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Abstract: (1) Background: The ongoing COVID-19 pandemic has posed significant global challenges; its impact in
Africa, in particular, has been a subject of increasing concern. Vaccination against COVID-19 started in many African
countries in 2020. Despite the remarkable progress made by a selected number of countries initiating vaccination
campaigns in 2020, the global vaccination coverage against the targeted disease remains inadequate. This study aimed to
assess the dynamics of COVID-19 in the face of vaccination in Africa. (2) Methods: We used an extended deterministic
Susceptible-Exposed-Infectious-Recovered (SEIR)-type model stratified by vaccination status to mathematically analyze
the effect of vaccination on the dynamics of COVID-19 in ten African countries, namely: Benin, Namibia, South Africa,
Rwanda, Lybia, DRC, Nigeria, Algeria, Gabon and Kenya. We studied some basic properties of the model and derived
the control and basic reproduction numbers Rc and R0, respectively. We further utilized the Castillo-Chavez method
to investigate the global stability of the model at the disease-free equilibrium point under the condition Rc < 1. In
addition, we developed the expressions of the sensitivity and elasticity of the control reproduction number (Rc) with
respect to vaccination coverage, level of adherence to control measures (ψu and ψv), infection probabilities, and relative
infectiousness of different compartments of Infected. The model was fitted using cumulative daily COVID-19 case data
corresponding to each country’s third wave of the pandemic. The unknown parameters are estimated using the non-linear
least square method. We used the resulting parameter values to compute the sensitivity and elasticity indices. (3) Results:
The study demonstrates the importance of sustaining high vaccination coverage and control measures to mitigate COVID-
19 transmission in Africa. Results identify vaccination rates and population compliance to control measures as most
influential based on sensitivity analysis. (4) Conclusions: By generating evidence tailored to the African context, this
research provides crucial insights to inform resource allocation and interventions to combat COVID-19, where needs are
greatest.
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1. Introduction
Humanity has dealt with several diseases over the past years, but health has become, by far, extremely vulnerable in

the world due to the most recent of these: SARS-CoV-2, a new strain of coronavirus that first surfaced in December 2019
in Wuhan, may lead to the Coronavirus Disease 2019 (COVID-19) [1]. COVID-19 patients, according to the medical
corps, suffer from mild to intermediate breathing issues, fatigue, flu, fever, and so on. In many areas, the COVID-19
virus spread quickly from one person to another, and the World Health Organization reported it as a pandemic on March
11, 2020 [2]. If the first large-scale COVID-19 outbreaks occurred predominantly in high-income nations in Europe and
North America, with more than 4,170,424 cases as of May 13, 2020, [3], the disease has since spread throughout Africa.
We could count 8,986,322 cases and 174,211 deaths on July 5, 2023 [4]. The World Health Organization (WHO) released
many guidelines that different nations followed to avoid spreading disease. Social distancing, wearing a mask, keeping
rooms properly aired, avoiding crowds, and cleansing hands with an alcohol-based sanitizer or soap and water were among
the Non-Pharmaceutical Interventions (NPIs) [5]. In Uganda, Kenya, Malawi, and Ghana, the containment measures to
curtail transmission of COVID-19 included closing international airports, closing schools, freezing public and private
transportation, prohibiting all extensive gathering activities, and implementing widespread lockdowns [6]. To reduce the
spread of infection, quarantine, and isolation of confirmed COVID-19 cases were also introduced in South Africa, Rwanda,
Benin, and Nigeria [6]. However, vaccines are the most efficient and cost-effective method of preventing and controlling
infectious diseases [7]. The availability of vaccines has represented a unique opportunity to fight the COVID-19 disease.
In the realm of infectious disease research, mathematical modeling has emerged as a powerful tool to understand the
transmission dynamics of epidemics [8–10]. In this context, many scientific works have developed several models to
analyze the effect of vaccination on COVID-19 dynamic [11, 12]. Li et al. [13] used a modified Susceptible-Exposed-
Infectious-Recovered (SEIR) mathematical model to estimate the effect of age-specific vaccine allocation strategies to
reduce the cumulative number of deaths and new infections. They found that priority vaccination to the youngest age
group would reduce the number of new infections most, and priority vaccination to the middle and elderly age groups
would reduce the deaths most. Using a similar model, another study from [14] reveals that the higher the vaccination rate,
the lower the peak reached by confirmed cases and deaths. However, the model did not account for the combined effect
of implementing the routine vaccination program with control measures.

Love et al. [15] came across this gap by providing a valuable tool to evaluate the allocation of a limited vaccine supply,
especially in the context of reduced or relaxing NPI measures. Their results illustrate how COVID-19 dynamics decrease
more effectively when vaccination deployment is paired with strong adherence to NPIs. In [16], the authors formulated
classical and fractional-order SEIR models for COVID-19 and compared their dynamics and stability to provide insights
into the utility of fractional calculus for epidemic modeling. It is found that the fractional model better captures fluctuating
dynamics observed in COVID-19 data and suggests smaller basic reproduction numbers more in line with estimates.

Sivashankar et al. [17] introduced a COVID-19 mathematical model that incorporates the Caputo-Fabrizio fractional
derivative and subjected it to analytical scrutiny. Utilizing eigenvalue methods, they conduct a comprehensive stability
analysis of the model. The key findings indicated that the disease-free equilibrium becomes asymptotically stable when
a defined reproduction number is below the critical threshold of 1. Conversely, the system exhibits an unstable endemic
equilibrium if the reproduction number surpasses this threshold. However, there are certain limitations, including the
simplicity of the model structure and the absence of data fitting and forecasting capabilities. Kumar et al. in [18]
constructed and evaluated SEIR models for COVID-19 using different fractional derivatives and assessed their predictive
performance to determine the optimal fractional modeling approach. The Atangana-Baleanu fractional model provided
the most accurate predictions of the epidemic peak timing in Japan.

However, the results of these studies may not apply to African countries due to significant differences in the data
reported. Factors influencing the pandemic’s dynamics across Africa are multiple, including infection fatality ratios,
limited access to physical health services, vaccine hesitancy, and low testing rates [19]. Since its evolution, many papers
have also investigated COVID-19 in Africa [10, 20–22]. In 2023, the study by Ashraf et al. [23] developed an improved
mathematical model incorporating fear effects on COVID-19 transmission and demonstrated the role of fear in slowing
down the epidemic through model analysis and simulations. The model demonstrates that higher levels of fear slow down
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COVID-19 transmission. Stability analysis provides thresholds related to fear for controlling outbreaks. Model fitting to
data shows the significant role of fear-induced behavioural changes.

In the study conducted by Honfo et al. [24], a simple deterministic susceptible-infectious-recovered (SIR)-type model
was employed to characterize the initial wave of the COVID-19 pandemic and provide future trend forecasts across the
sixteen West African countries. The findings of the study revealed several noteworthy observations. Firstly, a relatively
low proportion of susceptible individuals was observed in the region and across the different countries. Additionally, the
detection rate of the disease was relatively low, except for specific countries such as Gambia, Cape Verde, Mauritania,
and Ghana.

Another study by Yedomonhan et al. [25] focused on expanding a Susceptible-Infectious-Quarantined-Removed
(SIQR) disease-opinion dynamicsmodel to take into account the effects of prophylactic behaviors on COVID-19 dynamics.
The proposedmethod estimates the basic and time-varying reproduction numbers, the peak infection size of new infections,
and the final epidemic size. The results highlight that the initial proportion of individuals perceiving COVID-19 as a
severe threat and that of the followers of prophylactic behaviors are decisive in controlling the disease’s spread. However,
the model failed to account for the vaccination program. Moreover, it didn’t incorporate the exposed compartment,
representing individuals who have contracted the disease but are not yet contagious. As a result, the model may not
accurately reflect the dynamics of the disease. To address the gap mentioned above in the literature, this study expands
upon the research conducted by Montcho et al. [26], which proposes a novel compartmental model that caters to non-
pharmaceutical measures to analyze the dynamics of the COVID-19 pandemic with vaccination programs in Africa.
However, stability analysis of the model by Montcho et al. [26] is missing. Moreover, sensitivity and elasticity analyses
were performed empirically, limiting the generalization of the results obtained. Thus, the main objective of this paper is
to perform a mathematical analysis of the model used by Montcho et al. [26] and to study its stability. We further extend
the analysis conducted by Montcho et al. [26] to additional African countries that were not addressed and develop the
expression of the sensitivity and elasticity of the reproduction number with respect to various factors.

This expansion in the geographic scope adds a new dimension to the existing body of work, providing a more
comprehensive understanding of COVID-19 dynamics in a total of ten African nations corresponding to different African
regions and offering region-specific insights into COVID-19 dynamics. By acknowledging and incorporating these
region-specific nuances, the research transcends generic analyses and furnishes a tailored perspective on the multifaceted
dynamics of COVID-19 in diverse African nations. Furthermore, the application of the Castillo-Chavez method to assess
global stability in a complex system characterized by multiple variables and substantial matrices adds a significant
dimension to the work. This achievement highlights the research’s ability to navigate the intricacies of large-scale
epidemiological models, making it especially relevant in real-world scenarios. With the proposed model, we aim to (i)
evaluate the effect of vaccination on incidences and mortality due to COVID-19 and (ii) assess the effect of vaccination
on COVID-19 dynamics with different Non-Pharmaceutical intervention (NPIs) levels implemented.

The presentation of the work is structured as follows: The next section provides a detailed exposition of the
compartmental SEIR model framework used to analyze the COVID-19 transmission dynamics model, including the
underlying differential equations and model parameters. In the Results section, the research presents basic model
properties as well as the basic and control reproduction numbers and assesses the global stability of the disease-free
equilibrium. A comprehensive sensitivity and elasticity analysis examines the effect of some parameters on the model’s
dynamics, alongside a sensitivity analysis of incidences and mortalities. The research culminates with a discussion and
conclusion.

