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Abstract: Convertible bonds are popular financial instruments by which firms raise capital. Owing to the various 
features of such bonds, especially the early-exercise call, put, and conversion provisions, they can be valued by 
numerical techniques only. The price of a convertible bond is driven by both the underlying stock price and the interest 
rate, and these two factors are correlated. Under the partial differential equation framework, a two-dimensional 
convection-diffusion-reaction equation containing a mixed derivative must be solved. In this work, we employ an 
Alternating-Direction-Implicit method, namely the Craig-Sneyd scheme to solve the two-factor pricing equation. 
Comparison against the commonly employed Crank-Nicolson method shows the merit of the scheme. Besides, we 
analyze how the different contractual features of a convertible bond affect its price.
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1. Introduction
Convertible bond are corporate bonds (issued by publicly traded companies) that give the investors the right to 

exchange the bonds to a given number of shares of the issuer’s common stock at some specific time. The most popular 
type of convertible bonds (CB) are coupon-bearing bonds with a variety of embedded options such as call features 
(callable) or put features (puttable). Callable bonds have a call feature which permits the issuer to buy back or call all 
or part of the bond prior to maturity while puttable bonds give the bondholder the right to sell the bond back to the 
issuer at a predetermined price on specified dates. Thus, a convertible bond is a hybrid fixed-income instrument that 
combines features of both equities and bonds. The convertibility, callability, and puttability features, which are mostly 
of Bermudan or American style, make CBs complex financial instruments with no no analytical solution. Moreover, CB 
are subject to the possibility of events of default since they are issued by firms.

A survey of the theoretical and empirical aspects of convertible bond pricing can be found in [1]. The vast majority 
of existing convertible bonds pricing frameworks take the bond as a derivative of the underlying equity (see for example 
the one-factor models of Brennan and Schwartz [2] and Ayache, Forsyth and Vetzal [3]). Two integral equations were 
derived in [4] under the assumption of constant interest rate to analyze puttable convertible bonds (CB) under the Black-
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Scholes model and a more recent work with the call feature added can be found in Lin and Zhu [5]. Additionally, since 
most convertible bonds CBs have long maturities, several authors assume interest rates to be stochastic, giving rise 
to two-dimensional models where the price of the equity price and the interest rate both derive the convertible bond 
value. A recent work in this direction include pricing of CB of American-style with stochastic volatility of Heston and 
stochastic interest rate of the Cox-Ingersoll-Ross [6].

Hung and Wang [7] and Chambers and Lu [8] construct two-factor trees for valuing CBs. These trees are 
complicated to implement because of the multiplicity of branches that model movements in the interest rate and stock 
price. On the other hand, the models of Barone-Adesi, Bermudez and Hatgionnides [9] and Yigitbasioglu and Alexander 
[10] are partial differential equations (PDEs) based methods. Besides, in many of the above-mentioned frameworks, 
the reduced-form method (a stock-value approach based on market information) is used to incorporate default risk. In 
general, the reduced-from approach is more widely accepted due to the ease of parameter estimation [11]. The numerous 
literature with the reduced-form approach was classified by Batten et al. [1, 12] into four categories which are the finite 
difference method, finite element method, lattice model, and simulation model.

In Coonjobeharry et al. [13], we developed a model based on two factors where the underlying stock price and the 
stochastic interest rates are assumed to follow jump-diffusion processes in addition to incorporating default risk. The 
CB is priced by solving the proposed partial integro-differential equation using a spectral method along with Clenshaw-
Curtis quadratures.

In this work, we are interested in pricing CBs under PDE-based two-factor models. A well-known approach for 
solving the two-dimensional pricing PDEs is the method-of-lines technique; once the PDEs are discretized in the spatial 
variables, a popular method for solving the resulting semi-discrete systems is the Crank-Nicolson (CN) scheme. Our 
recent work in this direction to value interest rate derivatives under short-rate models extended with jumps can be found 
in [14] and we considered the pricing of equity options using meshless methods under two-dimensional models in [15-
18]. In this work, we employ one type of Alternating-Direction-Implicit (ADI) method, namely the Craig-Sneyd (CS) 
scheme, as an alternative to the Crank-Nicolson scheme for pricing CBs. The CS scheme [19] was developed to obtain 
the solution of pure-diffusion equations with mixed derivatives of second-order accuracy. In [20] and [21], the authors 
show that, the CS scheme [22] is unconditionally stable when applied to finite difference discretizations for the solution 
of two-dimensional convection-diffusion PDEs having mixed derivatives. The authors derived sufficient and necessary 
conditions on the parameters of the CS scheme for unconditional stability in the presence of mixed derivative terms. 
As the CB pricing PDE is in the form of a convection-diffusion-reaction equation with an additional term present due 
to the inclusion of default risk in the model, we are interested in the performance of the CS scheme in solving such an 
equation.

