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Abstract: The study undertakes a comprehensive exploration of optical solitons within the context of the dispersive 
concatenation model, utilizing three distinct integration algorithms. These approaches, namely the enhanced 
Kudryashov’s method, the Riccati equation expansion approach, and the Weierstrass’ expansion scheme, offer distinct 
perspectives and insights into the behavior of optical solitons. By employing the enhanced Kudryashov’s approach, 
the research uncovers a spectrum of soliton solutions, including straddled, bright, and singular optical solitons. This 
algorithm not only provides a nuanced understanding of the various soliton types but also highlights the occurrence of 
singular solitons that exhibit unique characteristics. The Riccati equation expansion approach, on the other hand, yields 
dark solitons in addition to singular solitons. This particular method expands our comprehension of soliton behavior 
by encompassing the presence of dark solitons alongside singular ones. This diversification contributes to a more 
comprehensive grasp of soliton phenomena. Furthermore, the application of the Weierstrass’ expansion scheme extends 
the analysis to encompass bright, singular, and other variations of straddled solitons. This method introduces further 
complexity and diversity to the optical soliton. Importantly, the study meticulously addresses the parameter constraints 
that govern the behavior of these solitons. By providing a comprehensive presentation of these constraints, the research 
enhances the practical applicability of the findings, offering insights into the conditions under which these soliton 
solutions emerge.
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1. Introduction
The mathematical engineering of optical solitons has engulfed the field of nonlinear optics in full capacity. There 

are several mathematical approaches that yield soliton solutions, extract conservation laws followed by laying down the 
quasi–monochromatic dynamics of such solitons [1-20]. The hunt for these serendipity results in this field of research is 
always priceless. One such issue is the establishment of a couple of new models to govern the transmission of solitons 
across trans-continental and trans-oceanic distances is undoubtedly a mathematical marvel.

During 2014, a concatenation model was proposed that is the conjunction of three well known equations and they 
are the Nonlinear Schrödinger’s Equation (NLSE), Lakshmanan-Porsezian-Daniel (LPD) model and finally the Sasa-
Satsuma Equation (SSE) [1, 2]. Subsequently during 2015, another form of the concatenation model was proposed 
that included the higher-order dispersive effects. This time the proposed model was the conjunction of NLSE, the 
Schrödinger-Hirota Equation (SHE), LPD and the quintic-order NLSE [5-7, 15]. Its soliton solutions have been 
recovered and their preliminary analysis have been carried out. The current paper moves further along. The retrieval of 
a full spectrum of optical solitons is achieved in this paper using three integration approaches. They are the enhanced 
Kudryashov’s approach, the Riccati equation approach and finally with the usage of the Weierstrass’ function approach. 
These approaches yield solitons and periodic solutions to the model. However, the periodic solutions are not listed since 
the focus of the paper stays confined to the recovery optical solitons. The details are meticulously crafted in the rest of 
the work.

Our research brings forth several distinctive and novel aspects that differentiate it from existing studies in the 
field. Unlike prior works that have primarily focused on soliton solutions and conservation laws in nonlinear optics, our 
study delves into the mathematical engineering of optical solitons, presenting a unique perspective on the subject. A 
significant departure lies in our aim to establish new models governing the transmission of solitons across vast distances, 
from trans-continental to trans-oceanic ranges. This ambitious endeavor involves merging mathematical principles with 
physical phenomena, resulting in the creation of innovative models that expand the boundaries of current research. 
Furthermore, while earlier investigations have laid the groundwork by introducing concatenation models combining 
established equations such as the NLSE, LPD model, and SSE, our contribution advances the field. We’ve extended 
these models to incorporate higher-order dispersive effects, introducing equations like the SHE and quintic-order NLSE. 
This expansion enriches the range of phenomena our models can describe. The core novelty of our current study lies in 
the comprehensive recovery of an array of optical solitons using three distinct integration approaches. By employing 
the enhanced Kudryashov’s approach, the Riccati equation approach, and the Weierstrass’ function approach, we secure 
soliton solutions within our model. Crucially, our focus remains on the recovery of optical solitons, distinguishing our 
work from others.

1.1 Governing model 

The dispersive concatenation model containe four well-known nonlinear models embedded in it. They are the 
NLSE, SHE, LPD and the fifth-order NLSE. This is written for the first time as:

( )2 2
1 1 2t xx xxx xiq aq b q q i q q qδ σ σ+ + − +

( )2 4 2 2 2
2 3 4 5 6 7 8xxxx xx x x xx q q q q q q q q q q qδ σ σ σ σ σ σ∗ ∗ + + + + + + 

( )2 4 2
3 9 10 11 12 13 14 15 0xxxxx xxx x x xx x xx x xx x x i q q q q q qq q q q q qq q q qδ σ σ σ σ σ σ σ∗ ∗ ∗ ∗ − + + + + + + = 

where q(x, t) is a complex valued function that represents the wave profile and q*(x, t) is its complex-conjugate while i = 
1− . The first term represents the linear temporal evolution. The constants a and b are the coefficients of the Chromatic 

Dispersion (CD) and Self-Phase Modulation (SPM) respectively. The parameters σj, ( j = 1 − 15) are all real-valued 

(1)
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constants. When δ1 = δ2 = δ3 = 0, Eq. (1) reduces to the standard NLSE. If, however, δ1 ≠ 0 and δ2 = δ3 = 0, Eq. (1) 
reduced to SHE. For δ1 = δ3 = 0 with δ2 ≠ 0, Eq. (1) yields the LPD equation. Finally, when δ1 = δ2 = 0 but δ3 ≠ 0, Eq. (1) 
reduced to quintic-order NLSE. Eq. (1) is thus a true concatenation of the well-known models that describe the soliton 
transmissin dynamics across trans-continental and trans-oceanic dynamics.

The equation provided is situated within the context of nonlinear optics, a branch of optics that deals with optical 
phenomena in materials where the response of the medium to light is nonlinear. In this context, nonlinearities arise when 
the refractive index of a material is no longer directly proportional to the electric field of the incident light. The equation 
appears to be a generalized model that combines several well-known equations from nonlinear optics. These equations 
often emerge as simplified descriptions o f specific nonlinear effects in various optical systems. They capture phenomena 
like self-focusing, self-phase modulation, and soliton propagation, among others. Nonlinear optical systems are of great 
interest due to their capacity to produce intriguing phenomena and applications. Solitons, for instance, are localized 
waveforms that maintain their shape and speed while propagating, a behavior that arises from a balance between 
nonlinearity and dispersion. Such solitons are used for data transmission in optical fiber communication systems. 
Considering the dispersive concatenation model’s inclusion of equations representing various nonlinear behaviors, the 
equation contributes to the understanding of complex interactions in nonlinear optical systems. It offers insights into 
how different nonlinear effects combine and influence light propagation in intricate ways, leading to behaviors like 
soliton formation, pulse compression, and modulation instability. As a result, the equation’s placement within the field 
of nonlinear optics suggests that it aims to provide a unified framework to explore the combined effects of different 
nonlinear phenomena on light propagation. This leads to a deeper understanding of optical behavior in materials where 
nonlinearity plays a significant role.

2. Mathematical analysis
In order to address the problem posed by Equation (1), we make use of the following amplitude-phase split-up for 

the wave profile:

0( , ) ( ) exp[ ( , )], ( , ) ,  ,q x t i x t x t x wt x Vtφ ξ ψ ψ κ θ ξ= = − + + = −

where the soliton frequency is denoted by w, the wave number by κ, the phase constant by θ0, and the velocity of 
the soliton by V. Additionally, ϕ represents a real-valued function that characterizes the amplitude of the wave. By 
substituting equation (2) into equation (1) and then separating the real and imaginary components, we derive the 
expression for the real part as follows:

( )4 3 2 3 4
2 3 3 9 3 9 2 3 1 1 1 1 2 3(  (5 ) (10 ( )6 )) 3 (aδ σ δ κσ φ ξ δ κ σ δ κ σ δ κσ φ ξ δ κ σ δ κ σ′′− + − − + + +

5 2 2
3 9 3 12 3 13 3 14 3 15 2 6 2 7) ( ) (2 2 2 ) ( ) ( )a wδ κ σ κ φ ξ δ κσ δ κσ δ κσ δ κσ δ σ δ σ φ ξ φ ξ′− − − + − − − + +

2 5
3 10 3 12 3 13 3 14 2 4 2 8 2 5 3 11( ) ( ) ( )( 3 ) ( )δ κσ δ κσ δ κσ δ κσ δ σ δ σ φ ξ φ ξ δ σ δ κσ φ ξ′′+ − − − + + + + −

3 3 3 3 3 2 2
3 10 3 12 3 13 3 14 3 15 1 2 2 4 2 6(δ κ σ δ κ σ δ κ σ δ κ σ δ κ σ δ κσ δ κ σ δ κ σ+ + + − − − − +

2 2 3
2 7 2 8 0,( ))bδ κ σ δ κ σ φ ξ− − + =

while the imaginary part is given by:

( )5 2 4 3 2
3 9 3 9 2 3 1 1 3 9 2 3 1 1( ) ( ) ( )(10 4 ) ( 5 4 3 2 )a Vδ σ φ ξ δ κ σ δ κσ δ σ φ ξ δ κ σ δ κ σ δ κ σ κ φ ξ′′′ ′− + − − + − + + − −

(2)

(3)
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3 2
3 15 3 12 3 13 3 14 3 10( ) ( ) ( ) ( )( ) ( )) (δ σ φ ξ δ σ δ σ δ σ φ ξ φ ξ φ ξ δ σ φ ξ φ ξ′ ′ ′′ ′′′− − + + −

2 2 2 2 2
3 10 3 12 3 13 3 14 3 15 2 4 2 7(3 3 2 2δ κ σ δ κ σ δ κ σ δ κ σ δ κ σ δ κσ δ κσ+ − + − − − −

2 4
2 8 1 2 3 112 ) ( ) ( ) ( ) ( ) 0.δ κσ δ σ φ ξ φ ξ δ σ φ ξ φ ξ′ ′+ − − =

Applying the derivative with respect to ξ to the real part (3) results in:

( )5 3 2
2 3 3 9 3 9 2 3 1 1( )3(5 ) (10 6 )) (aδ σ δ κσ φ ξ δ κ σ δ κ σ δ κσ φ ξ′′′− + − − +

3 4 5 2
1 1 2 3 3 9 ( )( )a wδ κ σ δ κ σ δ κ σ κ φ ξ′+ + − − −

3
3 12 3 13 3 14 3 15 2 6 2 7 3 12 3 13(2 2 2 ) ) ( 6( 2δ κσ δ κσ δ κσ δ κσ δ σ δ σ φ ξ δ κσ δ κσ′+ − − − + + + −

3 14 3 15 2 6 2 7 3 10 2 4 2 82 2 2 2 6 2 2 ) ( ) ( ) ( )δ κσ δ κσ δ σ δ σ δ κσ δ σ δ σ φ ξ φ ξ φ ξ′ ′′− − + + − + +

2 4
3 10 3 12 3 13 3 14 2 4 2 8 2 5 3 11( ) ( )) ( ) ( )( 3 5( )δ κσ δ κσ δ κσ δ κσ δ σ δ σ φ ξ φ ξ δ σ δ κσ φ ξ φ ξ′′′ ′+ − − − + + + + −

3 3 3 3 3 2
3 10 3 12 3 13 3 14 3 15 1 2 2 43(δ κ σ δ κ σ δ κ σ δ κ σ δ κ σ δ κσ δ κ σ+ + + − − − −

2 2 2 2
2 6 2 7 2 8 ) 0.( ) ( )bδ κ σ δ κ σ δ κ σ φ ξ φ ξ′+ − − + =

Equations (4) and (5) are considered equivalent when the following conditions are fulfilled:

2 3 3 9 (1 5 ) 0,δ σ δ σ κ+ − =

2
3 9 3 2 1 110 ( 1) 2 (2 3 ) (1 3 ) 0,aδ κ σ κ σ δ κ κ δ σ κ− + + − + − =

2 3 4 2
1 1 2 3 3 9( 3) ( 4) ( 5) 2 0,a w a Vδ κ σ κ δ σ κ κ δ σ κ κ κ κ− + − − − − − + + =

3 12 3 13 3 14 3 15 2 6 2 72 2 2 (1 ) 0,δ κσ δ κσ δ κσ δ σ κ δ σ δ σ− − + − + + =

3 12 3 13 3 14 3 15 2 6(2 1) (1 6 ) (1 2 ) 2 2δ σ κ δ σ κ δ σ κ δ κσ δ σ+ + − + − − +

2 7 3 10 2 4 2 82 6 2 2 0,δ σ δ κσ δ σ δ σ+ − + + =

3 10 3 12 3 13 3 14 2 4 2 8(1 3 ) 0,δ σ κ δ κσ δ κσ δ κσ δ σ δ σ− − − + + + =

2 5 3 115 (1 5 ) 0,δ σ δ σ κ+ − =

2 2 2 2
3 10 3 12 3 13 3 143 ( 1) (1 3 ) 3 ( 1) (1 3 )δ κ σ κ δ κ σ κ δ σ κ κ δ κ σ κ− + − + − + −

(4)

(5)
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2 2
3 15 1 2 2 4 2 6 2 7(1 3 ) (1 3 ) (2 3 ) 3 (2 3 )δ κ σ κ δ σ κ δ κσ κ δ κ σ δ κσ κ+ − + − + − + + −

2 8 (3 2) 3 0.bδ κσ κ− + + =

Equation (4) can now be rewritten in the following form:

( ) ( )5 3 2
1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )φ ξ φ ξ φ ξ φ ξ φ ξ φ ξ φ ξ φ ξ φ ξ′′′ ′ ′ ′ ′′ ′′′+ ∆ + ∆ + ∆ + ∆ + ∆

( )2 4
6 7 0,( ) ( ) ( )φ ξ φ ξ φ ξ φ ξ′ ′+∆ + ∆ =

where

2
1 3 9 2 3 1 1

3 9

1 (10 4 ),δ κ σ δ κσ δ σ
δ σ
−

∆ = − −

4 3 2
2 3 9 2 3 1 1

3 9

1 ( 5 4 3 2 ),a Vδ κ σ δ κ σ δ κ σ κ
δ σ
−

∆ = − + + − −

15
3

9

,
σ
σ

∆ =

4 12 13 14
9

1 ( ),σ σ σ
σ

= + +∆

10
5

9

,
σ
σ

∆ =

2 2 2 2 2
6 3 10 3 12 3 13 3 14 3 15 2 4 2 7 2 8 1 2

3 9

1 (3 3 2 2 2 ),δ κ σ δ κ σ δ κ σ δ κ σ δ κ σ δ κσ δ κσ δ κσ δ σ
δ σ
−

∆ = − + − − − − + −

11
7

9

,σ
σ

∆ =

provided σ9 and δ3 are both non-zero parameters. The solution to Equation (7) will be derived by utilizing the three 
methods outlined in the subsequent sections.

3. Enhanced Kudryashov’s method
A new methodology, known as the updated version of Kudryashov’s method, has been devised by Kudryashov, 

building upon the previous work by Zayed et al. In this section, we utilize this approach to integrate equation (7). We 
put forward the following solution form for equation (7):

(6)

(7)

(8)
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[ ]
0

( ) ( ) ,
N

l
l

s
L Hφ ξ ξ

=

= ∑

where Ll (with l ranging from 0 to N) are real numbers that can be calculated at a later stage. It is crucial to note that LN 
is not equal to zero. Furthermore, the function H(ξ) satisfies the given nonlinear Ordinary Differential Equation (ODE):

2 2 2 2( ) ( ) 1 ( ) ln ,  0 1,hH H H K Kξ ξ ζ ξ′  = − < ≠ 

wherein the value of ζ can be any non-zero parameter. Equation (10) has the solution presented below:

1

2

4( ) ,
4 exp ( ) exp ( )

h

K K

AH
A h h

ξ
ξ ζ ξ

 
=  + − 

whenever expK(hξ ) = K (hξ ), A represents a non-zero real number, and the value of h is a positive integer.
In Eq. (7), by equating the power series of the largest derivative ϕ(5) with the nonlinear term ϕ4ϕ′, we obtain:

5 5 .N h N h N h+ = + ⇒ =

Case 1 By setting h equal to 1, the corresponding value of N becomes 1, leading to the transformation of Equation (9) 
as follows:

0 1( ) ( ),L L Hφ ξ ξ= +

where L0 and L1 are parameter values that can be chosen without any restrictions, except for the requirement that L1 
should not equal zero.

The algebraic system formed by adding equations (13) and (10) to equation (7) and summing the coefficients of 
[H(ξ)] j[H′(ξ)]g, where j ranges from 0 to 4 and g ranges from 0 to 1, can be solved using Maple. The resulting solutions 
are displayed below:

2
4 5 6 4 5

0 1
7 7

( 2 ) ln 2 2 ( 6 )ln, ,
2 2

K KL L
ζ∆ + ∆ + ∆ ∆ + ∆

= − =
∆ ∆

 

and

2 2 2
1 4 4 5 5 7 6 4 5

7

1 ( 7 12 60 ) ln ( 3 ) ,
6

K ∆ = − ∆ + ∆ ∆ + ∆ − ∆ + ∆ ∆ + ∆ ∆

2 2 4 2 2
2 4 4 5 5 7 6 4 5 6

7

1 (5 56 108 528 ) ln 8 ( 6 ) ln 12 ,
48

K K ∆ = ∆ + ∆ ∆ + ∆ − ∆ + ∆ ∆ + ∆ + ∆ ∆

2 2
4 4 5 5 7

3
4 5

3( 8 12 160 )
2( 6 )

∆ + ∆ ∆ + ∆ − ∆
∆ = −

∆ + ∆

provided

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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( ) 2
7 4 5 6 4 5 72 ln 2 0,  2 ( 6 ) 0 and 1.K ζ ∆ ∆ + ∆ + ∆ < ∆ + ∆ ∆ > = ±  

The straddled soliton solution for equation (1) can be determined by substituting equations (14) and (11) into 
equation (13) as demonstrated:

4 5
2

74 5 6
2

7

2 ( 6 )2 ln
( 2 ) ln 2

( , )
2 [4 exp ( ) exp ( ( ))]K K

A K
K

q x t
A x Vt x Vt

ζ

ζ

 ∆ + ∆
 ∆∆ + ∆ + ∆ = − + × ∆ − + − −
 
  




[ ]0exp .i x wtκ θ− + +

The creation of the bright soliton solution for equation (1) involves the manipulation of equation (16) with a 
specific substitution. By setting ζ = 4A2 for the particular case, the desired outcome can be achieved as outlined below:

2
4 5 6 4 5

7 7

( 2 ) ln 2 ( 6 )
( , ) ln sech[ ( ) ln ]

2 2
K

q x t K x Vt K
 ∆ + ∆ + ∆ ∆ + ∆

= − + − × 
∆ ∆  




[ ]0exp ,i x wtκ θ− + +

provided

( )7 4 56 0,∆ ∆ + ∆ >

while the singular soliton solution to equations (1) can be created , if we change the value of ζ = −4A2 in equation (16) 
for the particular case as:

2
4 5 6 4 5

7 7

( 2 ) ln 2 ( 6 )
( , ) ln csch[ ( ) ln ]

2 2
K

q x t K x Vt K
 ∆ + ∆ + ∆ − ∆ + ∆

= − + − × 
∆ ∆  




[ ]0exp ,i x wtκ θ− + +

where

( )7 4 56 0.∆ ∆ + ∆ <

Within Figure 1, there are various plots illustrating the bright soliton solution (17) for the model equation (1). The 
parameter values employed are given as: κ = 1, V = 1, ϵ = 1, K = e, σ11 = 1, σ12 = 1, σ13 = 1, σ14 = 1, σ15 = −1, σ10 = 1, δ1 = 1, 
δ2 = 1, δ3 = 1, σ2 = 1, σ4 = 1, σ7 = 1, σ8 = 1, and σ9 = 1.

(16)

(17)

(18)
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Figure 1. Profile of a bright soliton solution (17)

Case 2 Assuming h is equal to 2, the value of N is set to 2, leading to the following transformation of Equation (9):

2
0 1 2( ) ( ) ( ),L L H L Hφ ξ ξ ξ= + +

where the parameters L0, L1, and L2 are arbitrary and can assume any value. However, it is important to note that L2 
cannot be zero. By incorporating equations (19) and (10) into equation (7) and summing the coefficients of [H(ξ)] j[H′(ξ)]g, 
where j varies from 0 to 9 and g varies from 0 to 1, we can solve an algebraic system using Maple. The results obtained 
are provided below:

2
4 5 6 4 5

0 1 2
7 7

2[2( 2 ) ln ] 2 ( 6 )
,   0,   ln ,

2
K

L L L K
ζ∆ + ∆ + ∆ ∆ + ∆

= − = =
∆ ∆




and

|q(x, t)|

-2

(a) Surface plot

(c) 2D plot

(b) Contour plot

-2

0.0
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0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1

0

1

2

-2 -1 0 1 2
-1

0

1
2

0.0

0.5

1.0

x

x

t

t

-1

0

1

2

-2

|q(x, t)|

|q
(x

, 0
)|

-2 -1 0 1 2

x

(19)

(20)
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2 2 2
1 4 4 5 5 7 6 4 5

7

1 (4 28 48 240 ) ln ( 3 ) ,
6

K ∆ = − ∆ + ∆ ∆ + ∆ − ∆ + ∆ ∆ + ∆ ∆

2 2 4 2 2
2 4 4 5 5 7 6 4 5 6

7

1 (20 224 432 2112 ) ln 8 ( 6 ) ln 3 ,
12

K K ∆ = ∆ + ∆ ∆ + ∆ − ∆ + ∆ ∆ + ∆ + ∆ ∆

2 2
4 4 5 5 7

3
4 5

3( 8 12 160 )
,

2( 6 )
∆ + ∆ ∆ + ∆ − ∆

∆ = −
∆ + ∆

provided

( ) ( )2
7 4 5 6 4 5 72 2 ln 0,  2 6 0 and 1.K ζ ∆ ∆ + ∆ + ∆ < ∆ + ∆ ∆ > = ±  

The straddled soliton solution to equation (1) is obtained by replacing (20) with (11) in equation (19):

4 5
2

74 5 6
2

7

2 ( 6 )4 ln
2[2( 2 ) ln ]

( , )
2 (4 exp [2( )] exp [ 2( )])K K

A K
K

q x t
A x Vt x Vt

ζ

ζ

 ∆ + ∆
 ∆∆ + ∆ + ∆ = − + × ∆ − + − −
 
  




[ ]0exp .i x wtκ θ− + +

The bright soliton solution to equations (1) can be created if we set ζ = 4A2 in equation (22) for the particular case 
as

2
4 5 6 4 5

7 7

2[2( 2 ) ln ] 2( 6 )
( , ) ln sech[ 2( ) ln ]

2
K

q x t K x Vt K
 ∆ + ∆ + ∆ ∆ + ∆

= − + − × 
∆ ∆  




[ ]0exp ,i x wtκ θ− + +

provided

7 4 5( 6 ) 0,∆ ∆ + ∆ >

while the singular soliton solution to equation (1) can be created , if we assign ζ = −4A2 in equation (22) for the 
particular case:

2
4 5 6 4 5

7 7

2[2( 2 ) ln ] 2( 6 )
( , ) ln csch[ 2( ) ln ]

2
K

q x t K x Vt K
 ∆ + ∆ + ∆ ∆ + ∆

= − + − − × 
∆ ∆  




[ ]0exp ,i x wtκ θ− + +

(21)

(22)

(23)

(24)
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provided

( )7 4 56 0.∆ ∆ + ∆ <

By adjusting the parameters h and N, it is possible to produce a similar number of solitary wave solutions to 
equation (1).

4. Unified riccati’s equation expansion approach
The analysis of the soliton solution to Equation (1) in this section involves the utilization of the UREE technique 

[14]. This technique relies on the presumptive form of the soliton solutions of Equation (7), which can be expressed as:

[ ]
0

( ) ( ) .
M

i
i

i
R Yφ ξ ξ

=

= ∑

For Rl, where l takes on values from 0 to 1 − N, which are real numbers, and Y(ξ ), the solution to the subsequent 
set of Riccati’s ODEs is obtained as follows:

2
0 1 2( ) .Y h h Y h Yξ′ = + +

With hl being constants for l taking values of 0, 1, and 2, Equation (25) has a formal solution that is determined by 
the concept of a balance number, given by:

0 1( ) ( ).R R Yφ ξ ξ= +

By inserting Eqs. (26) and (27) into Eq. (7) and collecting the coefficients of [Y(ξ)]m, where m takes on values from 
0 to 6, a system of algebraic equations is formulated. This system can be solved effectively using a computer program, 
resulting in the following obtained results:

2
0 7 4 5 1 0 2 6 1 7 4 5

7

2 [( 2 )( 4 ) 4 ] 2 ( 6 ) ,
4

R h h h h = ∆ ∆ + ∆ − − ∆ + − ∆ ∆ + ∆ ∆


2
1 7 4 5

7

2 ( 6 ),
2

hR = − ∆ ∆ + ∆
∆


and

2 2 2
1 1 0 2 4 4 5 5 7 6 4 5

7

1 ( 4 )( 7 12 60 ) 2 ( 3 ) ,
12

h h h ∆ = − ∆ + ∆ ∆ + ∆ − ∆ − ∆ ∆ + ∆ ∆

2 2 2 2 2
2 1 0 2 4 4 5 7 6 1 0 2 4 5 6

7

1 ( 4 ) ( 4 192 ) 4 ( 4 )( 6 ) 12 ,
48

h h h h h h ∆ = − − ∆ + ∆ ∆ − ∆ + ∆ − ∆ + ∆ − ∆ ∆

2 2
4 4 5 5 7

3
4 5

3( 8 12 160 )
,

2( 6 )
− ∆ + ∆ ∆ + ∆ − ∆

∆ =
∆ + ∆

(25)

(26)

(27)

(28)

(29)
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provided

( ) ( )( )2
7 4 5 7 4 5 1 0 2 66 0 and 2 2 4 4 0.h h h ∆ ∆ + ∆ < ∆ ∆ + ∆ − − ∆ > 

A few more situations are omitted for the sake of brevity. The Riccati equation (26) is given accurate solutions by:

1 2
2 21

1 2
2 2

1 2

3 4
2 21
3 4

2 2
3 4

1

2 2 5

[ tanh( ) ]
2       if  0  and 0,

2 2
[ tanh( )]

2

[ tan( ) ]
2( )    if  0  and 0,

2 2
[ tan( )]

2
1                             if  0,

2

K Kh K K
h h

K K

K KhY K K
h h

K K

h
h h K

ξ

ξ

ξ
ξ

ξ

ξ

 ∆
+ ∆

− − ∆ > + ≠
∆

+

−∆
−−∆

= − + ∆ < + ≠
−∆

+

− − ∆ =
+

















where arbitrary real numbers Kj (where j ranges from 1 to 5) are used as coefficients, and the value of ∆ is calculated as 
h1

2 − 4h0h2, where h0, h1, and h2 are arbitrary real values.
When ∆ = h1

2 − 4h0h2 > 0, equations (27), (28) and (30) lead to write the solutions of Eq. (7) as

7 4 5 6
7

( ) 2 [( 2 ) 4 ]
4

φ ξ = ∆ ∆ + ∆ ∆ − ∆
∆


1 2

7 4 5
7

1 2

tanh( )
22 ( 6 ) ,

4
tanh( )

2

K K

K K

ξ

ξ

 ∆
+ ∆  − − ∆ ∆ + ∆

∆ ∆ +  



provided

( ) ( )7 4 5 7 4 5 66 0,  and 2 2 4 0.∆ ∆ + ∆ < ∆ ∆ + ∆ ∆ − ∆ >  

In this regard, the solution that satisfies Eq. (1) represents a solitary wave:

7 4 5 6
7

( , ) 2 [( 2 ) 4 ]
4

q x t


= ∆ ∆ + ∆ ∆ − ∆ ∆



[ ]
1 2

7 4 5 0
7

1 2

tanh[ ( )]
22 ( 6 ) exp .

4
tanh[ ( )]

2

K x Vt K
i x wt

K K x Vt
κ θ

 ∆
− +  ∆  − − ∆ ∆ + ∆ − + + 

∆ ∆ + −   



(30)

(31)

(32)
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Especially when K1 is unequal to zero and K2 is equal to zero in Equation (32), the occurrence of dark solitons can 
be observed as:

7 4 5 6
7

( , ) 2 [( 2 ) 4 ]
4

q x t


= ∆ ∆ + ∆ ∆ − ∆ ∆



[ ]7 4 5 0
7

2 ( 6 ) tanh ( ) exp ,
4 2

x Vt i x wtκ θ
 ∆ ∆

− − ∆ ∆ + ∆ − − + + 
∆  



while when K1 = 0 and K2 ≠ 0 in Eq. (32) the singular solution is:

7 4 5 6
7

( , ) 2 [( 2 ) 4 ]
4

q x t


= ∆ ∆ + ∆ ∆ − ∆ ∆



[ ]7 4 5 0
7

2 ( 6 ) coth ( ) exp .
4 2

x Vt i x wtκ θ
 ∆ ∆

− − ∆ ∆ + ∆ − − + + 
∆  



Figures 2 presents a selection of plots showcasing the dark soliton solution (33) to the model equation (1). The 
parameter values used are as follows: κ = 1, V = 1, ϵ = 1, h0 = −1, h1 = 1, h2 = 1, σ2 = 1, σ4 = 1, σ7 = 1, σ8 = 1, σ9 = 1, σ11 = 
1, σ12 = 1, σ13 = 1, σ14 = 1, σ15 = 1, σ10 = −1, δ1 = 1, δ2 = 1, and δ3 = 1.

5. Weierstrass’ type riccati equation expansion scheme
In this technique we assume the soliton solutions of Eq. (7) as the form:

[ ]1
0

1
( ) ( ) ( ) ( ) ,

M
i

i i
i

A X A X B Yφ ξ ξ ξ ξ−

=

= + +∑

where the Weierstrass elliptic functions X(ξ ) and Y(ξ ) are the solutions that satisfy the projective Riccati equation:

( ) ( ) ( ),X pX Yξ ξ ξ′ =

2( ) ( ) ( ).Y q pY rXξ ξ ξ′ = + −

Assume that p, q, and r are constant parameters in this scenario. To determine the value of the positive integer M, 
one must balance the influence of the highest nonlinear terms and the highest order derivatives of ϕ in Equation (7). The 
undetermined constants A0, Ai, and Bi (where i ranges from 1 to M) are carefully selected to ensure that AM

2 + B 2
M does 

not equal zero. It is widely recognized [16] that the equations given by (36) possess sets of solutions expressed in terms 
of Weierstrass’ elliptic functions.

Set 1 Under the condition 2 2( ) ( )q rY X
p p

ξ ξ= − + , Eqs. (36) satisfy:

[ ]
2 3

2 3
2 3

12 ( , , ) 2( ) ,  ( ) ( , , ).
12 ( , , ) 6

g g qY X g g
p pq g g r pr

ξ
ξ ξ ξ

ξ
′℘

= = + ℘
+ ℘

(33)

(34)

(35)

(36)

(37)
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Figure 2. Profile of a dark soliton solution (33)

Set 2 By employing 
2

2 22 24( ) ( ) ( )
25

q r rY X X
p p pq

ξ ξ ξ= − + −  in Eqs. (36), one arrives at:

[ ]
2

2 3

2 3 2 3 2 3

( , , ) 5 5( ) ,  ( ) .
12 ( , , ) ( , , ) 6 27 ( , , )

q g g q q pY X
qp g g g g r r g g

ξ
ξ ξ

ξ ξ ξ
′− ℘

= = +
+ ℘ ℘ ℘

Set 3 In the presence of 
2

2 2
2

2 ( 4)( ) ( ) ( )
( 2)

q r r qY X X
p p p q

ξ ξ ξ+
= − + −

+
, Eqs. (36) hold:

2 3 2 3
2 2

2 3
2 3

( , , ) (2 )[ 12 ( , , )]
( ) ,  ( ) .

[12 12 ( , , )]
( , , )

2 12 4

g g q pq g g
Y X

r p pq g gp pq pg g

ξ ξ
ξ ξ

ξ
ξ

′℘ + + ℘
= =

+ + ℘ ℘ + + − 
 

|q(x, t)|

-2

(a) Surface plot

(c) 2D plot

(b) Contour plot
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Set 4 Eqs. (36) satisfy the following form when 
2 2

2 2
2

2 ( 4)( ) ( ) ( )
( 2)

q r pr pY X X
p p q p

ξ ξ ξ+
= − + −

+
 is used:

2
2 3 2 3

2 22 2
2 3

2 3

( , , ) ( 2)[ 12 ( , , )]
( ) ,  ( ) ,

[12 12 ( , , )]
( , , )

2 12 4

q g g q p pq g g
Y X

pr q p q p g gq p q qp g g

ξ ξ
ξ ξ

ξ
ξ

′℘ + + ℘
= =

+ + ℘ 
℘ + + − 

 

where

2 2 3 3

2 3,  .
12 216

p q p qg g= =

With the aim of achieving this, we balance ϕ(5) with ϕ4ϕ′ in Eq. (7). The resulting balance number is M = 1, leading 
to the solitary solution in the following form based on (35):

( ) 2 2
0 1 1 1 1( ) ( ) ,  0.A A X B Y A Bφ ξ ξ ξ= + + + ≠

Set 1 Substituting (42) and (36) into Eq. (7), with 2 2( ) ( )q rY X
p p

ξ ξ= − + , and then collecting all the coefficients of 

X i(ξ )Y j(ξ ) (i = 1, ..., 4, j = 0, 1) and setting them to zero, results in a system of algebraic equations. The Maple software 
package can be used to solve this system, yielding the following outcomes:

0 7 4 5 6 1 1 7 4 5
7 7

2 [ ( 2 ) 4 ],  0,  2 ( 6 ),
4 4

pA pq A B= − ∆ ∆ + ∆ + ∆ = = − ∆ ∆ + ∆
∆ ∆
 

and

2 2
1 4 4 5 5 7 6 4 5

7

1 ( 7 12 60 ) 2 ( 3 ) ,
12

pq−  ∆ = ∆ + ∆ ∆ + ∆ − ∆ + ∆ ∆ + ∆ ∆

2 2 2 2
2 4 4 5 7 6 4 5 6

7

1 ( 4 192 ) 4 ( 6 ) 12 ,
48

p q pq ∆ = − ∆ + ∆ ∆ − ∆ − ∆ ∆ + ∆ − ∆ ∆

2 2
4 4 5 5 7

3
4 5

3( 8 12 160 )
,

2( 6 )
− ∆ + ∆ ∆ + ∆ − ∆

∆ =
∆ + ∆

provided

[ ] ( )7 4 5 6 7 4 5( 2 ) 4 0,  2 6 0 and 1.pq∆ ∆ + ∆ + ∆ < ∆ ∆ + ∆ < = ±

The solutions of Weierstrass’ elliptic function for Eq. (1) can be determined by incorporating equations (37), (42), 
and (43), resulting in the following expressions:

(40)

(41)

(42)

(43)

(44)
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2 2 3 3

7 4 5

7 4 5 6 2 2 3 3
7

7

12 2 ( 6 ) , ,
12 216

( , ) 2 [ ( 2 ) 4 ]
4

4 12 , ,
12 216

p q p qp x Vt
q x t pq

p q p qp pq x Vt

  ′− ∆ ∆ + ∆ ℘ −  
  = − ∆ ∆ + ∆ + ∆ + × ∆    ∆ + ℘ −      




[ ]0exp  .i x wtκ θ− + +

By employing the following forms, one can transform the Weierstrass elliptic function into degenerate forms 
similar to hyperbolic functions and trigonometric functions:

2 3
2, , sech ,  0,

12 216 12 4 2
θ θ θ θ θξ ξ θ

 
℘ −

 
 − = > 

   
 

2 3
2, , csch ,  0,

12 216 12 4 2
θ θ θ θ θξ ξ θ

 
℘ +

 
 − = > 

   
 

2 3
2, , sec ,  0,

12 216 12 4 2
θ θ θ θ θξ ξ θ

  −
℘ −

 
 − = < 

   
 

2 3
2, , csc ,  0.

12 216 12 4 2
θ θ θ θ θξ ξ θ

  −
℘ −

 
 − = < 

   
 

Obtaining the dark and singular soliton solutions from the Weierstrass elliptic solution (45) when θ = −pq is 
achieved using the conversion formula (46), resulting in the following solutions, respectively:

7 4 5
7 4 5 6

7 7

2 ( 6 )
( , ) 2 [ ( 2 ) 4 ] tanh ( )

4 4 2
pq pq

q x t pq x Vt
  − ∆ ∆ + ∆ − −

= − ∆ ∆ + ∆ + ∆ − − ×   ∆ ∆   



[ ]0exp ,i x wtκ θ− + +

7 4 5
7 4 5 6

7 7

2 ( 6 )
( , ) 2 [ ( 2 ) 4 ] coth ( )

4 4 2
pq pq

q x t pq x Vt
  − ∆ ∆ + ∆ − −

= − ∆ ∆ + ∆ + ∆ − − ×   ∆ ∆   



[ ]0exp ,i x wtκ θ− + +

provided pq < 0.

Set 2 By employing equations (42) and (36) and substituting 
2

2 22 24( ) ( ) ( )
25

q r rY X X
p p pq

ξ ξ ξ= − + −  into Eq. (7), 

and then collecting all the coefficients of X i(ξ)Y j(ξ) ( j = 0, 1, i = 1, ..., 6) and setting them to zero, we obtain a system 
of algebraic equations. This system can be solved using the Maple software package, yielding the following results:

(45)

(46)

(47)

(48)
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2 2 2 2
1 2 1 2

0 1 1
5 6 5 6

(288 337 288 ) (288 337 288 )48,  ,  0,
7(9 16 ) 25 7(9 16 )

p q pq p q pqrA A B
pq q pq

+ ∆ + ∆ + ∆ + ∆
= − = =

∆ + ∆ ∆ + ∆




and

2 2
1 2 5 6

3 2 2
1 2

2(16 9 16 )(9 16 )
,

(288 337 288 )
p q pq pq
qp p q pq

+ ∆ + ∆ ∆ + ∆
∆ =

+ ∆ + ∆

2 2
1 2 5 6

4 2 2
1 2

( 363 288 512 )(9 16 )
,

8 (288 337 288 )
p q pq pq

pq p q pq
− + ∆ + ∆ ∆ + ∆

∆ = −
+ ∆ + ∆

3 3 2 2
5 6 5 1 5 6 2 5 1 6 2 6

7 2 2 2
1 2

175(9 16 )(144 256( ) 144 ( ) 256 )
,

16(288 337 288 )
pq p q p q pq

p q pq
∆ + ∆ ∆ + ∆ ∆ −∆ + ∆ ∆ −∆ ∆ − ∆ ∆

∆ =
+ ∆ + ∆

provided

( )2 2
1 2 5 6288 337 288 )(9 16 0 and 1.p q pq pq ε+ ∆ + ∆ ∆ + ∆ > = ±

The Weierstrass elliptic wave solution for Eq. (1) can be obtained by utilizing equations (38), (42), and (49), 
resulting in:

2 2 3 3

2 2
1 2

2 2 3 3
5 6

2 9 , ,
12 2167(288 337 288 )1( , )

105 (9 16 )
, ,

12 216

p q p qqp x Vt
p q pqq x t

pq p q p qx Vt

  
+ ℘ −  + ∆ + ∆   = ×

 ∆ + ∆  
℘ −  

   

[ ]0exp .i x wtκ θ− + +

The conversion formula (46) leads to bright and singular optical solitons that emerge from the Weierstrass elliptic 
solution (51) when θ = −pq as:

2

2 2
1 2

5 6 2

5 9sech ( )
27(288 337 288 )1( , )

35 (9 16 )
1 3 sech ( )

2

pq
x Vt

p q pqq x t
pq pq

x Vt

 −

×

 
 
  
 
 
 

+ − 
+ ∆ + ∆  

= −  ∆ + ∆ − − −





[ ]0exp , 0.i x wt pqκ θ− + + <

2

2 2
1 2

5 6 2

5 9csch ( )
27(288 337 288 )1( , )

35 (9 16 )
1 3 csch ( )

2

pq
x Vt

p q pqq x t
pq pq

x Vt

 −

×

 
 
  
 
 
 

− − 
+ ∆ + ∆  

= −  ∆ + ∆ − + −





(49)

(50)

(51)

(52)
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[ ]0exp , 0. i x wt pqκ θ− + + <

Set 3 By substituting (42) and (36) into Eq. (7), and considering 
2

2 2
2

2 ( 4)( ) ( ) ( )
( 2)

q r r qY X X
p p p q

ξ ξ ξ+
= − + −

+
, we can 

collect all the coefficients of X i(ξ)Y j(ξ) ( j = 0, 1, i = 1, ..., 10) in Eq. (7) and equate them to zero. Solving this system of 
algebraic equations using the Maple software package provides the following outcomes:

3 2 2
0 1 1 6 1 1 1

6

0,  6 ( 5 20 4 100 4 ),
4

pA A B pq q pq q pq= = = ∆ − + ∆ − + ∆ + − ∆
∆


and

2 1
1 ( 13 ),
2

pq pq∆ = − ∆ −

2
6 1 1

3 3 2 2
1 1 1

( 5 20 4 80 )
,

( 5 20 4 100 4 )
pq q pq p

p pq q pq q pq
∆ − + ∆ − + ∆ −

∆ =
− + ∆ − + ∆ + − ∆

2
6 1 1

4 3 2 2
1 1 1

2 ( 5 20 4 240 )
,

3 ( 5 20 4 100 4 )
pq q pq p

p pq q pq q pq
∆ − + ∆ − + ∆ −

∆ =
− + ∆ − + ∆ + − ∆

2
6 1 1

5 3 2 2
1 1 1

2 ( 5 20 4 )
,

3 ( 5 20 4 100 4 )
pq q pq

p pq q pq q pq
∆ − + ∆ − + ∆

∆ = −
− + ∆ − + ∆ + − ∆

2 2
6 1 1

7 3 2 2 2
1 1 1

40 ( 5 20 4 48 )
.

9 ( 5 20 4 100 4 )
pq q pq p

p pq q pq q pq
∆ − + ∆ − + ∆ +

∆ =
− + ∆ − + ∆ + − ∆

Eq. (1) can be solved for its Weierstrass elliptic wave solution by employing equations (39), (42), and (54), 
resulting in the following expression:

3 2 2
6 1 1 1

6

( , ) 6 ( 5 20 4 100 4 )
4

pq x t pq q pq q pq= ∆ − + ∆ − + ∆ + − ∆
∆


[ ]

2 2 3 3

022 2 3 3 2

, ,
12 216

exp ,

, ,
12 216 2 12 4

p q p qx Vt
i x wt

p q p q p pq px Vt

κ θ

 
  ′℘ −     − + +

      ℘ − + + −  
      

provided

( )3 2 2
6 1 1 15 20 4 100 4 0 and 1.pq q pq q pq∆ − + ∆ − + ∆ + − ∆ > = ±

The conversion formula (46) leads to obtain many kinds of the traveling wave solutions from the Weierstrass’ 

(53)

(54)

(55)

(56)
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elliptic solution (56) when θ = −pq as:

2
3 2 2

6 1 1 1
6

( , ) 6 ( 5 20 4 100 4 )
16

p q pq
q x t pq q pq q pq

−
= ∆ − + ∆ − + ∆ + − ∆ ×

∆


[ ]
2

02 2
2

1 1sech ( ) tanh ( )
2 2 exp ,

1 1sech ( )
4 2 2 4

pq x Vt pq x Vt
i x wt

p ppq pq x Vt

κ θ

 
  − − − −    − + + 

   − − + −   


 
  

 
       

2
3 2 2

6 1 1 1
6

( , ) 6 ( 5 20 4 100 4 )
16

p q pq
q x t pq q pq q pq

−
= − ∆ − + ∆ − + ∆ + − ∆ ×

∆


[ ]
2

02 2
2

1 1csch ( ) coth ( )
2 2 exp ,

1 1csch ( )
4 2 2 4

pq x Vt pq x Vt
i x wt

p ppq pq x Vt

κ θ

 
  − − − −    − + + 

 

 
  

 
 

 − − − + −   
     

as long as in (57) and (58) pq < 0.
The results from Set 4 are withheld here.

6. Conclusions
This paper successfully ventured and recovered optical soliton solutions to the dispersive concatenation model 

with linear CD and Kerr form of SPM. The results were recovered with the usage of three integration schemes. A full 
spectrum of soliton solutions was recovered and exhibited, along with the parameter restrictions or constraints. These 
included the straddled solitons too. The results are thus tremendously promising and lead to the avenues of further 
research in this arena. Later, the model will be studied with differential group delay followed by the consideration of 
the model with dispersion-flattened fibers. Moreover, the model will be addressed numerically with Laplace-Adomian 
decomposition scheme which would give a visual perspective to the soliton solutions. The model is yet to be addressed 
to retrieve gap solitons, quiescent solitons and the consideration of the model in magneto-optic waveguides would also 
be an asset. Thus, an avalanche of work lies ahead. The results obtained from these research undertakings would be in 
accordance with previous studies and would be disseminated over a period of time [21-24].

Conflict of interest
The authors declare no conflict of interest. 

References
[1] Ankiewicz A, Nail Akhmediev. Higher-order integrable evolution equation and its soliton solutions. Physics 

(57)

(58)



Contemporary Mathematics 610 | Yakup Yildirim, et al.

Letters. 2014; 378(4): 358-361. Available from: doi: 10.1016/j.physleta.2013.11.031.
[2] Ankiewicz A, Wang Y, Wabnitz S, Nail A. Extended nonlinear Schrödinger equation with higher-order odd and 

even terms and its rogue wave solutions. Physical Review E. 2014; 89(1): 012907. Available from: doi: 10.1103/
physreve.89.012907.

[3] Azzouzi F, Triki H, Mezghiche K, El Akrmi A. Solitary wave solutions for high dispersive cubic-quintic nonlinear 
Schrödinger equation. Chaos, Solitons & Fractals. 2009; 39(3): 1304-1307. Available from: doi: 10.1016/
j.chaos.2007.06.024.

[4] Backus S, Durfee CG, Mourou G, Kapteyn HC, Murnane MM. 02-TW laser system at 1 kHz. Optics Letters. 1997; 
22(16): 1256. Available from: doi: 10.1364/ol.22.001256.

[5] Amdad C, Kedziora DJ, Ankiewicz A, Nail A. Breather-to-soliton conversions described by the quintic equation 
of the nonlinear Schrödinger hierarchy. Physical Review E. 2015; 91(3): 032928. Available from: doi: 10.1103/
physreve.91.032928.

[6] Amdad C, Kedziora DJ, Ankiewicz A, Nail A. Soliton solutions of an integrable nonlinear Schrödinger equation 
with quintic terms. Physical Review E. 2014; 90(3): 032922. Available from: doi: 10.1103/physreve.90.032922.

[7] Amdad C, Kedziora DJ, Ankiewicz A, Nail A. Breather solutions of the integrable quintic nonlinear Schrödinger 
equation and their interactions. Physical Review E. 2015; 91(2): 022919. Available from: doi: 10.1103/
physreve.91.022919.

[8] Hong WP. Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-
quintic non-Kerr terms. Optics Communications. 2001; 194(1-3): 217-223. Available from: doi: 10.1016/s0030-
4018(01)01267-6.

[9] Kudryashov NA. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. 
Optik. 2020; 206: 164335. Available from: doi: 10.1016/j.ijleo.2020.164335.

[10] Kudryashov NA. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik. 
2020; 206: 163550. Available from: doi: 10.1016/j.ijleo.2019.163550.

[11] Li Z, Li L, Tian H, Zhou G. New types of solitary wave solutions for the higher order nonlinear Schrödinger 
equation. Physical Review Letters. 2000; 84(18): 4096-4099. Available from: doi: 10.1103/physrevlett.84.4096.

[12] Sirendaoreji. Unified riccati equation expansion method and its application to two new classes of Benjamin-Bona-
Mahony equations. Nonlinear Dynamics. 2017; 89(1): 333-344. Available from: doi: 10.1007/s11071-017-3457-6.

[13] Sirendaoreji N. A method for constructing Weierstrass elliptic function solutions and their degenerated solutions of 
the mKdV equation. arXiv. 2022. Available from: doi: 10.48550/arXiv.2210.03302. 

[14] Triki H, Azzouzi F, Grelu P. Multipole solitary wave solutions of the higher-order nonlinear Schrödinger 
equation with quintic non-Kerr terms. Optics Communications. 2013; 309: 71-79. Available from: doi: 10.1016/
j.optcom.2013.06.039.

[15] Triki H, Azzouzi F, Biswas A, Moshokoa SP, Belic M. Bright optical solitons with Kerr law nonlinearity and fifth 
order dispersion. Optik. 2017; 128: 172-177. Available from: doi: 10.1016/j.ijleo.2016.10.026.

[16] Xiang C. Jacobi Elliptic Function Solutions for (2 + 1) Dimensional Boussinesq and Kadomtsev-Petviashvili 
Equation. Applied Mathematics. 2011; 2(11): 1313-1316. Available from: doi: 10.4236/am.2011.211183.

[17] Xu G. Extended auxiliary equation method and its applications to three generalized NLS equations. Abstract and 
Applied Analysis. 2014; 2014: 1-7. Available from: doi: 10.1155/2014/541370.

[18] Zeng X, Yong X. A new mapping method and its applications to nonlinear partial differential equations. Physics 
Letters. 2008; 372(44): 6602-6607. Available from: doi: 10.1016/j.physleta.2008.09.025.

[19] Zhou Q. Influence of parameters of optical fibers on optical soliton interactions. Chinese Physics Letters. 2022; 
39(1): 010501. Available from: doi: 10.1088/0256-307x/39/1/010501.

[20] Zhu Y, Yang J, Li J, Hu L, Zhou Q. Interaction properties of double-hump solitons in the dispersion decreasing 
fiber. Nonlinear Dynamics. 2022; 109(2): 1047-1052. Available from: doi: 10.1007/s11071-022-07491-7.

[21] Mirzazadeh M, Ahmad YS, Mir SH, Akgül A, Eldin SM. Optical solitons with an extended (3 + 1)-dimensional 
nonlinear conformable Schrödinger equation including cubic-quintic nonlinearity. Results in Physics. 2023; 49: 
106521-106521. Available from: doi: 10.1016/j.rinp.2023.106521.

[22] Zhou Q, Xu M, Sun Y, Zhong Y, Mirzazadeh M. Generation and transformation of dark solitons, anti-dark solitons 
and dark double-hump solitons. Nonlinear Dynamics. 2022; 110(2): 1747-1752. Available from: doi: 10.1007/
s11071-022-07673-3.

[23] Gao D, Xing L, Peng M. Study on the (2 + 1)-dimensional extension of Hietarinta equation: soliton solutions and 
Bäcklund transformation. Physica Scripta. 2023; 98(9): 095225. Available from: doi: 10.1088/1402-4896/ace8d0.

[24] Chen SJ, Yin YH, Lü X. Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution 



Contemporary MathematicsVolume 4 Issue 3|2023| 611

equations. Communications in Nonlinear Science and Numerical Simulation. 2023; 107205. Available from: doi: 
10.1016/j.cnsns.2023.107205.


