2

D1 D3 D5

D6 D4

c4
v4

c5
v5

c6
v6

$
v7

(5, 4)

(6, 3)

(7, 2)

(8, 1)

Figure 2. A trie and tree encoding

The advantage of tries is to cluster common parts of variable sequences together to avoid possible repeated
checking. (Then, this is the main reason why we sort variable sequences according to their appearance frequencies.)
Especially, this idea can also be applied to the variable subsequences (as will be seen later), over which some dynamical
tries can be recursively constructed, leading to an efficient algorithm.

Each edge in the trie is referred to as a tree edge. In addition, the variable c associated with a node v is referred to
as the label of v, denoted as l(v) = c. Also, a node in T is said to be in a high position if it is close to the root. It is said to
be in a low position if it is close to a leaf node.

Finally, we will associate each node v in the trie T with a pair of numbers (pre, post) to speed up recognizing
ancestor/descendant relationships of nodes in T, where pre is the order number of v when searching T in preorder and
post is the order number of v when searching T in postorder.

These two numbers can be used to characterize the ancestor/descendant relationships in T as follows.

Volume 5 Issue 3|2024| 3381 Contemporary Mathematics

Let v and v′ be two nodes in T. Then, v′ is a descendant of v if pre(v′) > pre(v) and post(v′) < post(v).
For the proof of this property of any tree, see Exercise 2.3.220 in [12].
For instance, by checking the label associated with v2 against the label for v9 in Figure 2, we see that v2 is an

ancestor of v9 in terms of this property. Particularly, v2’s label is (3, 12) and v9’s label is (10, 6), and we have 3 < 10 and
12 > 6. We also see that since the pairs associated with v14 and v6 do not satisfy the property, v14 must not be an ancestor
of v6 and vice versa.

In the second step, we will add all Si*(i = 1, …, n) to the trie T to construct a trie-like graph G, as illustrated
in Figure 3. This trie-like graph is constructed for all the variable sequences given in Table 1, in which each span
is associated with a set of numbers used to indicate what variable sequences the span belongs to. For example, the
span 0 1 2, ,v v v< > (in Figure 3) is associated with three numbers: 1, 5, and 6, indicating that the span belongs to three
conjunctions: D1, D5, and D6. But no numbers are associated with any tree edges.

v6

v4

1, 5
1

5

5

1, 3

c4

c5

c6

$

5

5

3, 5

1, 3

1, 5, 6

3

1

2

2

2

6 6 4

6
6

6

6

6

2

2
2

c1

c5

c6

$
v10

v9

v8

v3

v0

v1

V16

V14v2

v11

v7

v5

D1 D3 D5

D2

D6

c3

c4

c5

$

c2

#

v12

v13

6

c1

c4

c6

$

D4

4

4

4

4

4

4 4

V17

V15

6 4

4

Figure 3. A trie-like graph G

From Figure 3, we can see that although the number of truth assignments for D is exponential, they can be
represented by a graph with polynomial numbers of nodes and edges. In fact, in a single p*-graph, the number of edges
is bounded by O(n2). Thus, a trie-like graph over m p*-graphs has at most O(n2m) edges.

In the next step, we will search G bottom-up level by level to seek all the possible largest subsets of conjunctions
that can be satisfied by a certain truth assignment.

First of all, we call each node in T with more than one child a branching node. For instance, node v3 with two
children v4 and v8 in G shown in Figure 3 is a branching node. For the same reason, v2 and v1 are another two branching
nodes. Note that v0 is not a branching node since it has one child in T (although it has more than one child in G).