2. Methods
In this study, we consider a compartmental mathematical model that was previously developed by Montcho et

al. [26] to describe the dynamics of COVID-19 transmission in Africa. The proposed model is a modified SEIR
model incorporating vaccination and control measures. The interacting human population, N(t) at the time t, is
divided into two subgroups, i.e. vaccinated and unvaccinated, represented by subscript u and v, respectively. That is

Volume 5 Issue 3|2024| 3691 Contemporary Mathematics



N(t) = Nu(t) + Nv(t). The subpopulation of unvaccinated people, Nu(t), was split into seven (7) compartments that
are: Susceptible (Su(t)), Exposed ( Eu(t)), Pre-symptomatically infectious (IPu(t)), asymptomatically infectious (IAu(t)),
Symptomatically infectious (ISu(t)), Confirmed cases (Cu(t)) and Recovered (Ru(t)). In addition, we consider the class
Du(t), which comprises the unvaccinated individuals who die due to COVID-19-related complications.

Nu(t) = Su(t)+Eu(t)+ IPu(t)+ IAu(t)+ ISu(t)+Cu(t)+Ru(t). (1)

The subpopulation of vaccinated individuals Nv(t) is also divided into seven (7) compartments: Susceptible Sv(t),
Exposed Ev(t), Pre-symptomatically infectious IPv(t), Asymptomatically infectious IAv(t), Symptomatically infectious
ISv(t), confirmed individualsCv(t), recoveredRv(t). Similarly, as for the previous group, we defineDv(t) as the vaccinated
people who died of COVID-19 disease.

Nv(t) = Sv(t)+Ev(t)+ IPv(t)+ IAv(t)+ ISv(t)+Cv(t)+Rv(t). (2)

At any given time t, the unvaccinated and vaccinated people who die due to COVID-19-related complications that
are Du(t) and Dv(t) are not included in the interacting population Nu(t) and Nv(t). The state variables of the model are
described in Table 1.

Table 1. Model compartment’s description

State Variables Description

Su(Sv) Susceptible unvaccinated (vaccinated) population that is non-infected yet. They can get
vaccinated or exposed.

Eu(Ev) Unvaccinated (vaccinated) population of exposed individuals. They are newly infected,
do not show any symptoms and can’t infect others.

IPu (IPv ) Unvaccinated (vaccinated) pre-asymptomatic people: Exposed individuals who can (after
the latent period) start infecting. They transit later to the asymptomatic or symptomatic
class after the incubation period.

IAu (IAu ) Unvaccinated (vaccinated) asymptomatic infectious population: these continue to show
no symptoms of the disease after the incubation period.

ISu (ISv ) Unvaccinated (vaccinated) symptomatic infectious population: people who start showing
symptoms of the disease after the incubation period.

Cu(Cv) Unvaccinated (vaccinated) confirmed cases: individuals who have been tested and
confirmed positive for COVID-19.

Ru(Rv) Unvaccinated (vaccinated) population of recovered individuals. They are no longer
infected by the disease and can be susceptible again after losing natural immunity.

Du(Dv) Unvaccinated (vaccinated) population who died of COVID-19.
Source: Adapted from Montcho et al. [26]

We adopted the assumption of homogeneous mixing, wherein each individual is presumed to have an equal
probability of encountering and interacting with any other member of the community. This assumption aligns with the
prevalent practice in numerous prior studies conducted in the field [10, 27]. We assume a natural mortality rate µ in all
compartments and a recruitment rateΛ of susceptible individuals. A comprehensive assessment of the recruitment rate for
vaccination necessitates the inclusion of not only natural births and immigration but also young adults who have met the
age requirement for vaccination, which is set at 18 years and above in theAfrican context. We suppose that all unvaccinated
individuals in the compartments can be vaccinated at the same rate, ν , except those in the symptomatic infectious and
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confirmed classes. When susceptible unvaccinated individuals make contact with pre-symptomatic, asymptomatic, or
symptomatic infectious individuals, whether they have been vaccinated or not, the infection can occur at the rate of λu.
Similarly, because the vaccine is considered imperfect, it only confers partial protection, which implies that vaccinated
individuals can get the disease at the rate λv once in contact with an infected individual. Hence, those populations are
considered exposed: they do not show symptoms and cannot infect others. After the latent period, they become pre-
symptomatic infectious and infect susceptible individuals at the rate αe. After the incubation period, they move on to
either asymptomatic infectious category at the rate (1 − ρ1)αp and (1 − ρ2)αp respectively for the unvaccinated and
vaccinated or symptomatically infectious at a rate ρ1αp (ρ2αp). Alternatively, they can be tested positive and join the
confirmed case respectively at the detection rate qp1 (qp2). The asymptomatic infectious population continues to show no
symptoms. Thus, either they end up as confirmed cases after testing at a rate qa1 (qa2) or they recover at a rate of γa1 (γa2).
In a study carried out by Wang et al., it was demonstrated that within the cohort of asymptomatic individuals admitted
to Dongxihu Fangcang Hospital in China, more than 90 percent of patients remained without the aggravation of illness
throughout the follow-up period [28]. We, therefore, assume in the model that asymptomatic individuals don’t develop
severe disease or die due to COVID-19. We also assume that exposed and pre-asymptomatic people cannot die of the
disease, since they do not show any symptoms. On the other hand, the unvaccinated (vaccinated) symptomatic infectious
individuals can be tested positive and join the confirmed class at the rate qs1 (qs2), die of the disease at the rate δs1 (δs2) or
recover at the rate γs1 (γs2). The COVID-19 induced mortality rate for the confirmed class is δc1 (δc2). Also, it is assumed
that the disease doesn’t confer permanent immunity; the recovered individuals may become susceptible again. Therefore,
they may join the susceptible compartment at the rate du (dv). Also, the vaccine immunity is not lifelong and thus wanes
over time, which implies that the susceptible lose the vaccine-induced immunity and join the susceptible unvaccinated
class at a rateω . All the information discussed in this section draws upon the comprehensive study conducted byMontcho
et al. [26].

Figure 1. Flow chart of the formulated mathematical model
Source: Montcho et al. [26]
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Table 2. Description of the model parameters

Parameter Description

bi j Infection probability of groups i and j per contact (i, j ∈ [1, 2])

ν Vaccination rate

µ Natural death rate

Λ Recruitment rate

ω Waning vaccine immunity rate

λu(λv) Force of infection on the unvaccinated (vaccinated)

θpu (θpv ) Relative infectiousness of pre-symptomatic infectious unvaccinated (vaccinated)

θau (θav ) Relative infectiousness of asymptomatic infectious unvaccinated (vaccinated)

θsu (θsv ) Relative infectiousness of symptomatic infectious unvaccinated (vaccinated)

θcu (θcv ) Relative infectiousness of confirmed unvaccinated (vaccinated)

1/αe Latent period (per day)

1/αp Pre-symptomatic period (per day)

ρ1(ρ2) Probability of developing symptoms for the unvaccinated (vaccinated)

qs1 (qs2 ) Per capita rate at which unvaccinated (vaccinated) from the symptomatic infectious class
test positive

qa1 (qa2 ) Per capita rate at which unvaccinated (vaccinated) from the asymptomatic infectious class
test positive

1/γa1 (1/γa2 ) Recovery rate of asymptomatic unvaccinated (vaccinated) cases (per day)

1/γc1 (1/γc2 ) Recovery rate of confirmed unvaccinated (vaccinated) cases (per day)

du(dv) Rate at which recovered unvaccinated (vaccinated) individuals from COVID-19 lose
acquired natural immunity

δs1 (δs2 ) COVID-19 death rate of symptomatic infectious unvaccinated (vaccinated) individuals

δc1 (δc2 ) COVID-19 death rate of confirmed infectious unvaccinated (vaccinated)individuals

Source: Montcho et al. [26]

The schematic diagram of the model is shown in Figure 1 as well as an overall description of the parameters in Table
2. The transfer rates between compartments are expressed mathematically throughout the following non-linear differential
equations in (3) and (4), respectively, for the unvaccinated and vaccinated population. A dot represents differentiation
with respect to time t.

Ṡu = Λ− (λu +µ +ν)Su +duRu +ωSv

Ėu = Suλu − (αe +ν +µ)Eu,

İPu = αeEu − (αp +µ +ν +qp1) IPu ,

İAu = (1−ρ1)αpIPu − (µ +ν + γa1 +qa1)IAu ,
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İSu = ρ1αpIPu − (µ + γs1 +qs1 +δs1)ISu ,

Ċu = qa1IAu +qs1ISu +qp1IPu − (δc1 + γc1 +µ)Cu,

Ḋu = δs1ISu +δc1Cu,

Ṙu = γa1IAu + γs1ISu + γc1Cu − (du +µ +ν)Ru, (3)

Ṡv = νSu +dvRv − (λv +µ +ω)Sv,

Ėv = νEu +Svλv − (αe +µ)Ev,

İPv = νIPu +αeEv − (αp +µ +qp2) IPv ,

İAv = νIAu +(1−ρ2)αpIPv − (µ + γa2 +qa2)Iav ,

İSv = ρ2αpIPv − (µ + γs2 +qs2 +δs2)ISv ,

Ċv = qa2IAv +qs2ISv +qp2IPv − (δc2 + γc2 +µ)Cv,

Ḋv = δs2ISv +δc2Cv,

Ṙv = νRu + γa2IAv + γs2ISv + γc2Cv − (dv +µ)Rv. (4)

The initial conditions are:

Su(0)≥ 0; Eu(0)≥ 0; IPu(0)≥ 0; IAu(0)≥ 0; ISu(0)≥ 0;

Cu(0)≥ 0; Du(0)≥ 0; Ru(0)≥ 0; Sv(0)≥ 0; Ev(0)≥ 0; IPv(0)≥ 0; IAv(0)≥ 0;

ISv(0)≥ 0; Cv(0)≥ 0; Dv(0)≥ 0; Rv(0)≥ 0.