The structure of this paper is as follows. We describe the valuation model for a CB whose value is driven by the 
equity price as well as the interest rate in §2. In §3, the numerical method of the pricing PDE is discussed. Numerical 
experiments are conducted in §4 to show the performances of the CS scheme compared to the CN scheme, as well as 
analyzing how the different features and parameters in the CB model affect the price. Conclusions are given in §5.

2. The pricing model
Let the stock price be denoted by S and the interest rate be denoted by r, then a convertible bond being a derivative 

S and r satisfies the stochastic differential equations

( ) ,s s
dS r q h dt dZ dP
S

η σ η= − + + −

( ) ,r rdr r dt r dZα θ σ= − +

where q represents the continuous dividend yield, σs and σr are the volatility of S and r respectively, α denotes the speed 
of reversion of r about the long time mean of θ, Zr and Zs and two Wiener processes correlated with ρ, and in the event 
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of a default, η which follows a Poisson process P with intensity given by h, known as the hazard rate measures the 
fractional drop in the price of the stock. Note that r follows the square root process of [23], which precludes negative 
interest rates. Let the maturity of the convertible bond be represented by T, τ = T − t the time to maturity, F the face 
value, C the coupon, and k the number of shares in which the CB can be converted. In the event that a default occurs, 
the bondholder can opt for receiving a fractional part 0 ≤ R ≤ 1 of F, the face value of the bond, or shares of value kS(1 
− η), whichever is the maximum. Then, following standard hedging arguments (see [10]), letting V(S, r, τ) denote the 
price of the CB price, it can be shown that V(S, r, τ) satisfies

(1)

2 2 2
2 2 2

2 2
1 1 ( )
2 2s s r rS S r r r q h S

S r SS r
σ ρσ σ σ η

τ
∂ ∂ ∂ ∂ ∂

= + + + − +
∂ ∂ ∂ ∂∂ ∂

    

( ) ( ) max(  , (1 )),r r h h RF kS
r

α θ η∂
+ − − + + −

∂




with initial condition V(S, r, 0) = max(kS, F + C). It is well know that V → 0 as r → ∞. Hence for large values of r, 

the bond price V decrease almost linearly. The boundary conditions 
2 2

2 20 anlim lid m 0S r
S r

→∞ →∞
∂ ∂

= =
∂ ∂

   therefore 

follow from the intuition that for an extremely high price of the stock, the bondholder will prefer to exchange to shares, 
leading to a linear increase in the CB price with S as S → ∞, and that the CB price behaves almost linearly at extremely 
high rate of interests. At the left boundaries at S = 0 and r = 0, we use one-sided approximations which is described in 
the next section.

The CB is convertible into k shares, callable at price Bc and puttable at price Bp. Due to the conversion provisions, 
the convertible bond price is subject to some no-arbitrage constraints. Because of this conversion right,

V ≥ kS,

and to incorporate the provision for the put feature

V ≥ Bp.

Combining these two constraints gives

V ≥ max(Bp, kS).

Also, since the issuer of the bond is given the right to call back the bond,

V ≤ max(kS, Bc),

as when the bond is called back, the holder reserves the right to exchange the bond for shares. We also set Bc = ∞ where 
the bond cannot be called and set Bp = 0 when the bond is not puttable. When the bond is callable and puttable at the 
same time t which is not coinciding with a coupon date tc, the accrued interest, denoted by A on the upcoming coupon C, 
needs to be taken into consideration and this is calculated as

1 ,
i
c

i i
c c

t t
A C

t t+
−

=
−
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with i
ct  being the coupon date preceding 1i

ct
+ . The clean call price is denoted by clean

cB  and the clean put price is denoted 

by clean
pB  satisfy

clean ,c cB B A= +

clean .p pB B A= +

3. Numerical method
We truncate the S-domain to [0, Smax] and r-domain to [0, rmax]. Let ∆S = Smax/(m − 1) be the step size for S and ∆r 

= rmax/(n − 1) be the step size for r, then the S-grid is constructed as 1{ ( 1) }m
s i iG S i S == = − ∆  and the r-grid is constructed 

as 1{ ( 1) } .n
r j jG r j r == = − ∆  The two-dimensional grid is then constructed with the mn grid nodes.

Letting Vi, j denote the value of the CB at the grid node (Si, rj) and collecting the mn nodal values as a vector of the 
bond prices V = [V1, ..., Vn]

T ∈ Rmn, for

1, ,[ , ] . , T
i i m i= …  

Let Ds and Dss denote the tridiagonal m × m matrices

[ ] [ ]2
1 1tridiag 1, 0, 1 ,   tridiag 1, 2, 1 ,

(2 ) ( )
s ssD D

S S
= − = −

∆ ∆

arising when a second-order finite difference discretisation is employed for the first-order differential term in S

1 1 ,
2

i i

iS S
+ −−∂  ≈ ∂ ∆ 

 

and second-order differential terms in S

2
1 1

2 2
2

,
( )

i i i

iS S
+ −  − +∂

≈  ∂ ∆ 

  

and denote by Is the identity matrix of order m. Let I be the identity matrix of order mn and the matrices of order n for 
Dr, Drr, and Ir are constructed in the same way.

The boundary condition 
2 2

max max2 20 and 0 at  and S r
S r
∂ ∂

= =
∂ ∂

   respectively are implemented by setting the last 

row of the second order derivative matrices Dss and Drr to zero.
One sided approximations are used at the left boundaries Smin = 0 and rmin = 0 as follows:
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0 1 2 0 1 2

0 0

3 4 3 4
, ,

(2 ) (2 )i iS S r r= =

− + − − + −∂ ∂   ≈ ≈   ∂ ∆ ∂ ∆   

      

2 2
0 1 2 3 0 1 2 3

2 2 2 2
0 0

2 5 4 2 5 4
, ,

( ) ( )i iS S r r= =

   − + − − + −∂ ∂
≈ ≈      ∂ ∆ ∂ ∆   

        

and for the first derivatives we use the following one-sided approximations at Smax and rmax

2 1 2 13 4 3 4
, .

2 2
m m m m m m

i m i mS S r r
− − − −

= =

− + − +∂ ∂   ≈ ≈   ∂ ∆ ∂ ∆   

      

Then equation (1) is discretized as

(2)( ) ( ) ,Aτ τ′ = +  

where the matrix A ∈ Rmn×mn is represented by

(3)

2 2 21 1[ ] [ ] [ ] [ ]
2 2s r ss r s r s r s r rr sA S I D S r I D D I r D Iσ ρσ σ σ= ⊗ + ⊗ ⋅ ⊗ + ⊗

( ) [ ] ( )[ ] ( ) ,r s r sr q h S I D r D I r h Iη α θ+ − + ⊗ + − ⊗ − +

with B ⊗ C ∈ Rbc×bc denoting the Kronecker product of the matrices B ∈ Rb×b and C ∈ Rc×c and ℏ is the vector of terms 
h max(RF, kS(1 − η)) arising from (1).

3.1 Time-stepping

Crank-Nicolson scheme Denoting the solution vector at time τj by V j and letting ∆τ = τj+1 − τj be the uniform time 
step, applying a CN scheme to equation (2) gives

1 .
2 2

j jI A I A Rτ τ τ+∆ ∆   − = + + ∆   
   

  (4)

To speed up the algorithm, the LU decomposition of the matrix ( )
2

I Aτ∆
−  is precomputed outside the loop for 

the time-stepping and equation (4) is solved by using forward/backward substitution. It is well known that the CN time-
stepping is unconditionally stable and is of accuracy second-order. With an increasing number of grid nodes m and n as 
explained in [24], the Crank-Nicolson scheme becomes inefficient. This is because the bandwidth of the left-hand side 
matrix in (4), and thereafter the LU factorisation matrices, is known to be directly proportional to the minimum of n and 
m.

Craig-Sneyd scheme The matrix A is then splitted into the three submatrices Aρ corresponding to the mixed 
derivative term, As, the term corresponding to the S-derivative and Ar, the terms corresponding to the r-derivative, in 
the form
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,s rA ρ= + + 

where

[ ][ ],r s r s r sS r I D D Iρ σ σ ρ= ⊗ ⊗

2 21 1[ ] ( ) [ ] ( ) ,
2 2s s r ss r sS I D r q h S I D r h Iσ η= ⊗ + − + ⊗ − +

21 1[ ] ( )[ ] ( ) .
2 2r r rr s r sr D I r D I r h Iσ α θ= ⊗ + − ⊗ − +

The part (r + h)I in (3) is evenly distributed over As and Ar. The second-order CS scheme for the solution of the 
ODE (2) is then given by

0 ( ) ,jW R I Aτ τ= ∆ + + ∆ 

1

1 0 ,
2 2

j
s sW I Wτ τ−∆ ∆   = − −   

   
  

1

2 1 ,
2 2

j
r rW I Wτ τ−∆ ∆   = − −   

   
  

( )3 2 0 ,
2

jW W Wρ ρ
τ∆

= − +  

1

4 3 ,
2 2

j
s sW I Wτ τ−∆ ∆   = − −   

   
  

1

5 4 ,
2 2

j
r rW I Wτ τ−∆ ∆   = − −   

   
  

(5)1
5.j W+ =

The CS scheme was originally developed by Craig and Sneyd [19] in order to solve pure-diffusion equations 
containing mixed derivatives with second-order accuracy. In in’t Hout and Welfert [20-21] the authors showed that the 
CS scheme is unconditionally stable when applied to the solution of two-dimensional convection-diffusion equations 
with mixed derivatives. The convergence of the CS was discussed by In’t Hout and Wyns [25]. The basic idea of the CS 
scheme is a first predictor step followed by two unidirectional corrector steps, and then a second predictor step followed 
by two unidirectional corrector steps.

As with the CN scheme, the matrix-vector equations are solved via the LU decomposition of the matrices 

( ) and ( ).
2 2r sI A I Aτ τ∆ ∆

− −  However, as pointed out in in’t Hout and Foulon [24], the bandwidth of these matrices 
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are now fixed, even as m and n increase, and the number of floating point operations at each time step depends only on 
the number of grid nodes mn. Consequently, for large values of m and n, the CS scheme is more efficient than the CN 
scheme.

4. Numerical results
In this section, we provide some numerical examples to compare the performance of CN and CS schemes and 

we further investigate on how the CB price changes for different parameters of a convertible bond model and different 
features. Consider a convertible bond with maturity T = 5 years and face value F = 100 with coupons worth C = 4 paid 
semiannually. The bond can be converted into k = 1 share and is callable during the time interval t ∈ [2, 3] years at a 

price of clean
cB  = 110, and is puttable during the time interval t ∈ [2, 3] years at a price of clean

pB  = 105. The current stock 
price is given by S = 100 and current interest rate is r = 0.05. The dividend rate q is assumed to be zero unless stated 
otherwise. The other parameters are taken as

( ) ( ), , , , , , , 0.2, 0.22, 0.5, 0.07, 0.1, 0.2, 0, 0.5 .s r h Rσ σ α θ ρ η =

Table 1 compares the performances of both schemes in terms of accuracy and computational speed in seconds 
(Cpu(s)) for Smax = 200 and rmax = 0.5. Due to memory constraints, we are limited to taking a maximum of 64 grid 
points only in the S and r directions. With a value of m = n = 64, the discretization matrices are of size 4,096 × 4,096. 
The second-order accuracy of the CS scheme is maintained even when the pricing equation, which is a convection-
diffusion-reaction equation, contains the additional term h max(kS(1 − η), RF). It is also observed that when the 
number of grid nodes is small, the CN scheme requires solving only one matrix as seen from equation (4) and therefore 
performs better than the CS scheme in terms of computational speed. However, as m and n increases, the CS scheme is 
computationally less expensive which is explained by the fact that the bandwidth of the matrices of the CS method do 
not grow with increasing m and n. As an example, with the CS scheme, the bandwidth of the L matrices obtained from 

the LU factorizations of matrix ( )
2 sI Aτ∆

−  remains fixed at 3 when using finite differences schemes of second-order, 

in contrast to the bandwidth of the matrix ( )
2

I Aτ∆
−  of the CN scheme which grows with increasing m and n.

The convertibility, callability, and puttability features make CBs complex financial instruments for which no 
closed-form pricing formulas exist and therefore it is difficult to show the order of convergence numerically. We 
therefore report on the relative errors and the relative convergence rate which has been calculated using the formula

,
2
2 ,2

Rel. Error
log

Rel. Error
Relative Convergence Rate ,

log 2

s

s

t
m n
t
m n

 
 
 
 =

where

2
, , 2 ,2Rel. Error Price Price .ss s tt t

m n m n m n= −

A second-order convergence rate is shown for both the Crank-Nicolson and Craig-Sneyd. Note that the relative 
errors are the same for both scheme since the yield the same convertible price. The difference is in terms of running time 
only.
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Table 1. CB prices computed using the Crank-Nicolson scheme and the Craig-Sneyd scheme

m = n Timesteps (ts)
Crank-Nicolson (CN) Craig-Sneyd (CS) CN/CS

CB Price Cpu(s) CB Price Cpu(s) Rel Error Rel Conv.

16 1250 112.0198 0.13 112.0198 0.29 - -

32 2500 112.1809 0.98 112.1809 1.59 0.171 -

64 5000 112.2335 21.17 112.2335 15.59 0.043 2.002

Figure 1 shows the graph of the convertible bond price as an increasing monotone function of S and as a decreasing 
monotone function of r using the CS scheme.

Having shown the benefit of the CS scheme over the CN scheme, the CB prices in the remaining examples are 
computed by the CS scheme using m = n = 64 and 5,000 timesteps.

In Table 2, we investigate how the call and put features impact on the convertible bond price. The callable property 
of the CB is advantageous to the issuer, which justifies why the callable bond price falls. The put option is beneficial to 
the bondholder, hence justifying the higher price for puttable bonds. However, the above two effects are not symmetric, 
with the dominant call feature since it spans over a larger period of 3 years in contrast to the put feature which spans 
over a duration of 1 year only.

Figure 1. CB price as a function of stock price and interest rate computed using the CS scheme
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Table 2. CB prices for different contractual features

CB features
Price

Callable Puttable

No No 120.4246

Yes No 111.1670

No Yes 121.1034

Yes Yes 112.2335

The next example investigates on how the two events (the decrease in the stock price and recovering a proportion 
of the bond’s face value), which occur upon default, affect the bond price. The prices for the different values of the 
parameters R and η are reported in Table 3. Reading accross the rows of the table, it can be observed that the price 
increases as the recovery factor rises from 0.25 to 0.5, since then the bondholder is able to get back a higher portion of 
his investment when a default occurs. However, when R increases from 0 to 0.25, the CB price remains unchanged, as a 
recovery of one-fourth of the face value, which pertains to the bond part of the CB, is not significant when compared to 
the equity part of the CB. Reading down the columns of the table, it is observed that the price falls when the fractional 
drop in the stock price η gets larger. This is explained by the fact that the equity component of the convertible bond 
loses value.

Table 3. Convertible bond prices for different default scenarios

η
R

0 0.25 0.5

0 116.8815 116.8815 116.8824

0.25 114.1426 114.1426 114.1531

0.5 112.2335 112.2335 112.6338

Finally, we investigate how the S- and r-related parameters impact on the CB price. In Table 4, by varying σr and α, 
we note that price changes due to the stochastic nature of r are small. In particular, on setting σr = 0 and α = 0, we obtain 
a single-factor model in which the CB price is modelled by the stock price only, and we can see that switching off the 
interest rate factor results in a minor change in the convertible bond price. This is in line with the conclusion of [2] that 
“for a reasonable range of interest rates, the errors from the [non-stochastic] interest rate model are likely to be slight”. 
The effect of variations in σs are studied in Table 5 and note that as σs varies, significant variation in the convertible 
bond price is observed. The results of Tables 4 and 5 helps to conclude that the stock price dynamics plays a much more 
crucial role in convertible bond valuation than the interest rate’s dynamics.
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Table 4. Effect of r-related parameters

σr α CB price

0 0 112.2829

0.12 0.5 112.0811

0.22 0.5 112.2335

0.32 0.5 112.4120

0.22 0.1 112.5877

0.22 0.9 112.0231

Table 5. Effect of stock price volatility

σs CB price

0.1 109.8354

0.2 112.2335

0.4 118.8819

5. Conclusion
A CB is a hybrid financial instrument consisting of both an equity part and a fixed-income part. The convertibility, 

callability, and puttability features make CBs complex financial instruments for which no closed-form pricing formulas 
exist. The simplest valuation models are one-factor models which assume that the CB is a derivative of the underlying 
equity only, and take the interest rate as constant or a deterministic function of time. However, since most CBs have 
long maturities, it is more realistic to assume stochastic interest rates when pricing such financial instruments. In this 
work, we considered the pricing of CBs under two-factor models. The Craig-Sneyd time-stepping was employed along 
with a second-order finite difference scheme for the spatial discretisation. Comparisons against the Crank-Nicolson 
scheme showed that while both schemes yield the same accuracy, the Craig-Sneyd scheme turns out to be more efficient 
when the number of spatial grid points is increased. In addition, we also explored how the different features of a CB 
affect its price and provided some interpretations. Convertible bonds can be valued in a more elaborate setting where 
the hazard rate is stochastic. The firm’s credit spread (either the convertible bond’s credit spread or a credit default swap 
spread) is an indicative measure of the default risk of the firm. Thus, as a further research, a more elaborate convertible 
bonds valuation model would be a three-factor model with the stock price, the interest rate, and the credit spread being 
stochastic.
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