Around the branching node, we have two very important concepts defined as follows.
Definition 3 (reachable subsets through spans). Let v be a branching node. Let u be a node on the tree path from

root to v in G (not including v itself). A reachable subset of u through spans is all those nodes with the same label c in
different subgraphs in G[v] (the subgraph rooted at v) and reachable from u through a span, denoted as [].v

uRS c
For instance, v3 in Figure 3 is a branching node. With respect to v3, node v2 on the tree path from root to v3 has two

reachable subsets:

Contemporary Mathematics 3382 | Yangjun Chen

3

2 5 5 8[] { , },v
vRS c v v=

3

2 6 6 9[] { , }.v
vRS c v v=

We have 3

2 5[]v
vRS c due to two spans 5

2 5v v→ and 2
2 8v v→ going out of v2, respectively, reaching v5 and v8

on two different p*-graphs in 3[]G v with l(v5) = l(v8) = ‘c5’. We have 3

2 6[]v
vRS c due to another two spans going out of

5
2 2 6:v v v→ and 2

2 9 ,v v→ with l(v6) = l(v9) = ‘c6’.
In general, we are interested only in those RS’s (reachable subsets through spans) with | | 2vRS ≥ (since any RS

with |RS| = 1 only leads us to a leaf node in T: no larger subsets of conjunctions can be found.) So, in the subsequent
discussion, by an RSv, we mean an RSv with |RSv| ≥ 2.

The definition of this concept for a branching node v itself is a little bit different from any other node on the tree
path (from root to v). Specifically, each of its RSs is defined as a subset of nodes reachable from a span or from a tree
edge. So, for v3, we have:

3

3 5 5 8[] { , },v
vRS c v v=

3

3 6 6 9[] { , },v
vRS c v v=

respectively, due to 5
3 5v v→ and 3 8v v→ going out of v3 with 6 8 5() () ' ';l v l v c= =‘c5’; and 5

3 6v v→ and 2
3 9v v→

going out of v3 with 6 8 6() () ' '.l v l v c= = ‘c6’.
Based on the concept of reachable subsets through spans, we are able to define another more important concept,

upper boundaries, given below.
Definition 4 (upper boundaries). Let v be a branching node. Let v1, v2, …, vk be all the nodes on the path from root

to v. An upper boundary (denoted as upBounds) with respect to v is the largest subset of nodes {u1, u2, …, uf} with the
following properties satisfied:

1) Each (1)gu g f≤ ≤ appears in some [] (1),
i

v
vRS c i k≤ ≤ where c is a label.

2) For any two nodes , (),g gu u g g′ ′≠ they are not related by the ancestor/descendant relationship.
Figure 4 gives an intuitive illustration of this concept.

upBound

Figure 4. Illustration for upBounds

As a concrete example, consider v5 and v8 in Figure 3. They make up an upBound with respect to v3 (a branching
node). Then, we will construct a trie-like graph over two p*subgraphs, starting from v5 and v8, respectively. This can

Volume 5 Issue 3|2024| 3383 Contemporary Mathematics

be done by a recursive call of the algorithm itself. Here, however, v4 is not included since the truth assignment with v4

being set to true satisfies only the conjunctions associated with leaf node v10. This has already been determined when the
initial trie is built up. In fact, the purpose of upper boundaries is to remove all those nodes like v4 from the subsequent
computation.

Specifically, the following operations will be carried out when encountering a branching node v.
• Calculate all RSs with respect to v.
• Calculate the upBound in terms of RSs.
• Make a recursive call of the algorithm over all the subgraphs within G[v], each rooted at a node on the

corresponding upBound.
The following example helps with illustration.
Example 1 When checking the branching node v3 in the bottom-up search process, we will calculate all the

reachable subsets through spans with respect to v3 as described above. They are 3

2

v
vRS [c5], 3

2

v
vRS [c6], 3

3

v
vRS [c5], and 3

3

v
vRS

[c6]. In terms of these reachable subsets through spans, we will get the corresponding upBound {v5 and v8}. Node v4
(above the upBound) will not be involved. Therefore, it will not be further considered in the recursive execution of the
algorithm.

Concretely, when we make a recursive call of the algorithm, applied to two subgraphs: G1-rooted at v5, and G2-
rooted at v8 (shown in Figure 5(a)), we will first construct a trie-like graph as shown in Figure 5(b). Here, we notice that
the subset associated with its unique leaf node is {D2 and D5}, instead of {D1, D2, D3, and D5}. It is because the number
associated with span 5

2 5v v→ is 5, by which D1 and D3 are removed. But the number associated with span 2
2 8v v→

is 2, and therefore D2 associated with v10 survives.

c5v5

c6v6

$v7

G1
5

2

c3

c5v8

c6v9

$v10

G2
2

2, 5

1, 2, 3

c5v5-8

c6v6-9

$v7-10

c3v2

D1 D3 D5 D2

(a)

D2 D5

(b)

v2

Figure 5. Illustration for recursive call of the algorithm applied to G1 and G2

In the trie-like graph shown in Figure 5(b), v5−8 stands for the merge of v5 and v8; v6−9 for v6 and v9; and v7−10 for
v7 and v10. By searching this graph, we will find the truth assignment satisfying {D2 and D5}. This truth assignment is
represented by a path consisting of two parts: the tree path from root to v2 (see Figure 3), and the path from v2 to v7, i.e.,
the span 2,5

2 5 ,v v→ connected to the subpath v5 to v7 (see Figure 5(b)). So, the truth assignment is {c1 = 0, c2 = 1, c3 = 1,
c4 = 0, c5 = 1, c6 = 1}.

We remember that when generating the trie T over the main paths of the p*-graphs over the variable sequences
shown in Table 1, we have already found a subset of conjunctions {D1, D3, and D5}, which can be satisfied by a truth
assignment represented by the corresponding main path. This is larger than {D2 and D5}. Therefore, {D2 and D5} should
not be kept around, and this part of the computation is futile. However, we can avoid this kind of useless work by
performing a pre-check: if the number of p*-subgraphs over which the recursive call of the algorithm will be invoked is
smaller than the size of the partial answer already obtained, the corresponding recursive call of the algorithm should not
be conducted. This check can be extended to a very powerful heuristic:

With each recursive call, we will examine whether the input subgraph has been checked before. If this is the case,
the corresponding recursive call will be suppressed.

Contemporary Mathematics 3384 | Yangjun Chen

In terms of the above discussion, we design a recursive algorithm to do the task, in which R is used to
accommodate the result, represented as a set of triplets of the form:

, , ,α β γ< > where α stands for a subset of conjunctions, β for a truth assignment satisfying the conjunctions in α ,
and γ is the size of α . Initially, .R = ∅ Ø.

Algorithm 1: 2-MAXSAT(C)

Input: a logic formula C in CNF.

Output: the largest subset of conjunctions satisfying a certain truth assignment.

1 transform C to another formula D in DNF;

2 let 1 ... ;nD D D= ∨ ∨

3 for i = 1 to n do

4⎿ construct a p*-graph *
iP for Di;

5 construct a trie-like graph G over * *
1 ,..., ;nP P, …, * *

1 ,..., ;nP P

6 return SEARCH(G);

The input of 2-MAXSAT() is a formula C in CNF. First, we transform it to another formula D in DNF (see line 1).
Then, for each Di in D, we will create its p*-graph, *

iP (see line 4). Next, we will construct a trie-like graph G over all
*

iP ’s (see line 5). In the last step, we call SEARCH(G) to produce the result (see line 6).
The input of SEARCH() is a trie-like subgraph G. First, we will check whether G is a single p*-graph. If this is the

case, we must have found the largest subset of conjunctions associated with the leaf node, satisfied by a truth assignment
represented by a path consisting of two parts: the tree path from the root to the starting node v of the single p*-graph,
and the main path from v to the leaf node of the single p*-graph. This subset should be merged into R (see lines 1-4).

Otherwise, we will search G bottom-up to find all the branching nodes in G. But before that, each subset of
conjunctions associated with a leaf node in R will be first merged into R (see lines 5-7).

For each branching node v encountered, we will check all the nodes u on the tree path from root to v and compute
their RSs (see lines 8-12), based on which we then compute the corresponding upBound with respect to v (see line
13). According to the upBound L, a trie-like graph D will be created over a set of subgraphs, each rooted at a node on
L (see line 14). Then, v will be added to D as its root (see line 15). Here, we notice that { }D v D′ = ∪ is a simplified
representation of an operation, in which we add not only v but also the corresponding edges to D. Next, a recursive call
of the algorithm is made over D′ (see line 16). Finally, the result of the recursive call of the algorithm will be merged
into the global answer (see line 17).

Here, the merge operation used in lines 3, 7, and 17 is defined as below.
Let R = {r1, …, rt} for some t ≥ 0 with each ri = < αi, βi, γi >. We have γ1 = γ2 = … = γt. Let R′ = {r1′ , …, rs′} for

some s ≥ 0 with each ri′ = < αi′ , βi′ , γi′ >. We have γ1′ = γ2′ = … = γs′ . By merge(R, R′), we will do the following checks.
• If 1 1 , : .R Rγ γ ′ ′< =
• If 1 1 , Rγ γ ′> remains unchanged.
• If 1 1 , : .R R Rγ γ ′ ′= = ∪
For simplicity, the heuristics discussed above are not incorporated into the algorithm. But it can be easily extended

with this operation included.
The following example helps with illustration.

Volume 5 Issue 3|2024| 3385 Contemporary Mathematics

Algorithm 2: SEARCH(G)

Input: a trie-like subgraphs G.

Output: the largest subset of conjunctions satisfying a certain truth assignment.

1 if G is a single p*-graph then

2 R′ := subset associated with the leaf node;

3 R := merge(R, R′);

4 return R;
5 for each leaf node v in G do

6 let R′ be the subset associated with v;

7 R := merge(R, R′);
8 let v1, v2, ..., vk be all branching nodes in postorder;

9 for i = 1 to k do

10 let P be the tree path from root to vi;

11 for each u on P do

12 calculate RSs of u with respect to vi

13 create the corresponding upBound L;

14 construct a trie-like graph D over all those subgraphs

 each rooted at a node on L;

15 D′ := {vi} ∪ D;

16 R′ := SEARCH(D′);

17 R := merge(R, R′);
18 return R;

Example 2 When applying SEARCH() to the p*-graphs constructed for all the variable sequences given in Table 1,
we will first construct a trie-like graph G shown in Figure 3. Searching G bottom up, we will encounter three branching
nodes: v3, v2, and v1.

• Initially, when creating T, a subset of conjunctions {D1, D2, and D5}, is found (see Figure 2), which can be
satisfied by the same truth assignment represented by the corresponding path: c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, c6 = 1.

• Checking v3. As shown in Example 1, by this checking, we will find a subset of conjunction {D2 and D5} satisfied
by a truth assignment {c1 = 0, c2 = 1, c3 = 1, c4 = 0, c5 = 1, c6 = 1}, smaller than {D1, D2, and D5}. Thus, this result will
not be kept around.

• Checking v2. In G[v2], we have two subgraphs in G[v2], as shown in Figure 6, subgraphs rooted at v3 and v11,
respectively.

Contemporary Mathematics 3386 | Yangjun Chen

c3

v2

c1

v3

c4

v4

c5

v8

c5

v5

c6

v9

c6 $
v10

$
v7

D2

D1 D3 D5

upBound

6

2

2
1, 5

1

c4

v11

c5

v12

$
v13

D61, 3 v6

Figure 6. Two subgraphs in G′[v2] and a upBound

As with branching node v3, we need to calculate all the relevant reachable subsets through spans for all the nodes
on the tree path from the root to v2 in G. Altogether, we have five reachable subsets through spans. Among them,
associated with v1 (on the tree path from root to v2 in Figure 3), we have

3

1 4 4 11[] { , }v
vRS c v v=

due to the following two spans (see Figure 3):

3 6
1 4 1 11{ , }v v v v→ →

Associated with v2 (the branching node itself), we have the following four reachable subsets through spans:

3

2 4 4 11[] { , }v
vRS c v v=

2

3
5 5 8 12[] { , , }v

vRS c v v v=

2

3
6 6 9[] { , }v

vRS c v v=

3

2 10 13[$] { , }v
vRS v v=

Due to the following four groups of spans:

3, 5 6
2 4 2 11{ , }.v v v v→ →

5 2 6
2 5 1 8 1 12{ , , }.v v v v v v→ → →

5 2
2 6 2 9{ , }.v v v v→ →

Volume 5 Issue 3|2024| 3387 Contemporary Mathematics

2 6
2 10 2 13{ , }.v v v v→ →

In terms of the reachable subsets through spans, we can establish the corresponding upper boundary {v4, v8, and
v11} (which is illustrated as a thick line in Figure 6). Then, we can determine, over what subgraphs a recursive execution
of the algorithm will be conducted.

In Figure 7(a), we show the trie-like graph built over the three p*-subgraphs (starting, respectively, from v4, v8,
and v11 on the upBound shown in Figure 6), in which v4-11 stands for the merging of v4 and v11, and v5-12 for the merging
of v5 and v12. Especially, v2 itself needs to be involved as a branching node, working as a bridge between the newly
constructed trie-like graph and the rest part of G. (See operation { }iD v D′ = ∪ in line 15 of Algorithm 2.)

c3

v2

c6

v6

c6

v9c5

v5-12

c5

v5-12

$
v7

$
v10$

v13

D6 D2

D3 D5

D3 D6

5

5 5

2 2
6

3, 5 2

3

v4-11c4 c5

v8

$
v7-13

(a) (b)

Figure 7. A trie-like graph

By a recursive call of SEARCH(), we will construct this graph and then search this graph bottom up, by which we
will find two branching nodes: v5−12 and v2. By checking v5-12, we will find

5 12

5 12 7 13[$] { , }.v
vRS v v-

-
=

The corresponding upBound is {v7 and v13}. Accordingly, we will find a single path as shown in Figure 7(b), by
which we will find the largest subset of conjunctions {D3 and D6}, which can be satisfied by a certain truth assignment.
We notice that the subset associated with this path is {D3 and D6}, instead of {D3, D5, and D6}. It is because the span
from v5−12 to v7 (in Figure 7(a)) is labelled with 3, and D5 should be removed.

By checking v2, we will have

2

2 5 5 12 8[] { , }.v
vRS c v v−=

(due to the span v2 5
5 12v -→ and the tree edge 2 8.)v v→

2

2 6 6 9[] { , }.v
vRS c v v=

(due to the spans v2
5

6v→ and 2
2 9 .)v v→

Accordingly, the corresponding upBound is 5 12 8{ , and }.v v- Then, by the recursive execution of the algorithm,

Contemporary Mathematics 3388 | Yangjun Chen

we will create a trie-like graph as shown in Figure 8(a). The only branching node is v5-12-8. Checking this node, we will
finally get a single path as shown in Figure 8(b), showing the largest subset of conjunctions that can be satisfied by a
certain truth assignment.

c3

v2

2, 5

2, 3

c5

v5-12-8

$
v7-10

$
v7-10

$

(a)

c6

v6-9

c6

v6-9

D2 D5

D2

(b)

D2 D5

c5

v5-12-8

Figure 8. Illustration for the recursive execution of the algorithm

In the whole working process, a simple heuristic can be used to improve efficiency. Let α be the size of the largest
subset of conjunctions found up to now, which can be satisfied by a certain truth assignment. Then, any recursive call of
the algorithm over a smaller than α subset of p*-subgraphs will be suppressed.

After v2 is checked, the next branching node is v1, which will be handled in a way similar to v3 and v2.

4. Time complexity analysis
The total running time of the algorithm consists of four parts.
The first part, denoted as τ1, is the cost to transform C = C1 … Cn to D = D11 ∨ D12 ∨ D21 ∨ D22 ∨ … ∨ Dn1 ∨ Dn2.

Obviously, τ1 is bounded by O(n).
The second part, denoted as τ2, is the time for computing the frequencies of variable appearances in D. Since in this

process each variable in a Di is accessed only once, τ1 = O(nm).
The third part, denoted as τ3, is the time for constructing a trie-like graph G for D. This part of time can be further

partitioned into three portions.
• τ31: The time for sorting variable sequences for Di’s. It is obviously bound by O(nmlog2 m).
• τ32: The time for constructing p*-graphs for each Di (i = 1, ..., n). Since for each variable sequence a transitive

closure over its spans should be first created and needs O(m2) time, this part of the cost is bounded by O(nm2).
• τ33: The time for merging all p*-graphs to form a trie-like graph G, which is also bounded by O(nm2).
The fourth part, denoted as τ4, is the time for searching G to find a maximum subset of conjunctions satisfied by a

certain truth assignment. It is a recursive procedure. To analyze its running time, therefore, a recursive equation should
be established. Let l = nm. Assume that the average outdegree of a node in T is d. Then, the average time complexity of
τ4 can be characterized by the following recurrence:

()log 2
1

(1), if a constant,
()

O , otherwise. ld i
ii

O l
l ld l m

d
  
=

≤
Γ =   Γ +   
∑

(4)

Volume 5 Issue 3|2024| 3389 Contemporary Mathematics

Here, in the above recursive equation, O(l2m) is the cost for generating all the reachable subsets of a node through
spans and upper boundaries, together with the cost for generating local trie-like subgraphs for each recursive call of the
algorithm. We notice that the size of all the RSs together is bounded by the number of spans in G, which is O(lm).

From (4), we can get the following inequality:

(5)()2() log O .d
ll d l l m
d

 Γ ≤ ⋅ ⋅Γ + 
 

Solving this inequality, we will get

()2() log Od
ll d l l m
d

 Γ ≤ ⋅ ⋅Γ + 
 

(6)

() ()

()

()

()

2 2 2
2

log

log

2

log

log 2

log log log

log log log

 log log log log 1

O log O l

d d d

l
d

d d d l
d

d d d dl
d

ld
d

l ld l l l m l m
d d

l ld l
d

d

l ll m l l
d

d

l l l m

 
  

 
  

 
  

   ≤ Γ + +   
   

≤ ……

     ≤ …        

      + … +…+ +         

≤ + ()()(

()()

log

log2

og

~ O log .

ld
d

ld
d

l

l m l

Thus, the value for τ4 is log2() ~ O((log)).ld
dl l m lΓ

From the above analysis, we have the following proposition.
Proposition 2 The average running time of our algorithm is bounded by

() ()()4 2
21

O() O() O log 2 O
i

n nm nm m nmτ
=

= + + + ×∑

(7)

()()

()()

log2

log2 3

O log

O log

ld
d

nmd
d

l m l

n m nm

+

+

But we remark that if the average outdegree of a node in T is < 2, we can use a brute-force method to find the
answer in polynomial time. Hence, we claim that the worst-case time complexity is bounded by 2log2

2O((log))ll m l since

Contemporary Mathematics 3390 | Yangjun Chen

log(log) d l
d l decreases as d increases.

5. Conclusions
In this paper, we have presented a new method to solve the 2-MAXSAT problem. The time complexity of the

algorithm is bounded by 2log2 3
2O((log)),nmn m nm where n and m are, respectively, the numbers of clauses and variables

of a logic formula C (over a set V of variables) in CNF, and d is the average outdegree of a node in a trie established
over a set of conjunctions that are generated from the clauses in C. The main idea behind this is to construct a different
formula D (over a set U of variables) in DNF, according to C, with the property that for a given integer n* ≤ n C has
at least n* clauses satisfied by a truth assignment for V if and only if D has at least n* conjunctions satisfied by a
truth assignment for U. To find a truth assignment that maximizes the number of satisfied conjunctions in D, a graph
structure called p*-graph is introduced to represent each conjunction in D. In this way, all the conjunctions in D can be
represented as a trie-like graph. Searching G bottom up, we can find the answer efficiently.

In our future work, we will make a detailed analysis of the impact of the heuristics discussed in Section 3.2. It
seems that by using the heuristics, any repeated recursive call can be effectively avoided. If that is the case, the number
of recursive calls for each branching node will be bounded by O(m) since the height of the trie-like graph G is bounded
by O(m). Thus, the worst-case time complexity of our algorithm should be bounded by O(n2m4). It is because we have
at most O(nm) branching nodes, and for each recursive call, we need O(nm2) time to construct a dynamical trie. So, the
total running time will be O(nm) × O(m) × O(nm2) = O(n2m4).

Conflict of interest
The author declares no competing financial interest.

References

[1]	 Cook SA. The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM
Symposium on the Theory of Computing. ACM Digital Library; 1971. p.151-158. Available from: https://doi.
org/10.1145/800157.805047.

[2]	 Even Y, Itai A, Shamir A. On the complexity of timetable and multi-commodity flow problem. In: 16th Annual
Symposium on Foundations of Computer Science (sfcs 1975). USA: IEEE; 1976. Available from: https://doi.
org/10.1109/SFCS.1975.21.

[3]	 Johnson MS. Approximation algorithm for combinatorial problems. Journal of Computer and System Sciences.
1974; 9(3): 256-278. Available from: https://doi.org/10.1016/S0022-0000(74)80044-9.

[4]	 Garey MR, Johnson DS, Stockmeyer L. Some simplified NP-complete graph problems. Theoretical Computer
Science. 1976; 1(3): 237-267. Available from: https://doi.org/10.1016/0304-3975(76)90059-1.

[5]	 Djenouri Y, Habbas Z, Djenouri D. Data mining-based decomposition for solving the MAXSAT problem:
Toward a new approach. IEEE Intelligent Systems. 2017; 32(4): 48-58. Available from: https://doi.org/10.1109/
MIS.2017.3121546.

[6]	 Kohli R, Krishnamurti R, Mirchandani P. The minimum satisfiability problem. SIAM Journal on Discrete
Mathematics. 1994; 7(2): 275-283. Available from: https://doi.org/10.1137/S0895480191220836.

[7]	 Kügel A. Natural Max-SAT Encoding of Min-SAT. In: Proceeding of the Learning and Intelligence Optimization
Conference. Paris, France: LION 6; 2012.

[8]	 Li CM, Zhu Z, Manya F, Simon L. Exact MINSAT solving. In: Proceeding of 13th International Conference
Theory and Application of Satisfiability Testing. Edinburgh, UK; 2010. p.363-368.

[9]	 Li CM, Zhu Z, Manya F, Simon L. Optimizing with minimum satisfiability. Artificial Intelligence. 2012; 190: 32-
44.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/SFCS.1975.21
https://doi.org/10.1109/SFCS.1975.21
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1109/MIS.2017.3121546
https://doi.org/10.1109/MIS.2017.3121546
https://doi.org/10.1137/S0895480191220836

Volume 5 Issue 3|2024| 3391 Contemporary Mathematics

[10]	Richard A. A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology. 1974; 3(1):
113-126.

[11]	Argelich J, Li CM, Manyà F, Zhu Z. MinSAT versus MaxSAT for optimization problems. In: Schulte C. (ed.)
Principles and practice of constraint programming. Berlin: Springer; 2013. p.133-142. Available from: https://doi.
org/10.1007/978-3-642-40627-0_13.

[12]	Dumitrescu C. An algorithm for MAX2SAT. International Journal of Scientific and Research Publications. 2016;
6(12): 360-364. Available from: http://www.ijsrp.org/research-paper-1216.php?rp=P606089.

[13]	Krentel MW. The complexity of optimization problems. Journal of Computer and System Sciences. 1988; 36(3):
490-509. Available from: https://doi.org/10.1016/0022-0000(88)90039-6.

[14]	Papadimitriou C. Computational complexity. Addison-Wesley; 1994.
[15]	Kemppainen E. Incomplete MaxSAT solving by linear programming relaxation and rounding. Master thesis.

University of Helsinki; 2020.
[16]	Xiao M. An exact MaxSAT algorithm: Further observations and further improvement. In: Proceedings of the

Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22). IJCAI; 2022. p.1887-1893.
Available from: https://doi.org/10.24963/ijcai.2022/262.

[17]	Zhang H, Shen H, Manyà F. Exact algorithms for MAX-SAT. Electronic Notes in Theoretical Computer Science.
2003; 86(1): 190-203.

[18]	Impagliazzo R, Paturi R. On the complexity of k-SAT. Journal of Computer and System Sciences. 2001; 62(2):
367-375. Available from: https://doi.org/10.1006/jcss.2000.1727.

[19]	Knuth DE. The art of computer programming. Vol. 1. Reading: Addison-Wesley; 1969.
[20]	Knuth DE. The art of computer programming. Vol. 3. Reading: Addison-Wesley; 1975.

https://doi.org/10.1007/978-3-642-40627-0_13
https://doi.org/10.1007/978-3-642-40627-0_13
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.24963/ijcai.2022/262
https://doi.org/10.1006/jcss.2000.1727