The force of infection quantifies how much the infectious individuals can transmit the virus when they come in
contact with the susceptible individuals in the population. The model’s infectious compartments interacting with the
susceptible individuals comprise the pre-symptomatic, asymptomatic, and symptomatic individuals. Even though the
confirmed people are supposed to be isolated after testing positive and, therefore, do not make any contact with the
susceptible, we still assume in this study that people tend not to respect this measure when the vaccination program has
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begun fully. They might be mixed into the population and participate in the infection dynamic. This justifies why the
confirmed compartment is also considered in the force of infection.

They might be mixed into the population and participate in the infection dynamic. This justifies why the confirmed
compartment is also considered in the force of infection. We subdivide the overall force of infection into two: the force
of infection rate λu and λv. λu quantifies how an infectious individual in the overall population can transmit the virus to
unvaccinated susceptible individuals. Following the approach of Mancuso et al. [29], the force of infection rates λu is
given by:

λu = λuu +λvu (5)

where

λuu =
(1−ψu)buu (θpuIPu +θauIAu +θsuISu +θcuCu)

N

λvu =
(1−ψv)bvu (θpvIPv +θavIAv +θsvISv +θcvCv)

N
.

The model accounts for implementing Non-Pharmaceutical Interventions that reduce this force of infection. ψu (ψv)
is the proportion of unvaccinated (vaccinated) individuals who respect the control measures. On the other hand, buu is the
infection probability of a susceptible individual in group 1 to get the disease per contact with an infectious individual in
the same group. Also, in a mixed population of vaccinated and unvaccinated individuals, the susceptible individuals in
group 1 are likely to make contact with individuals in group 2. If the contracting individual in group 2 is infectious, then
the susceptible individual in group 1, Su, is infected based on the probability bvu. θpu , θau , θsu and θcu are, respectively,
the transmission rates of pre-symptomatic, asymptomatic, symptomatic infectious and confirmed unvaccinated. Similarly,
θpv , θav , θsv and θcv are respectively the transmission rates of pre-symptomatic, asymptomatic, symptomatic infectious
and confirmed vaccinated. N is the total population, equivalently N = Nu +Nv.

Similarly, λv related to the capacity of an infectious individual in the overall population to transmit the virus to the
vaccinated susceptible individuals is defined as follows:

λv = λvv +λuv (6)

λvv =
(1−ψv)bvv (θpvIPv +θavIAv +θsvISv +θcvCv)

N

λuv =
(1−ψu)buv (θpuIPu +θauIAu +θsuISu +θcuCu)

N
.

On the other hand, bvv is the infection probability of a susceptible individual in group 2 to get the disease per contact
with an infectious individual in the same group. The susceptible individuals in group 2 are also likely to make contact
with individuals in group 1. If the contracting individual in group 1 is infectious, then the susceptible individual in group
2, Sv, will be infected based on the probability buv.
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3. Results
3.1 Theoretical analysis of the model
3.1.1Positiveness of the model solutions

It is primordial for any mathematical model to show that the solutions of the system of equations are positive.
In the following, we demonstrated that if the initial conditions of the system (3)-(4) are positive, then the solution set
Su(t), Eu(t), IPu(t), IAu(t), ISu(t)(t), Cu(t), Ru(t), Du(t), Sv(t), Ev(t), IPv(t), IAv(t), ISv(t), Cv(t), Rv(t), Dv(t) of the model
consists of positive members for all t > 0.

Referring to the differential equations in (3)-(4), we respectively have for:
• Su(t)

dSu

dt
= Λ− (λu +µ +ν)Su +duRu +ωSv.

Then dSu
dt ≥ Λ− (λu +µ +ν)Su or dSu

dt +(λu +µ +ν)Su ≥ Λ.
Multiplying each part of the inequality by e(λu+µ+ν)t gives:

[
dSu

dt
+(λu +µ +ν)Su]e(λu+µ+ν)t ≥ Λe(λu+µ+ν)t ,

dSu

dt
e(λu+µ+ν)t +(λu +µ +ν)e(λu+µ+ν)tSu ≥ Λe(λu+µ+ν)t ,

d
dt

(
Su(t).e(λu+µ+ν)t

)
≥ Λe(λu+µ+ν)t ,

∫ t

0

d
dy

(
Su(y).e(λu+µ+ν)y

)
dy ≥

∫ t

0
Λe(λu+µ+ν)ydy,

[
Su(y).e(λu+µ+ν)y

]t

0
≥
∫ t

0
Λe(λu+µ+ν)ydy,

Su(t).e(λu+µ+ν)t −Su(0)≥
∫ t

0
Λe(λu+µ+ν)ydy,

Su(t).e(λu+µ+ν)t ≥ Su(0)+
∫ t

0
Λe(λu+µ+ν)ydy,

Su(t)≥ e−(λu+µ+ν)t
(

Su(0)+
∫ t

0
Λe(λu+µ+ν)ydy

)
> 0.

Hence, Su(t) is positive for t > 0.
• Eu(t)
With the second equation, we got the inequality dEu

dt +(αe +ν +µ)Eu ≥ 0.
Solving the equation dEu

dt +(αe +ν +µ)Eu = 0 gives Eu(t) = Eu(0)e−(αe+ν+µ)t > 0.
Hence, Eu(t) is positive for all t > 0.

Volume 5 Issue 3|2024| 3697 Contemporary Mathematics



From the remaining equations of the system (3)-(4), it can be shown that the set of the solutions is positive for all t >
0. with the same process.

3.1.2Boundedness of the model solutions

The overall population N(t) is defined by adding both expressions in equations (1) and (2). Differentiating both sides
with respect to t, we have:

Ṅ = Ṡu + Ėu + İPu + İAu + İSu +Ċu + Ṙu + Ṡv + Ėv + İPv + İAv + İSv +Ċv + Ṙv. (7)

Therefore,

Ṅ = Λ−µN − (δs2ISv +δs1ISu +δs2Cv +δs1Cu). (8)

That is,

Ṅ ≤ Λ−µN. (9)

After integration, we get: N(t)≤ N(0)e−µt + Λ
µ (1− e−µt).

Hence, as t → ∞, N(t)≤ Λ
µ . Then, all solutions of the system enter into the region Ω with

Ω = {(Su, Eu, IPu , IAu , ISu , Cu, Ru, Sv, Ev, IPv , IAv , ISv , Cv, Rv) ∈ R14
+ : 0 < N(t)≤ Λ/µ}.

3.1.3Control reproduction number

In disease modeling, the control reproduction number, Rc, is a key parameter used to assess the extent to which the
pandemic will spread. The control reproduction number of an infectious agent, such as the coronavirus, is computed when
the control measures and/or vaccination programs are implemented [30]. It is defined as the average number of secondary
infections generated by one infectious individual when introduced in a mixed population consisting of vaccinated and
unvaccinated individuals. When the control reproduction number Rc is less than one, each infected individual, vaccinated
or not, infects less than one susceptible individual. This suggests that the virus will gradually be eradicated from the
population. Otherwise, when Rc is greater than one, the number of COVID-19 cases caused by an infected individual
increases exponentially over time, resulting in a growing epidemic.

From the studies, Rc is determined as the dominant eigenvalue of the next-generation matrix FV−1 where F and V
are the jacobian of the matrix F of all the new infections and the matrix V of the net transition rates of compartments,
respectively. [31, 32]. In the following study, we used the same approach.

Let x= (Eu, IPu , IAu , ISu , Cu, Ev, IPv , IAv , ISv , Cv)
T be the vector of all the infected compartments. F andV are defined

as follows:
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F(x) =



λuSu

0
0
0
0

λvSv

0
0
0
0


and V (x) =



(αe +ν +µ)Eu

−αeEu +(αp +µ +ν +qp1) IPu

−(1−ρ1)αpIPu +(µ +ν + γa1 +qa1)IAu

−ρ1αpIPu +(µ + γs1 +qs1 +δs1)ISu

(δe1 + γc1 +µ)Cu −qa1IAu −qp1IPu −qs1ISu

−νEu +(αe +µ)Ev

−νIPu −αeEv +(αp +µ +qp2) IPv

−νIAu − (1−ρ2)αpIPv +(µ + γa2 +qa2)Iav

−ρ2αpIPv +(µ + γs2 +qs2 +δs2)ISv

−qa2IAv −qp2IPv −qs2ISv +(δc2 + γc2 +µ)Cv


.

Hence, the jacobian matrices F and V are 10× 10 matrices. In a disease-free state, only the susceptible classes are
non-empty since there is no disease. Then:

(Su, Eu, IPu , IAu , ISu , Cu, Ru, Du, Sv, Ev, IPv , IAv , ISv , Cv, Rv, Dv)

=
(
S0

u, 0, 0, 0, 0, 0, 0, 0, S0
v , 0, 0, 0, 0, 0, 0, 0

)
with S0

u =
λ (µ+ω)

µ(ν+µ+ω) , and S0
v =

Λν
µ(ν+µ+ω) .

F(x)=

[
F11 F12

F21 F22

]
with,

F11 =


0 S0

ubuuθpu(1−ψu)

N0
S0

ubuuθau(1−ψu)
N0

S0
ubuuθsu(1−ψu)

N0
S0

ubuuθcu(1−ψu)
N0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



F12 =


0 S0

ubvuθpu(1−ψv)

N0
S0

ubvuθau(1−ψv)
N0

S0
ubvuθsu(1−ψv)

N0
S0

ubvuθcu(1−ψv)
N0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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F21 =


0 S0

v buvθpu(1−ψu)

N0
S0

v buvθau(1−ψu)

N0
S0

v buvθsu(1−ψu)

N0
S0

v buvθcu(1−ψu)

N0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



F22 =


0 S0

v bvvθpu(1−ψv)

N0
S0

v bvvθau(1−ψv)

N0
S0

v bvvθsu(1−ψv)

N0
S0

v bvvθcu(1−ψv)

N0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



N0 is the initial population at disease-free equilibrium and is given by N0 = S0
u +S0

v .

V(x)=



a1 0 0 0 0 0 0 0 0 0
−αe a2 0 0 0 0 0 0 0 0

0 αp(ρ1 −1) a3 0 0 0 0 0 0 0
0 −ρ1αp 0 a4 0 0 0 0 0 0
0 −qp1 −qa1 −qs1 a5 0 0 0 0 0
−ν 0 0 0 0 a6 0 0 0 0
0 −ν 0 0 0 −αe a7 0 0 0
0 0 −ν 0 0 0 −αp(1−ρ2) a8 0 0
0 0 0 0 0 0 −ρ2αp 0 a9 0
0 0 0 0 0 0 −qp2 −qa2 −qs2 a0


with;

a1 = αe +ν +µ;

a2 = αp +ν +µ +qp1 ;

a3 = γa1 +ν +µ +qa1 ;

a4 = δs1 + γs1 +µ +qs1 ;

a5 = δc1 + γc1 +µ;

a6 = αe +µ;

a7 = αp +µ +qp2 ;

a8 = γa2 +µ +qa2 ;
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a9 = δs2 + γs2 +µ +qs2 ;

a0 = γc2 +δc2 +µ.

The control reproduction number Rc is computed as the spectral radius ρρρ
(
F × V−1) of the next generation matrix,

i.e.

Rc = ρρρ
(
F × V−1) .

Let’s define:

Rc = Rc1 +Rc2 +Rc3 . (10)

We split the Control reproduction number into three contributions. Rc1 is the contribution of the pre-symptomatic,
asymptomatic, symptomatic and confirmed infectious unvaccinated people, respectively, to the control reproduction
number; Rc2 , the contribution of the pre-symptomatic, asymptomatic, symptomatic and confirmed infectious vaccinated
people respectively, and Rc3 , the contribution of the interaction of the vaccinated and unvaccinated infectious classes. We
have:

Rc1 = Rc1Pu +Rc1Au +Rc1Su +Rc1Cu (11)

where,

Rc1Pu =
αeS0

ubuu(1−ψu)θpu

2N0a1a2
;

Rc1Au =
αeS0

ubuu(1−ψu)αp(1−ρ1)θau

2N0a1a2a3
;

Rc1Su =
αeS0

ubuu(1−ψu)αpρ1θsu

2N0a1a2a4
;

Rc1Cu =
αeS0

ubuu(1−ψu) [a3(a4qp1 +qs1ρ1αp)+a4qa1αp(1−ρ1)]θcu

2N0a1a2a3a4a5
.

Similarly, the component Rc2 is the sum of the four components Rc2Pv , Rc2Av , Rc2Sv , and Rc2Cv , which represent
the contribution of the pre-asymptomatic, asymptomatic, symptomatic, and confirmed infectious vaccinated individuals,
respectively. One has:
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Rc2 = Rc2Pv +Rc2Av +Rc2Sv +Rc2Cv (12)

where,

Rc2Pv =
αeS0

vbvv(1−ψv)θpv

2N0a6a7
;

Rc2Av =
αeS0

vbvv(1−ψv)αp(1−ρ2)θav

2N0a6a7a8
;

Rc2Sv =
αeS0

vbvv(1−ψv)αpρ2θsv

N0a6a7a9
;

Rc2Cv =
αeS0

vbvv(1−ψv) [a8(a9qp2 +qs2αpρ2)+a9qa2αp(1−ρ2)]θcv

2N0a0a6a7a8a9
.

Finally, the quantity, Rc3 is defined as:

Rc3 = Rc1V +

√[
Rc1 +Rc1V −Rc2

]2
+

4Rc2

m2

(
m1Rc1 +m2Rc1V

)
(13)

where,

Rc1V = Rc1Pv +Rc1Av +Rc1Sv +Rc1Cv , m1 =
buv

buu
, and m2 =

bvv

bvu
.

We define Rc1V as the sum of four components, i.e. Rc1Pv , Rc1Av , Rc1Sv , and Rc1Cv , which represent the contribution
from the interaction of the unvaccinated individuals with the pre-asymptomatic, symptomatic, and confirmed infectious
vaccinated individuals. The components are defined as follows:

Rc1Pv =
αeνS0

ubvu(1−ψv)θpv

2N0a1a2a6a7
;

Rc1Av =
αeνS0

ubvu(1−ψv) [a3(1−ρ2)(a2 +a6 +a6a7(1−ρ1))]θav

2N0a1a2a3a6a7a8
;

Rc1Sv =
αeνS0

ubvu(1−ψv)αpρ2(a2 +a6)θsv

2N0a1a2a6a7a9
;

Rc1Cv =
αeνS0

ubvu(1−ψv) [a3(a2 +a6)(a8(a9qp2 +αPqs2ρ2)+a9αPqa2(1−ρ2))+Z]θcv

2N0a0a1a2a3a6a7a8a9
;
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Z = a9a6a7qa2αP(1−ρ1).

3.1.4Basic reproduction number

When no vaccination and non-pharmaceutical interventions are implemented, the disease’s dynamic is measured by
the Basic Reproduction number. In this case, the parameters related to vaccination rate and the decrease in the disease
due to control strategies, respectively, ν and ψu(ψv), will be set to zero. That is ν = ω = ψu = ψv = 0. These values are
replaced in the equation (10) to get the basic reproduction number R0 given by the equation below.

R0 = R0c1 +R0c2 +R0c3 . (14)

Thus, R0c1 represents the contribution of the pre-symptomatic, asymptomatic, symptomatic and confirmed infectious
unvaccinated people, respectively, to the basic reproduction number. R0c3 is the contribution for the interaction of the
vaccinated and unvaccinated infectious classes. By definition,R0c2 is equal to 0. Sincewe are in the absence of vaccination,
there is no contribution of the infectious vaccinated people to the basic reproduction number (S0

v = 0)

R0c1 = R0c1Pu +R0c1Au +R0c1Su +R0c1Cu

where,

R0c1Pu =
αebuuθpu

2a6(αp +µ +qp1)
;

R0c1Au =
αeαpbuuθau (1− p1)

2a6(αp +µ +qp1)(γa1 +µ +qa1)
;

R0c1Su =
αeαpbuuρ1θsu

2a4a6(αp +µ +qp1)
;

R0c1Cu =
αebuu(1−ψu) [(γa1 +µ +qa1)a4 +a4qa1αp(1−ρ1)+(γa1 +µ +qa1)qs1ρ1]θcu

2(αe +µ)(αp +µ +qp1)(γa1 +µ +qa1)a4a5
.

As well, the quantity, R0c3 is also defined as;

R0c3 = R0c1 .

3.2 Global stability analysis of the model
The model stability is studied around the equilibrium points. There are usually two: the Disease Free Equilibrium

(DFE) and Endemic Equilibrium Point (EEP). In the following, we only focused on the global stability analysis of the
COVID-19 model (3)-(4) at the disease-free equilibrium. The global stability of the disease-free equilibrium holds
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significant implications. Specifically, if the disease-free equilibrium is proven to be globally stable, the disease will
not be able to remain in the population, regardless of the size of the perturbation. An influx of infected cases may cause
a localized epidemic outbreak, but the disease won’t become endemic in the population [33].

We used the Castillo-Chavez method [34] to prove that the model is globally asymptotically stable at the disease-free
equilibrium. Considering the method of Castillo-Chavez, the COVID-19 model can be transformed as the following two
subsystems:

d p1

dt
= Y1 (p1, p2) ;

d p2

dt
= Y2 (p1, p2) .

where p1 denotes the number of uninfected individuals; thus, p1 = (Su, Ru, Sv, Rv), and p2 represents the number of
infected individuals, with, p2 = (Eu, IPu , IAu , ISu , Cu, Sv, Ev, IPv , IAv , ISv , Cv). The disease-free equilibrium point is given
by Po =

(
p0

1, 0
)
.

The point
(
Y 0

1 , 0
)
is a globally stable asymptotically stable equilibrium for the model (3)-(4) provided Rc < 1, if the

below criteria are satisfied.
1. Given d p1

dt = Y1 (p1, 0) ,
(

p0
1
)
is globally asymptotically stable.

2. Y2 (p1, p2) = B.p2−Ŷ2 (p1, p2), where Ŷ2 (p1, p2)≥ 0 for (p1, p2)∈ Ω and is B the Jacobian matrix ofY2 (p1, p2)

at the disease free equilibrium with positive off-diagonal entries.
If the model Equation meets the above conditions; then, the following theorem holds.
Theorem 1 The point Po =

(
p0

1, 0
)
is globally asymptotically stable equilibrium provided Rc < 1 and the conditions

1. and 2. are satisfied.
Proof. Let p1 = (Su, Ru, Sv, Rv) and p2 = (Eu, IPu , IAu , ISu , Cu, Sv, Ev, IPv , IAv , ISv , Cv), and define Po =

(
p0

1, 0
)
,

where p0
1 = (S0

u, R0
u, S0

v , R0
v).

By using model system (3)-(4), we have:

d p1

dt
=


Λ− (λu +µ +ν)Su +duRu +ωSv

γa1IAu + γs1ISu + γc1Cu − (du +µ +ν)Ru

νSu +dvRv − (λv +µ +ω)Sv

νRu + γa2IAv + γs2ISv + γc2Cv − (dv +µ)Rv

and; Y1 (p1, 0) =


Λ− (µ +ν)Su +duRu +ωSv

−(du +µ +ν)Ru

νSu +dvRv − (µ +ω)Sv

νRu − (dv +µ)Rv

 .

Solving the equation d p1
dt −Y1 (p1, 0) = 0, partially gives, Ru(t) = Ru(0)e−(du+µ+ν)t .

R′
v(t) = K1Rv(t)+K2(t) with K1 =−(dv +µ) and K2(t) = νRu(t). Using the duhamel formular, in [35] the solution

Rv(t) can be given by:

Rv(t) = e
∫ t

0 −(dv+µ)dτ [Rv(0)+
∫ t

0
e
∫ τ

0 −(dv+µ)dτ νRu(0)e(−du+µ+ν)τ dτ].

After some transformation, we can easily get

Rv(t) = e−(dv+µ)tRv(0)+Ru(0)ν
1

dv −du −ν
[e(−du−µ−ν)t − e(−dv+µ)t ].
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Once the expressions of Ru and Rv are found, the system is reduced and can be rewritten as follows:

(
S′u
S′v

)
=

(
ωSv − (µ +ν)Su +duRu +Λ

νSu − (µ +ω)Sv +dvRv

)
. (15)

It is possible, by using matrix decomposition properties on this matrix, to obtain:

(
S′u
S′v

)
=

(
−(µ +ν) ω

ν −(µ +ω)

)
.

(
Su

Sv

)
+

(
duRu +Λ

dvRv

)
. (16)

Let’s pose X =

(
Su

Sv

)
; A =

(
−(µ +ν) ω

ν −(µ +ω)

)
and B =

(
duRu +Λ

dvRv

)
.

The equation (16) is therefore on the form X ′(t) = AX(t)+B(t). Using the Duhamel formula, the vector X(t) is given
by: X(t) = etAX(0)+

∫ t
0 e(t−s)AB(s)ds.

A is a diagonalizable matrix with A = PDP−1. This will help us compute the exponential expressions in X(t):
etA = (tP)etDP−1 and eA(t−s) = (t − s)Pe(t−s)DP−1 with P and D respectively:

P =

 ω−µ−
√

(µ−ω)2+4µω
2ν

ω−µ+
√

(µ−ω)2+4µω
2ν

1 1



and;

D =


−ω−µ−2ν−

√
(µ−ω)2+4µω

2 0

0
√

(µ−ω)2+4µω−ω−µ−2ν
2

 .

Once, eAt and eA(t−s) is replaced in X(t), the solution set Su, Sv is found. The respective expressions of Su and
Sv (Appendix B.1). With the set (Su, Ru, Sv, Rv), we can observe that limt →+∞ Su(t) = S0

u(t); limt →+∞ Ru(t) = R0
u(t) = 0;

limt →+∞ Sv(t) = S0
v(t) and limt →+∞ Rv(t) = R0

v(t) = 0. Consequently, we have that p1 → p0
1 as t → ∞. So p1 = p0

1 is globally
asymptotically stable. Condition 1 is held.

Furthermore, the expression of d p2
dt is:
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d p2

dt
=



Suλu − (αe +ν +µ)Eu

αeEu − (αp +µ +ν) IPu

(1−ρ1)αpIPu − (µ +ν + γa1+qp1
+qa1)IAu

ρ1αpIPu − (µ + γs1 +qs1 +δs1)ISu

qa1IAu +qs1ISu +qp1IPu − (δc1 + γc1 +µ)Cu

νEu +Svλv − (αe +µ)Ev

νIPu +αeEv − (αp +µ +qp2) IPv

νIAu +(1−ρ2)αpIPv − (µ + γa2 +qa2)Iav

ρ2αpIPv − (µ + γs2 +qs2 +δs2)ISv

qa2IAv +qs2ISv +qp2IPv − (δc2 + γc2 +µ)Cv


.

Now, in determining whether condition 2 would be satisfied, we used the formula Y2 (p1, p2) = B.p2 − Ŷ2 (p1, p2)

and we got:

B.p2 − Ŷ2 (p1, p2) =



−a1 A11 A12 A13 A14 0 A31 A32 A33 A34

αe −a2 0 0 0 0 0 0 0 0
0 k5 −a3 0 0 0 0 0 0 0
0 αpρ1 0 −a4 0 0 0 0 0 0
0 qp1 qa1 qs1 −a5 0 0 0 0 0
ν A21 A22 A23 A24 −a6 A41 A42 A43 A44

0 ν 0 0 0 αe −a7 0 0 0
0 0 ν 0 0 0 k2 −a8 0 0
0 0 0 0 0 0 αpρ2 0 −a9 0
0 0 0 0 0 0 qp2 qa2 qs2 −a0





Eu

IPu

IAu

ISu

Cu

Ev

IPv

IAv

ISv

Cv


−



B1

0
0
0
0

B2

0
0
0
0


.

with;

B1 = A11IPu +A12IAu +A13ISu +A14Cu +A31IPv +A32IAv +A33ISv +A34Cv −Suλu

B2 = A21IPu +A22IAu +A23ISu +A24Cu −A41IPv +A42IAv +A43ISv +A44Cv −Svλv.

After, replacing the expressions of A11, A12, A13, A14, A31, A32, A33, A34, A21, A22, A23, A24, A41, A42, A43, A44 inside
B1 and B2, we have:

B1 =

(
S0

u

N0 − Su

N

)[
buu (1−ψu)(IPuθpu + IAuθau + ISuθsu +Cuθcu)+bvu (1−ψv)(IPvθpv + IAvθav + ISvθsv +Cvθcv)

]
.

B2 =

(
S0

v

N0 − Sv

N

)[
buv (1−ψu)(IPuθpu + IAuθau + ISuθsu +Cuθcu)+bvv (1−ψv)(IPvθpv + IAvθav + ISvθsv +Cvθcv)

]
.
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The matrix B is a matrix with the off-diagonal entries that are all positive. We know that (Su/N) ≤ (S0
u/N0), and

(Sv/N) ≤ (S0
v/N0) which implies Ŷ2 (p1, p2) is positive (having each element greater or equal to zero). As a result,

condition 2 is met, demonstrating that the model is globally stable.

3.2.1Sensitivity analysis

The sensitivity analysis studies the variation of the outputs of a model caused by variations in the inputs, and it
demonstrates how important each parameter is to disease transmission in terms of positive and negative effects [36]. The
sensitivity index, S, of a variable Y with respect to a parameter X is defined by the derivative of Y with respect to X that
is:

S =
∂Y
∂X

. (17)

• The sensitivity of Rc with respect to the vaccination rate ν is given by:

∂Rc

∂ν
=

∂Rc1

∂ν
+

∂Rc2

∂ν
+

∂Rc3

∂ν
(18)

where,

∂Rc1

∂ν
=

∂Rc1Pu

∂ν
+

∂Rc1Au

∂ν
+

∂Rc1Su

∂ν
+

∂Rc1Cu

∂ν
;

with,

∂Rc1Pu

∂ν
=−

αebuuθpu(µ +ω)(1−ψ1)
(

a1a2 +a2 +a1(µ +ν +ω)
)

2a2
1a2

2(µ +ν +ω)2 ;

∂Rc1Au

∂ν
=−

αeαPbuuθau(µ +ω)(ψ1 −1)(ρ1 −1)
(

a1a2a3 +(µ +ν +ω)(a1a2 +a1a3 +a2a3)
)

2a2
1a2

2a2
3(µ +ν +ω)2 ;

∂Rc1Su

∂ν
=−

αeαPbuuρ1θsu(µ +ω)(1−ψ1)
(

a1a2 +(a1 +a2)(µ +ν +ω)
)

2a2
1a2

2a4(µ +ν +ω)2 ;

∂Rc1Cu

∂ν
=−A [a1a2a3 +(ν +µ +ω)(a1a2 +a1a3 +a2a3 −B)]

where,

A =
αebuuθcu (1−ψ1)(µ +ω)

(
a3a4qp1 +a3qs1ρ1 +a4αPqa1 (1−ρ1)

)
2a2

1a2
2a2

3a4a5(µ +ν +ω)2 ;
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B =
a1a2a3(a4qp1 +qs1ρ1)

a3a4qp1 +a3qs1ρ1 +a4αPqa1(1−ρ1)
.

Also,

∂Rc2

∂ν
=

∂Rc2Pv

∂ν
+

∂Rc2Av

∂ν
+

∂Rc2Sv

∂ν
+

∂Rc2Cv

∂ν

with,

∂Rc2Pv

∂ν
=

αebvvθpv(µ +ω)(1−ψ2)

2a6a7(µ +ν +ω)2 ;

∂Rc2Av

∂ν
=

αeαPbvvθav(µ +ω)(1−ψ2)(1−ρ2)

2a6a7a8(µ +ν +ω)2 ;

∂Rc2Sv

∂ν
=

αeαPbvvρ2θsv(µ +ω)(1−ψ2)

2a6a7a9(µ +ν +ω)2 ;

∂Rc2Cv

∂ν
=

αebvvθcv(µ +ω)(1−ψ2)
(

a8 (a9qp2 +αPqs2ρ2)+a9αPqa2 (1−ρ2)
)

2a0a6a7a8a9(µ +ν +ω)2 .

Finally,

∂Rc3

∂ν
=

∂Rc1v

∂ν
+

∂
∂ν

(
Rc1 −Rc2 +Rc1v

)(
Rc1 −Rc2 +Rc1v

)
+ 2m1

m2
× ∂Rc1

∂ν +2
∂Rc1v

∂ν√
(Rc1 −Rc2 +Rc1v)

2 +
4m1Rc1

m2
+4Rc1v

with,

∂Rc1v

∂ν
=

∂Rc1Av

∂ν
+

∂Rc1Sv

∂ν
+

∂Rc1Pv

∂ν
+

∂Rc1Cv

∂ν
;

where,

∂Rc1Av

∂ν
=C

[(
a1a2a3

µ +ν +ω
+

a1a2a3

ν
−a1a2 −a1a3 −a2a3

)
+D

]
;

C =
αeαPbvuνθav (1−ψ2)(µ +ω)(µ +ν +ω)

(
a3(1−ρ2)(a2 +a6)+a6a7(1−ρ1)

)
a2

1a2
2a2

3a6a7a8
;
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D =
(1−ρ2)(a3 +a2 +a6)

a3(1−ρ2)(a2 +a6)+a6a7(1−ρ1)
;

∂Rc1Pv

∂ν
=

αebvuµθpv(µ +ω)(ψ2 −1)
(

a1 (µ +ν +ω)(αe +2µ −ν)+ I
)

a2
1a2

2a6a7
;

∂Rc1Sv

∂ν
= E

[
a1a2

(
1+

1
ν
+

1
a6 +αP +2µ +qp1

)
−a1 −a2

]
;

E =
αeαPbvuνρ2θsv (1−ψ2)(µ +ω)(µ +ν +ω)(a6 +αP +2µ +qp1)

a2
1a2

2a6a7a9
;

∂Rc1Cv

∂ν
= F ∗G

[
a1a2a3

(
H +1+

1
µ +ν +ω

)
−a1a2 −a1a3 −a2a3

]
;

F = αebvuνθcv (1−ψ2)(µ +ω)(µ +ν +ω);

G =
a3

(
a8(a9qp2 +αPqs2ρ2)+a9αPqa2(1−ρ2)

)
(a6 +αP +2µ +qp1)+ J

a0a2
1a2

2a2
3a6a7a8a9

;

H =

[
a8 (a9qp2 +αPqs2ρ2)+a9αPqa2 (1−ρ2)

]
K

a3 (a6 +αP +2µ +qp1)L+a6a7a9αPqa2 (1−ψ1)
;

I = (a6 +αP +2µ +qp1)(ω −αe);

J = (1−ψ1)a6a7a9αPqa2;

K = a3 +a8 (a6 +αP +2µ +qp1) ;

L = a8 (a9qp2 +αPqs2ρ2)+a9αPqa2 (1−ρ2) .

• The sensitivity of Rc with respect to the proportion ψu is given by:

∂Rc

∂ψu
=

∂Rc1

∂ψu
+

∂Rc2

∂ψu
+

∂Rc3

∂ψu
(19)

where,
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∂Rc1

∂ψu
=

αebuu(µ +ω)
(

M−θcu (a3a4qp1 +a3qs1ρ1 −a4αPqa1 (ρ1 −1))
)

2a2a3a4a5 (a66 +ν)(µ +ν +ω)

with,

M =−a3a4a5θpu −a3a5αPρ1θsu +a4a5αPθau (ρ1 −1) ;

∂Rc2

∂ψu
= 0;

∂Rc3

∂ψu
=

∂Rc1
∂ψu

(
Rc1 −Rc2 +Rc1v +

2m1
m2

)
√
(Rc1 −Rc2 +Rc1v)

2 +
4m1Rc1

m2
+4Rc1v

.

• The sensitivity of Rc with respect to the proportion ψv is given by:

∂Rc

∂ψv
=

∂Rc1

∂ψv
+

∂Rc2

∂ψv
+

∂Rc3

∂ψv
(20)

where,

∂Rc1

∂ψv
= 0;

∂Rc2

∂ψv
=

αebvvν
(

N −θcv

(
a8 (a9qp2 +αPqs2ρ2)−a9αPqa2 (ρ2 −1)

))
2a0a6a7a8a9(µ +ν +ω)

;

N =−a0a88a9θpv −a0a8αPρ2θsv +a0a9αPθav (ρ2 −1) ;

∂Rc3

∂ψv
=

∂Rc1v

∂ψv
+

∂
∂ψv

(
Rc1v−Rc2

)(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂ψv√

(Rc1 −Rc2 +Rc1v)
2 +

4m1Rc1
m2

+4Rc1v

with,

∂Rc1v

∂ψv
=

∂Rc1Av

∂ψv
+

∂Rc1Pv

∂ψv
+

∂Rc1Sv

∂ψv
+

∂Rc1Cv

∂ψv

where,
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∂Rc1Av

∂ψv
=−αeαPbvuνθav(µ +ω)P(µ +ν +ω)

a1a2a3a6a7a8
;

∂Rc1Pv

∂ψv
=−

αebvuνθpv (a2 +a6)(µ +ω)(µ +ν +ω)

a1a2a6a7
;

∂Rc1Sv

∂ψv
=−

αeαPbvuνρ2θsv(µ +ω)(µ +ν +ω)(a66 +αP +2µ +qp1)

a1a2a6a7a9
;

∂Rc1Cv

∂ψv
=−αebvuνθcv(µ +ω)0(µ +ν +ω)

a0a1a2a3a6a7a8a9
;

O = a3

(
a8 (a9qp2 +αPqs2ρ2)+a9αPqa2 (1−ρ2)

)
(a6 +αP +2µ +qp1)+Q;

P = a3 (1−ρ2)(αe +αP +2µ +ν +qp1)+a6a7 (1−ρ1) ;

Q = a6a7a9αPqa2 (1−ψ1) .

• The sensitivity index of Rc with respect to ν and ψu

This effect reflects more the reality in the African countries since the control measures were still in place when the
vaccination began. This sensitivity represents the gradient of Rc with respect to ν and ψu. The gradient of Rc with respect
to ν and ψu is giving by:

J(ν , ψu)Rc =
(∂Rc

∂ν
,

∂Rc

∂ψu

)
, (21)

where ∂Rc
∂ν and ∂Rc

∂ψu
are respectively given in the equations (18) and (19).

• The sensitivity index of Rc with respect to ν and ψv

This sensitivity index represents the gradient of Rc with respect to ν and ψv. The gradient of Rc with respect to ν
and ψv is giving by:

J(ν , ψv)Rc =
(∂Rc

∂ν
,

∂Rc

∂ψv

)
, (22)

with ∂Rc
∂ψv

given in the equation (19).
We also focused on the effect of the variation of transmission parameters linked to the vaccinated people on the

control reproduction number. Those parameters are the relative infectiousness of the pre-symptomatic, asymptomatic,
symptomatic, and confirmed vaccinated θpv , θav , θsv , θcv as well the infection probabilities, bvu and bvv. Below is the
sensitivity index of Rc with respect to the relative infectiousness of the pre-symptomatic, asymptomatic, symptomatic and
confirmed vaccinated θpv , θav , θsv , θcv respectively.
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• The sensitivity of Rc with respect to the relative infectiousness θpv is given by:

∂Rc

∂θpv

=
∂Rc1

∂θpv

+
∂Rc2

∂θpv

+
∂Rc3

∂θpv

(23)

where,

∂Rc1

∂θpv

= 0;

∂Rc2

∂θpv

=
αebvvν(1−ψ2)

2a6a7(ν +µ +ω)
;

∂Rc3

∂θpv

=
∂Rc1v

∂θpv

+

( ∂Rc1v
∂θpv

− ∂Rc2
∂θpv

)(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂θpv√

(Rc1 −Rc2 +Rc1v)
2 +

4m1Rc1
m2

+4Rc1v

with,

∂Rc1v

∂θpv

=
αebvuν(1−ψ2)(a2 +a6)(µ +ω)

a1a2a6a7
.

• The sensitivity of Rc with respect to the relative infectiousness θav is given by:

∂Rc

∂θav

=
∂Rc1

∂θav

+
∂Rc2

∂θav

+
∂Rc3

∂θav

(24)

where,

∂Rc1

∂θav

= 0;

∂Rc2

∂θav

=
αeαPbvvν(1−ψ2)(1−ρ2)

2a6a7a8(ν +µ +ω)
;

∂Rc3

∂θav

=
∂Rc1v

∂θav

+

( ∂Rc1v
∂θav

− ∂Rc2
∂θav

)(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂θav√

(Rc1 −Rc2 +Rc1v)
2 +

4m1Rc1
m2

+4Rc1v

;

with,
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∂Rc1v

∂θav

=
αeαPbvuν (1−ψ2)(µ +ω)(a3 (1−ρ2)(a2 +a6)+a6a7 (1−ρ1))(µ +ν +ω)

a1a2a3a6a7a8
.

• The sensitivity of Rc with respect to the relative infectiousness θsv is given by:

∂Rc

∂θsv

=
∂Rc1

∂θsv

+
∂Rc2

∂θsv

+
∂Rc3

∂θsv

(25)

where,

∂Rc1

∂θsv

= 0;

∂Rc2

∂θsv

=
αeαPbvvνρ2(1−ψ2)

2a6a7a9(ν +µ +ω)
;

∂Rc3

∂θsv

=
∂Rc1v

∂θsv

+

( ∂Rc1v
∂θsv

− ∂Rc2
∂θsv

)(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂θsv√

(Rc1 −Rc2 +Rc1v)
2 +

4m1Rc1
m2

+4Rc1v

with,

∂Rc1v

∂θsv

=
αeαPbvuν (1−ψ2)(µ +ω)(µ +ν +ω)(a6 +αp +2µ +qp1)

a1a2a6a7a9
.

• The sensitivity of Rc with respect to the relative infectiousness θcv is given by:

∂Rc

∂θcv

=
∂Rc1

∂θcv

+
∂Rc2

∂θcv

+
∂Rc3

∂θcv

(26)

where,

∂Rc1

∂θcv

= 0;

∂Rc2

∂θcv

=
αebvvν (1−ψ2)(a8 (a9qp2 +αPqs2ρ2)−a9αPqa2 (ρ2 −1))

2a0a6a7a8a9(µ +ν +ω)
;
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∂Rc3

∂θcv

=
∂Rc1v

∂θcv

+

( ∂Rc1v
∂θcv

− ∂Rc2
∂θcv

)(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂θcv√

(Rc1 −Rc2 +Rc1v)
2 +

4m1Rc1
m2

+4Rc1v

with;

∂Rc1v

∂θcv

=
αebvuν(S+T )(1−ψ2)(µ +ω)(µ +ν +ω)

a0a1a2a3a6a7a8a9
;

S = a3 (a8 (a9qp2 +αPqs2ρ2)+a9αPqa2 (1−ρ2))(a6 +αP +2µ +qp1) ;

T = a6a7a9αPqa2 (1−ρ1) .

EνRc2Pv =
αeνbvvθPv(µ +ω)(1−ψ2)

2a6a7Rc(µ +ν +ω)2 ;

EνRc2Av =
αeναPbvvθav(µ +ω)(1−ψ2)(1−ρ2)

2a6a7a8Rc(µ +ν +ω)2 ;

EνRc2Sv =
αeναPbvvρ2θSv(µ +ω)(1−ψ2)

2a6a7a9Rc(µ +ν +ω)2 ;

EνRc2Cv =
αeνbvvθCv(µ +ω)(1−ψ2)

(
a8 (a9qp2 +αPqS2ρ2)+a9αPqa2 (1−ρ2)

)
2a0a6a7a8a9Rc(µ +ν +ω)2 ;

EνRc3 =
ν
Rc

∂Rc1v

∂ν
+

∂
∂ν
(
Rc1 −Rc2 +Rc1v

)(
Rc1 −Rc2 +Rc1v

)
+ 2m1

m2
∗ ∂Rc1

∂ν +2
∂Rc1v

∂ν√(
Rc1 −Rc2 +Rc1v

)2
+

4m1Rc1
m2

+4Rc1v

 .
• The elasticity of the control reproduction number with respect to ψu is given by:

ERc | ψu = EψuRc1 +EψuRc2 +EψuRc3 (27)

where,

EψuRc1 =
αeνbuu(µ +ω)(M−θcu (a3a4qp1 +a3qs1ρ1 −a4αPqa1 (ρ1 −1)))

2a2a3a4a5Rc (a66 +ν)(µ +ν +ω)
;

EψuRc2 = 0;
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EψuRc3 =

∂Rc1

∂ψu

ν
(

Rc1 −Rc2 +Rc1v +
2m1
m2

)
Rc

√(
Rc1 −Rc2 +Rc1v

)2
+

4m1Rc1
m2

+4Rc1v

 .
• The elasticity of the control reproduction number with respect to ψv is given by:

ERc | ψv = EψuRc1 +EψuRc2 +EψvRc3 (28)

where,

EψvRc1 = 0;

EψvRc2 =
αebvvν2

(
N −θcv

(
a8 (a9qP2 +αPqS2ρ2)−a9αPqa2 (ρ2 −1)

))
2a0a6a7a8a9Rc(µ +ν +ω)

;

EψvRc3 =
ν
Rc

∂Rc1v

∂ψv
+

∂
∂ψv

(
Rc1v −Rc2

)(
Rc1 −Rc2 +Rc1v

)
+2 ∂Rc1v

∂ψv√
(Rc1 −Rc2 +Rc1v)2 + 4m1Rc1

m2
+4Rc1v

 .
• The elasticity of the control reproduction number with respect to θpv is given by:

ERc | θPv = EθPv Rc1 +EθPv Rc2 +EθPv Rc3 (29)

where,

Eθpv Rc1 = 0;

Eθpv Rc2 =
αebvvν2(1−ψ2)

2a6a7Rc(ν +µ +ω)
;

Eθpv Rc3 =
ν
Rc

∂Rc1v

∂θpv

+

( ∂Rc1v
∂θpv

− ∂Rc2
∂θpv

)(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂θpv√(

Rc1 −Rc2 +Rc1v

)2
+

4m1Rc1
m2

+4Rc1v



• The elasticity of the control reproduction number with respect to θav is given by:

ERc | θav = Eθav Rc1 +Eθav Rc2 +Eθav Rc3 (30)
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where,

Eθav Rc1 = 0;

Eθav Rc2 =
αeαPbvvν2(1−ψ2)(1−ρ2)

2a6a7a8Rc(ν +µ +ω)
;

Eθav Rc3 =
ν
Rc

∂Rc1v

∂θav

+

(
∂Rc1v
∂θav

− ∂Rc2
∂θav

)(
Rc1 −Rc2 +Rc1v

)
+2 ∂Rc1v

∂θav√
(Rc1 −Rc2 +Rc1v)2 + 4m1Rc1

m2
+4Rc1v

 .
• The elasticity of the control reproduction number with respect to θsv is given by:

ERc | θsv = Eθsv Rc1 +Eθsv Rc2 +Eθsv Rc3 (31)

where,

Eθsv Rc1 = 0;

Eθsv Rc2 =
αeαPbvvν2ρ2(1−ψ2)

2a6a7a9Rc(ν +µ +ω)
;

Eθsv Rc3 =
ν
Rc

∂Rc1v

∂θsv

+

(
∂Rc1v
∂θsv

− ∂Rc2
∂θsv

)(
Rc1 −Rc2 +Rc1v

)
+2 ∂Rc1v

∂θsv√
(Rc1 −Rc2 +Rc1v)2 + 4m1Rc1

m2
+4Rc1v

 .
• The elasticity of the control reproduction number with respect to θcv is given by:

ERc | θcv = Eθcv Rc1 +Eθcv Rc2 +Eθcv Rc3 (32)

where,

Eθcv Rc1 = 0;

Eθcv Rc2 =
αebvvν2 (1−ψ2)(a8 (a9qp2 +αPqs2ρ2)−a9αPqa2 (ρ2 −1))

2a0a6a7a8a9Rc(µ +ν +ω)
;

Eθcv Rc3 =
ν
Rc

∂Rc1v

∂θcv

+

(
∂Rc1v
∂θcv

− ∂Rc2
∂θcv

)(
Rc1 −Rc2 +Rc1v

)
+2 ∂Rc1v

∂θcv√
(Rc1 −Rc2 +Rc1v)2 + 4m1Rc1

m2
+4Rc1v

 .
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• The elasticity of the control reproduction number with respect to bvu is given by:

ERc | bvu = EbvuRc1 +EbvuRc2 +EbvuRc3 (33)

where,

EbvuRc1 = 0;

EbvuRc2 = 0;

EbvuRc3 =
ν
Rc

∂Rc1v

∂bvu
+

∂Rc1v
∂bvu

(
Rc1 −Rc2 +Rc1v

)
+2

∂Rc1v
∂bvu√

(Rc1 −Rc2 +Rc1v)2 + 4m1Rc1
m2

+4Rc1v

 .
• The elasticity of the control reproduction number with respect to bvv is given by:

ERc | bvv = EbvvRc1 +EbvvRc2 +EbvvRc3 (34)

where,

EbvvRc1 =0;

EbvvRc2 =
αeνθpv (1−ψ2)

2a6a7(µ +ν +ω)
+

αeαpνρ2θsv (1−ψ2)

2a6a7a9(µ +ν +ω)
+

αeαPνθ2v (ψ2 −1)(ρ2 −1)
2a6a7a8(µ +ν +ω)

;

−
αeνθ4v (ψ2 −1)(a8 (a9qp2 +αPqs2ρ2)+a9αPqa2 (1−ρ2))

2a0a6a7a8a9(µ +ν +ω)
;

EbvvRc3 =
− ∂Rc2

∂bvv

(
Rc1 −Rc2 +Rc1v

)
√
(Rc1 −Rc2 +Rc1v)2 + 4m1Rc1

m2
+4Rc1v

.

3.3 Sensitivity analysis on incidence and mortality
A sensitivity analysis of a dynamical system can yield much qualitative information about how parameters affect the

model’s compartment dynamics over time. Building upon the results in section 3.2, we specifically examined the effect of
the vaccination rate ν , the proportions ψu and ψv that were identified to have the greatest impact on COVID-19 dynamics.
It’s intriguing to observe how incidence and mortality rates are affected by variations in these parameters is intriguing.
The model compartments of interest include confirmed unvaccinated, vaccinated cases (incidence) and unvaccinated,
vaccinated deaths (mortality). This technique has been widely used in literature, as evident in several studies [37, 38].

Let X = (Su, Eu, IPu , IAu , ISu , Cu, Du, Ru, Sv, Ev, IPv , IAv , ISv , Cv, Dv, Rv) be the vector of the model states variables;
P = (ν , ψu, ψv) be the vector of the parameters of interest, and the differential equations expressions in the model (3)-(4)
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is: F = (Ṡu, Ėu, İPu , İAu , İSu , Ċu, Ḋu, Ṙu, Ṡv, Ėv, İPv , İAv , İSv , Ċv, Ḋv, Ṙv). Let’s define the sensitivity of the variable’s
function V = ∂X

∂P . Below is a differential equation system resulting from the total derivative of the function V :

dV
dt

=
d
dt

∂X
∂P

=
∂

∂P
dX
dt

=
∂F
∂X

∂X
∂P

+
∂F
∂P

= J(X)V +
∂F
∂P

. (35)

with J(X), a 16×16 Jacobian matrix of the model given as: J(x)= [J11 J12 J13 J14] with the matrices J11, J12, J13 and J14

(Appendix B.2).
We can count 16 variables and three parameters, then V is a 16×3 matrix, and ∂F/∂P is a 16×3 matrix.

V =


V11 V21 V31 V41 V51 V61 V71 V81 V91 V101 V111 V121 V131 V141 V151 V161

V12 V22 V32 V42 V52 V62 V72 V82 V92 V102 V112 V122 V132 V142 V152 V162

V13 V23 V33 V43 V53 V63 V73 V83 V93 V103 V113 V123 V133 V143 V153 V163


T

.

V11 =
∂Su
∂ν ; V21 =

∂Eu
∂ν ; V31 =

∂ IPu
∂ν ; V41 =

∂ IAu
∂ν ; V51 =

∂ ISu
∂ν ; V61 =

∂Cu
∂ν ;

V71 =
∂Du
∂ν ; V81 =

∂Ru
∂ν ; V91 =

∂Sv
∂ν ; V101 =

∂Ev
∂ν ; V111 =

∂ IPv
∂ν ; V121 =

∂ IAv
∂ν ;

V131 =
∂ ISv
∂ν ; V141 =

∂Cv
∂ν ; V151 =

∂Dv
∂ν ; V161 =

∂Rv
∂ν ; V12 =

∂Su
∂ψu

; V22 =
∂Eu
∂ψu

;

V32 =
∂ IPu
∂ψu

; V42 =
∂ IAu
∂ψu

; V52 =
∂ ISu
∂ψu

; V62 =
∂Cu
∂ψu

; V72 =
∂Du
∂ψu

; V82 =
∂Ru
∂ψu

;

V92 =
∂Sv
∂ψu

; V102 =
∂Ev
∂ψu

; V112 =
∂ IPv
∂ψu

; V122 =
∂ IAv
∂ψu

; V132 =
∂ ISv
∂ψu

; V142 =
∂Cv
∂ψu

;

V152 =
∂Dv
∂ψu

; V162 =
∂Rv
∂ψu

V13 =
∂Su
∂ψv

; V23 =
∂Eu
∂ψv

; V33 =
∂ IPu
∂ψv

; V43 =
∂ IAu
∂ψv

;

V53 =
∂ ISu
∂ψv

; V63 =
∂Cu
∂ψv

; V73 =
∂Du
∂ψv

; V83 =
∂Ru
∂ψv

; V93 =
∂Sv
∂ψv

; V103 =
∂Ev
∂ψv

;

V113 =
∂ IPv
∂ψv

; V123 =
∂ IAv
∂ψv

; V133 =
∂ ISv
∂ψv

; V143 =
∂Cv
∂ψv

; V153 =
∂Dv
∂ψv

; V163 =
∂Rv
∂ψv

.

Regarding, ∂F
∂P , we have:
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∂F
∂P

=



−Su
Subuu(Cuθcu+IAu θau+IPu θpu+ISu θsu)

N′
Subvu(Cv θcv+IAu θav+IPv θpv+ISv θsv)

N′

−Eu −Subuu(Cuθcu+IAu θau+IPu θpu+ISu θsu)
N′ −Subvu(Cv θcv+IAv θav+IPv θpv+ISv θsv)

N′

−IPu 0 0

−IAu 0 0

0 0 0

0 0 0

0 0 0

−Ru 0 0

Su
Svbuv(Cuθcu+IAu θau+IPu θpu+ISu θsu)

N′
Svbvv(Cv θcv+IAv θav+IPv θpv+ISv θsv)

N′

Eu −Svbuv(Cuθcu+IAu θau+IPu θpu+ISu θsu)
N′ −Svbvv(Cv θcv+IAv θav+IPv θpv+ISv θsv)

N′

IPu 0 0

IAu 0 0

0 0 0

0 0 0

0 0 0

Ru 0 0



.

with N′ = Cu +Cv +Du +Dv +Eu +Ev + IAu + IAv + IPu + IPv + ISu + ISv +Ru +Rv +Su +Sv

3.4 Applications
3.4.1Model calibration

In the study, we consider ten African countries, namely: Namibia, South Africa, Rwanda, Lybia, DRC, Nigeria, and
Algeria, which were representative of the five (05) regions in Africa. We performed the model calibration to estimate some
parameters varying per country. The data for the fitting were obtained fromOurWorld in Data COVID-19 Data respiratory
(https://github.com/owid/covid-19-data/tree/master/public/data). This dataset comprises cumulative confirmed COVID-
19 cases corresponding to the third wave of the pandemic. The study period differs from country to country, starting from
the first day of vaccination to the end of the third wave of the pandemic in each respective country. A summary of the
countries with their corresponding study periods is presented in Table 5. To obtain the most accurate, country-specific
parameter values and initial conditions, we employed the nonlinear least square technique with the integrated function
fiminsearchbnd in Matlab (R2021a). We solved, on each training and testing data set, the following optimization problem:

min
lll

f (ppp) (36)
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where f (ppp) =
√

1
n ∑n

i=1(ydata − ŷpred)2 and l is the set of parameters to estimate. This optimization problem seeks to
minimize the Root mean square error between the model-predicted cumulative cases over time and the observed data
for each country. In the process of solving the differential equations, we used the following initial conditions: Ev(0) =
IPv(0) = IAv(0) = ISv(0) = Cv(0) = Rv(0) = Dv(0) = 0. This is because we assumed that the first day of vaccination is
a short time to consider vaccinated people going from the susceptible stage to the infected stage. We also assumed the
number of susceptible vaccinated individuals Sv(0), being the total number of people vaccinated recipients on the first
day of vaccination. This number is specific to each country. The non-varying fixed parameters used in the model fitting
process were obtained from the literature, as presented in Table 4.

The remaining country-specific varying parameters, such as recruitment rate, vaccination rate, natural death rate, and
force of infection, were computed for the same countries of reference as well as the period of study. The values of the
estimated and computed parameters varying per country, as well as the values of the initial conditions, are presented in
Table 6.

3.4.1.1 Recruitment rate

The recruitment rate Λ considers the birth rate and the net annual immigration. It can be computed using Tovissodé
et al. approach [39]. With the average population size during the vaccination period N, the annual birth rate during the
vaccination period b, the net annual immigration ∆I during the vaccination period, the vaccination period in days for each
country L, the recruitment rate Λ can be computed as :

Λ =
b.N +∆I

L
, (37)

where ∆I is obtained by subtracting the total number of people emigrating from the total number of people immigrating to
the country during the vaccination period L. This net quantity is negative if the number of people emigrating is greater than
the number of people immigrating, and positive otherwise. The data for the net annual immigration rate for each country
was obtained from Worldometer (https://www.worldometers.info/world-population/population-by-country). The annual
birth rate was obtained on the latest World Bank data (https://data.worldbank.org/indicator/SP.DYN.CBRT.IN) computed
per 1,000 people.

3.4.1.2 Vaccination rate

This parameter is computed using the following formula where L is the vaccination time period for each country in
days, and p is the proportion of individuals vaccinated with at least one dose of COVID-19 vaccine within that period. Data
on the daily vaccination (number of individuals vaccinated with at least one dose) for each selected country was obtained
from COVID-19 Data respiratory by Our World in Data (https://github.com/owid/covid-19-data/tree/master/public/data).

ν =
p
L

(38)

3.4.1.3 Natural death rate

Following Sileshi et al. [40], the natural death rate of individuals per day is calculated as the reciprocal of the life
expectancy e at the end date (last day of the third wave of the pandemic). It’s given by:

µ =
1

e×365
. (39)
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Figure 2. Model fitting plots using the cumulative confirmed COVID-19 cases in the ten African countries

Volume 5 Issue 3|2024| 3721 Contemporary Mathematics



As illustrated in Figure 2, the model fitting results exhibit close concordance between the cumulative confirmed cases
data (green points) and model-predicted cumulative case (blue curve) across the ten examined countries.

3.4.2Effect of the vaccination rate, control measures and the transmission parameters on the dynamics of COVID-19
Africa

This section aims to explore how different parameters of interest affect the control reproduction number Rc and the
potential for controlling and eliminating the disease in Africa. For this purpose, we computed the numerical values of
the sensitivity and elasticity index using the values of the parameters estimated from the model fitting. The findings
from both analyses provide a tool for identifying the key critical model parameters related to vaccination. In line with
the sensitivity analysis presented in Table 3, we observed that the parameters have the same index sign across all ten
countries. The index linked to the vaccination rate ν and the percentage of unvaccinated and vaccinated people following
the control measures (ψu and ψv respectively) have a negative sign, while the parameters related to the virus transmission,
such as the infection probabilities (buv, bvv, bvu) and the relative infectiousness (θpv , θav , θsv and θcv) have a positive
sign. This demonstrates that vaccination rate and control measures for the vaccinated and the unvaccinated individuals
have a negative effect on the control reproduction number and consequently reduce the number of people infected by
the virus. However, the control reproduction number also increases when the infection probabilities increase. In other
words, in a situation of high parameter values, a single infected vaccinated or unvaccinated individual will be able to
infect more people. A similar interpretation applies to the pre-asymptomatic, asymptomatic, symptomatic, and confirmed
vaccinated relative infectiousness. Moreover, we found that the control reproduction number is much more sensitive to
the vaccination rate ν and the proportion ψu of unvaccinated people following the control measures compared to other
parameters in every country. This is due to the highest index values corresponding to those two parameters. The sensitivity
indices of vaccination rate and control measures are negatives, indicating that all the composites of the gradients in (21)
and (22) are negatives. This implies that an increase in the parameters will further decrease the control reproduction
number.

Table 3. Sensitivity analysis of the Reproduction number link to the vaccination rate ν , the percentage of unvaccinated and vaccinated people following
the control measures ψu and ψv respectively, the infection probabilities bvu, bvv, and the relative infectiousness θpv , θav , θsv and θcv

Countries
Parameters

ν ψu ψv bvv bvu θpv θav θsv θcv

Namibia -279.4815 -3.0511 -0.0021 0.0002 0.1908 0.0015 0.0012 0.0003 0.0001

South Africa -198.0194 -2.5715 -0.0717 0.0056 0.0572 0.0392 0.0380 0.0012 0.0031

Rwanda -144.5932 -2.2762 -0.1385 0.0306 0.2847 0.1017 0.0934 0.0020 0.0234

Lybia -241.9733 -2.5289 -0.0362 0.0030 0.1351 0.0354 0.0323 0.0009 0.0079

DRC -355.8808 -3.2228 -2.5e-04 2.6e-06 0.0198 3.8e-04 3.5e-04 1.9e-05 8.80e-05

Nigeria -112.7085 -2.8234 -0.1406 0.0172 0.2401 0.0945 0.0970 0.0008 0.0111

Benin -417.6732 -3.9468 -0.0145 0.0001 0.0124 0.0208 0.0198 0.0001 0.0046

Algeria -209.2109 -2.7971 -0.1207 0.0122 0.1643 0.1099 0.1170 0.0003 0.0126

Gabon -402.4471 -3.5067 -0.0099 4.8e-04 0.0688 0.0102 0.0100 3.7e-05 0.0022

Kenya -298.5017 -2.3849 -0.0339 0.0034 0.0684 0.0439 0.0465 0.0008 0.0085

From a quantitative stand, when all other parameters are held constant, increasing the vaccination rate by 0.01 will
decrease the control reproduction number by 2.79 (0.01 × 279.4815), 1.98, 1.44, 2.41, 3.55, 1.12, 4.17, 2.09, 4.02 and
2.98 in Namibia, South Africa, Rwanda, Lybia, DRC, Nigeria, Benin, