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Abstract: The spread of infectious diseases is a significant public health issue. Mathematical modeling is being used
to find appropriate answers to this question. In this paper we propose a stochastic approach to compartmental models. A
new model allows to rely on the fokker-planck equation with a SEIR model, with constant rates, to take into account the
random environment in the propagation of a disease, markov and kolmogorov properties have been used in themodeling of
the process. We have also determined the basic reproduction rate R0 of our new stochastic model using the new generation
matrix.
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1. Introduction
Epidemiology is the study of the distribution of diseases and the factors that influence them. It aims to understand

the causes of disease and to improve treatment and means of prevention. The contribution of mathematics,because of
the great complexity of epidemiological systems,is focused on data acquisition, the construction of deterministic and
stochastic compartmental models describing the dynamics in these systems and the analysis of the stability of equilibria.
The equations formulated in a stochastic framework are realistic but much more complex to analyze. In the last few years
number of authors worked on stochastic models in the literature [1–5] Gray and al. proposed a stochastic SIS (susceptible-
infectious-susceptible) model and studied an SDE version of the classical SIS epidemicmodel, with noise introduced in the
disease transmission term while Tornatore et al. designed a stochastic SIR (susceptible-infectious-recovery) framework
and demonstrated the presence of a limit on the incentive to reproduce.

The SIR compartmental model can be represented by the following equation:
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dS
dt

=−βSI

dI
dt

= βSI − γI

dR
dt

= γI

The birth of epidemiology is attributed to Daniel Bernoulli [6], who presented a model whose main objective was to
find out whether variolization (the inoculation of the pus of a person with smallpox) was more advantageous or more risky
for people who had contracted the disease. The latter developed more appropriate methods which are the foundations of
modern epidemiology. An epidemiological model is based on two concepts: compartments and rules. Compartments
divide the population into various possible states with respect to the disease.

Emergence of a random dimension is conceived from the impossibility of knowing the behavior of a system down to
its smallest details. Thus we have stochastic differential equations (SDE). This offers a first motivation for the stochastic
approach of epidemiological models. Moreover, stochastic models are important when the number of affected individuals
is small compared to the population size or when transmission, infection, births and deaths are highly variable. In particular
the progressive Kolmogorov equation is widely used in modeling. In one dimension this equation (of Fokker-Planck) has
the following form [7].

∂
∂ t

P(x, t) =−∂
x
[D1(x, t)P(x, t)]+

1
2

∂ 2

∂x2 [D2(x, t)p(x, t)]. (1)

where P(x, t) is the probability of finding the particle at point x and time t.
In this paper, our objective is to use the Fokker-Planck equation to determine the intercompartmental transfer rates

in a deterministic compartmental model, specifically the SEIR model.
Our major contribution is to have introduced a new approach including Fokker-Planck equation (progressive

Kolmogorv) in compartmental methods such as SEIR to describe the propagation of a disease in time. The rest of the
paper is organized as follows. Section 2 provides a brief overview of stochastic differential equation (SDE) and Survey
of SEIRS necessery to build our model. In section 3 we propose our main results, a stochastic model of the propagation
of desease in SEIR model determided about deterministe. The last section present a conclusion.

2. Methods and materials
In this section we recall necessary tools which are used in our study, such as stochastic differential equations and the

compartmental epidemiological models SEIRS.

2.1 An overview of stochastic differential equation

The kolmogorov equations are tools for solving stochastic differential equations.
Let’s note L the Kolmogorov operator associated to the stochastic differential equation (SDE) defined for x ∈Rd and

ϕ ∈C∞(Rd) by [8]
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Lϕ(x) =
1
2

d

∑
j, i=1

ai, j(x)
∂ 2ϕ

∂xi∂x j
(x)+

d

∑
i=1

fi(x)
∂ϕ
∂xi

(x); (2)

with

ai, j = (σ(x)σ(x)T )i, j =
m

∑
l=1

σil(x)σ jl(x).

Let d ∈N, the spaceC∞
pol(Rd) denotes the set of functionsC∞ which are polynomial and such that all their derivatives

are polynomial.
In particular, the retrograde kolmogorov equation is such that [8];

∂P(t, x, y)
∂ t

= a1x
∂P(t, x, y)

∂x
+

1
2

a2x
∂ 2P(t, x, y)

∂x2 ; (3)

where the first term of the right-hand members are known as drift and the second one as diffusion [9]. It can be defined
as follows, for i, j = 1, 2, 3 ...

dPi j(t)
dt

= ∑
k ̸= j

qik(t)Pk j;

Writting in matrix form, one have;
dPi j(t)

dt
= QP(t) where Q is the transition generator matrix. Moreover, if S is a

set of finite states and Q = (qi j)i, j∈S then they satisfy the following properties:
The elements of the matrix that are not on the diagonal are all positive, and the elements on the diagonal are all

negative.
The sum of the elements in a row is equal to the opposite of the element on the diagonal of that row [11]. The sum

of all elements in a row is zero.
The progressive equation can be defined by

∂P(t, x, y)
∂ t

=−∂ (a1yP(t, x, y))
∂y

+
1
2

∂ 2(a2yP(t, x, y))
∂y2 (4)

In the same vein, the progressive differential equation can be defined as follows:

dPi j(t)
dt

= ∑
k ̸= j

Pik(t)qk j.
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for i, j = 1, 2, 3 ...With the associated matrix form
dPi j(t)

dt
= P(t)Q. A stochastic differential equation is of the form

Xt = x+
∫ t

0
b(s, Xs)ds+

∫ t

0
σ(s, Xs)dBs (5)

or in condensed form:


dXt = b(s, Xs)ds+σ(s, Xs)dBs

X0 = x

Bs is a standard Brownian motion (SBM), and s is a strictly positive real.

2.2 An overview of SEIRS models

Recall that SEIRS models are the principles of a compartmental model in epidemiology. A SEIRS epidemic is
introduced by infecting an individual. With the disease, the population is divided into four compartments according to
the status of the individuals, linked to the disease. The S compartment of susceptible individuals, the E compartment of
latent or exposed individuals exposed individuals, the I compartment of infectious individuals, and the R compartment of
(those who have recovered from the disease with a non-permanent immunity) [9–22].

Figure 1. SEIRS graph of transfert

In this model, S, E, I, R, S and N represent numbers such that N = S+E + I+R. So N represents the total number
of the population. The progression through the compartments is illustrated in Figure 1.

The system differential equation governing the SEIRS can then be written as follows [14]
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

dS
dt

= ρR+λN −µS− kS
I
N

dE
dt

= kS
I
N
− (µ + v)E

dI
dt

= vE − (µ +σ)I −δ I

dR
dt

= δ I − (µ +ρ)R

(6)

We have the following proportions:
λ : birth rate in the total population;
µ: death rate independent of disease;
σ : death rate due to disease;
δ : cure rate from disease;
ρ: rate of loss of temporary immunity;
κ: rate of contact;
υ : infection rate as well as non-negative initial conditions.

3. Main results
In our model we do not take into account the elements of demography since we estimate the time of study relatively

short so that it has births and deaths for other causes than the disease, which means that the population remains constant
during the study. We consider the disease introduced in the population as a particle charged with energy and which must
follow a well defined route through the different states.

3.1 Modelling of inter compartment transfer

The Fokker-Planc Equation [23] will enable us to follow the evolution of the disease in each compartment of the
SEIR model seen above.By applying the Foker-Planck Equation (FPE) on the inter-compartmental flow we obtain the
following result

Proposition 1 Let N be the size of the population and X1(t), X2(t), X3(t) and X4(t) the numbers of compartments 1,
2, 3, 4 respectively.

Then, it follows that
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

dX1

dt
= N − p(X1, t0)N

dX2

dt
= p(X1, t0)N − p(X2, t)p(X1, t0)N

dX3

dt
= p(X2, t)p(X1, t0)N − p(X3, t)p(X2, t)p(X1, t0)N

dX4

dt
= p(X3, t)p(X2, t)p(X1, t0)N

(7)

Where N = X1(t)+X2(t)+X3(t)+X4(t).
proof. Consider the Fokker-Planc equation given by the relation (1).

∂
∂ t

p(x, t) =
−∂
∂x

[D1(x, t)p(x, t)]+
1
2

∂ 2

∂x2 [D2(x, t)p(x, t)]; (8)

where p is the probability of finding the particle at point x and time t.

Let us integrate
∂
∂ t

p(x, t) since by assumption it defined and continuous on the domain of study [15]. So, it comes
that

∫ ∂
∂ t

p(x, t) =
∫ −∂

∂x
[D1(x, t)p(x, t)]+

1
2

∫ ∂ 2

∂x2 [D2(x, t)p(x, t)], (9)

where

p(x, t) =−[D1(x, t)p(x, t)]+
1
2

∂
x
[D2(x, t)p(x, t)]. (10)

Moreover the SEIR model described in section 1 and X1, X2, X3 and X4 be the different states [9–11]. So,
• dX1

dt
denotes the number of susceptible, p(x1, t0) is the probability of finding an exposed individual in state 1 at

time t0 and p(x1, t0)N the number of exposed individuals leaving the susceptible class.

• dX2

dt
is the number of exposed individuals and p(x2, t) is the probability of finding an infectious individual in state

2 at time t. The number of infectious individuals leaving the exposed class is p(x1, t0)p(x2, t)N.

• dX3

dt
is the number of infectious individuals. p(x3, t) is the probability of finding a cured individual in state 3 at

time t, while,the number of cured leaving the infectious class is p(x1, t0)p(x2, t)p(x3, t)N.

• dX4

dt
is the number of cured individuals,and the number of healed individuals is p(x1, t0)p(x2, t)p(x3, t)N.

By referring to equation (4) we have a probability system of the progression of a sick individual in state X1 towards
his certain cure in state X4 by passing by the states X2 and X3. So, we have a system of probability.
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

p(X1, t) =−[D1(X1, t)p(X1, t)]+
1
2

∂
∂x

[D2(X1, t)p(X1, t)]

p(X2, t) =−[D1(X2, t)p(X2, t)]+
1
2

∂
∂x

[D2(X2, t)p(X2, t)]

p(X3, t) =−[D1(X3, t)p(X3, t)]+
1
2

∂
∂x

[D2(X3, t)p(X3, t)]

p(X4, t) =−[D1(X4, t)p(X4, t)]+
1
2

∂
∂x

[D2(X4, t)p(X4, t)]

(11)

However the inter-compartment transfer can be obtained by:



dX1

dt
= N − p(X1, t0)N

dX2

dt
= p(X1, t0)N − p(X2, t)p(X1, t0)N

dX3

dt
= p(X2, t)p(X1, t0)N − p(X3, t)p(X2, t)p(X1, t0)N

dX4

dt
= p(X3, t)p(X2, t)p(X1, t0)N

(12)

So, the result is obtained as disserted.
Let E be the set of all possible states of the process. Markov property and the measures P(x; t) represent the transition

probabilities of the process.Where x ∈ E and t ≥ 0 represent the time. By applying Kolmogorov property, we obtain a
stochasttic approach through a deterministic model in the following result [19].

Proposition 2 Consider a deterministic model SEIR. A stochastic approach based on the model can be obtained,for
ci, i = 1, ..., 8



dS(t)
dt

= c1eκtS−
(
c2e−κt + c3e−v)SI

dE(t)
dt

=
(
c2e−κt + c3e−v + c4e−vt)SI −

(
c5e−δ t + c6e−v

)
E

dI(t)
dt

=
(

c5e−δ t + c6e−v
)

E + c7e−δ tE − c8e−δ t I

dR(t)
dt

= c8eδ t I

(13)
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where ci is a constant.
proof. The proof of this proposition is based on the kolmogorov properties.
The process being Markovian and also fulfilling the kolmogorov properties [8], we obtain the following transition

matrix:

M =


1−M1 M1 0 0

0 1−M2 M2 0
0 0 1−M3 M3

0 0 0 M4

 . (14)

Where



M1 = p(X1, t0)

M2 = p(X1, t0)p(X2, t)

M3 = p(X1, t0)p(X2, t)p(X3, t)

M4 = 1

(15)

The state X4 is an absorbing state because if the individual penetrates it he does not come out of it any more either

by death or by cure. Using the progressive differential equation of Kolomogorov we have
dPi j(t)

dt
= MQ where Q the

transition generating matrix, the sum of the elements of each row is equal to zero such that [11]

Q =


−κ κ 0 0
0 −υ υ 0
0 0 −δ δ
0 0 0 0

 ; (16)

while
δ : is the rate of healing;
κ: is the contact rate;
υ : is the rate of infection.
Let’s that the progressive equation of Kolmogorow we obtain the following operation

(
dPi j(t)

dt

)
=


1−M1 M1 0 0

0 1−M2 M2 0
0 0 1−M3 M3

0 0 0 M4




−κ κ 0 0
0 −υ υ 0
0 0 −δ δ
0 0 0 0

 . (17)

Which gives, by identificat,the following system
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

dP11(t)
dt

=−(1−M1)κ

dP12(t)
dt

= (1−M1)κ −υM1

dP13(t)
dt

= υM1

dP22(t)
dt

=−(1−M2)υ

dP23(t)
dt

= (1−M2)υ −δM2

dP24(t)
dt

= δM2

dP33(t)
dt

=−(1−M3)δ

dP34(t)
dt

= δM3

(18)

with the time-dependent stochastic transition matrix t and the time-independent transition rate matrix t we obtain the
system (18) which represents the propagation of the disease through the different states taking into account the stochastic.

Let’s determine now, the probabilities Pi j for i, j = 1, ..., 4.
Consider that: P11 = 1−M1, P12 = M1, P13 = 0, P22 = 1−M2, P23 = M2, P24, P33 = 1−M3, P34 = M3

Determining of P11 and P12

Let the first two equations be


dP11(t)

dt
=−(1−M1)κ

dP12(t)
dt

= (1−M1)κ −υM1

(19)

So, by using (18) one obtains the following system;


dP11(t)

dt
=−P11κ

dP12(t)
dt

= P11κ −υP12

(20)
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Which gives, after


DP11 =−P11κ

DP12 = P11κ −υP12

(21)

Then to determine P11,
Consiste multiply in the first equation by P12(D+υ) and the second one by −P11(D+κ) if so, it follows that;


P11(D+κ)P12(D+υ) = 0

−P11(D+κ)P12(D+υ)+P11(D+κ)P11κ = 0

(22)

And by solving the system by a linear combination we have: P2
11(Dκ +κ2) = 0 andD =−κ and finally P11 =C1e−κt .

Determining of P12.
Consider the following system and multiply the first equation by κ and the second by D+κ


P11(D+κ) = 0

−P12(D+υ)−P11κ = 0

(23)

We obtain


κP11(D+κ) = 0

P12(D+υ)(D+κ)−P11κ(D+κ) = 0

(24)

By a linear combination we obtain

P12(D+κ)(D+υ) = 0

P12[(D2 +D(κ +υ)+υκ ] = 0

D2 +D(κ +υ)+υκ = 0, ∆ = (κ +υ)2 −4(υκ)

w1 =
−(κ +υ)− (κ −υ)

2
and w2 =

−(κ +υ)+(κ −υ)
2

w1 =−κ et w2 =−υ
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So p12 = c2e−κt + c3e−υt

Determining of P13

Lest’s consider the third equation of the system (18)

dP13

dt
= υM1 =⇒

dP13

dt
= υP12

dP13

dt
= υ(c2e−κt + c3e−υt)

So finally, one obtains P13 such as

P13 =−υ(c2
e−κt

κ
+ c3

e−υt

υ
)

Determining of P22

Consider the following system



dP22

dt
=−P22υ

dP23

dt
= P22υ −δP23

dP23

dt
= P22υ −δP23

. (25)

After transformation we obtain the following system


P22P23(D+υ)(D+δ ) = 0

−P22P23(D+υ)(D+δ )+P2
22υ(D+υ) = 0

. (26)

By a linear combination we have P2
22υ(D+υ) = 0 which implies that D =−υ

P22 = c4e−υt

Determining of P23

Consider the following system 
P22(D+υ) = 0

P23(D+δ )−P22υ = 0

(27)

After transformation and by a linear combination we have P23(D+δ )(D+υ) = 0 , D1 = −δ and D2 = −υ . Then
P23 = c5e−δ t + c6e−υt
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Determining of P24

After get P23 one obtains P24 by;

P24

dt
= δ p23 = δ (c5e−δ t + c6e−υt)

Then

P24 =−δ (c5
e−δ t

δ
+ c6

e−υt

υ
)

Determining of P33 and P34

Consider the following system which represents the last two equations of the system(18)


dP33(t)

dt
=−(1−M3)δ

dP34(t)
dt

= δM3

(28)

by replacing (1−M3) with P33 and M3 with P34, we obtain


dP33(t)

dt
=−P33δ

dP34(t)
dt

= δP34

(29)

we thus obtain the following results


DP33 +P33δ = 0

DP34 −δP34 = 0

(30)

D1 =−δ and D2 = δ which gives the following values P33 = c7e−δ t and P34 = c8e−δ t

Thus, the probabilities P11, ..., P31 are computed as disserted.

3.2 Modelling the basic reproduction rate

The epidemiological definition of R0 [9] is the average number of secondary infections which are infections that
occur during or after treatment of another infection, produced by an infected individual introduced into a population
of susceptible individuals, where an infected individual has contracted the disease, and the susceptible individuals are
healthy but can contract the disease. R0 is a critical threshold that determines whether the disease will persist or disappear.
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If R0 < 1 then the infection rate will decrease and the disease will eventually disappear, but if R0 > 1 the disease will
persist in the population.

Figure 2. graph of R0

Proposition 3 According to the system of equation (13) the reproduction rate R0 is obtained by

R0 =
(c2e−κτ + c3eυτ)S0c7e−2δτ

(c5e−δτ + c6e−υτ)c8
(31)

where c1, c2, c3, c4, c5, c6, c7 and c8 are constant.
Proof. This proof is based on the new generation matrix. Let’s consider that the process is stationary, that is τ =

[t, t + τ]. Let us consider the matrix of the new generation associated with our system

F =

 0
(c2e−κτ + c3e−υτ)SI

0

 ; (32)

where F is the flow of newly infected individuals into the compartment

V + =

 c1eκτ S
c4e−υτ SI
c7e−δτ E

 ; (33)

V + is the set of incoming flows related to the compartments
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V − =

 (c2e−κτ + c3e−υτ)SI
(c5e−δτ + c6e−υτ)E

c8eδτ I

 . (34)

and V − is the set of outgoing flows related to the compartment.
Then by calculus we get

F=

(
0 (c2e−κτ + c3e−υτ)S0

0 0

)
; V=

(
−(c5e−δτ + c6e−υτ) 0

c7e−δτ −c8eδτ

)
(35)

The matrix K =−FV−

So, K =

(
0 (c2e−κτ + c3e−υτ)S0

0 0

)
1

c5e−δτ + c6e−υτ 0

c7e−δτ

(c5e−δτ + c6e−υτ)(c8eδτ)

1
c8eδτ

 (36)

which gives, after calculus, the following matrix

K =

 (c2e−κτ + c3e−υτ)S0c7e−δτ

(c5e−δτ + c6e−υτ)(c8eδτ)

(c2e−κτ + c3eυτ)S0

c3eδ

0 0

 . (37)

Then, R0 corresponds to the spectral radius of K :

R0 = ρ(K) =
(c2e−κτ + c3e−υτ)S0c7e−2δτ

(c5e−δτ + c6e−υτ)c8
. (38)

The R0 thus obtained represents our basic reproduction.

4. Dicussion
Many authors have worked on compartimental models in epidemiology, some like Hay Yoba Talkibing, Barro

Diakarya andOuoba Fabrice [12] propose a stochastic version of the SEIRSmodel in epidemiolgy usingMarkov processes,
other authors such as Qun Liu, Daquing Jiang Ningzhong Shi, Tasawar Hayat and Bashir Ahmad [3] propose a suitable
stochastic Lyapunov funtions, he establish sufficient conditions for the existence of ergodic stationary distribution to
the model. Taking randomness into account in the modeling of compartmental models remains a major challenge. The
uniqueness of our paper is to propose a stochastic SEIRS model using the Fokker-Planck equation. This paper being more
theoretical.
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5. Conclusion
The objective of this work was to introduce a stochastic approach to compartmental models through the SEIR model.

Using the Fokker-planck equation and the Kolmogorov properties we could build a stochastic model and also determine
R0 the basic reproduction rate. Our model allows transitioning from a model with constants rates to stochastic model.
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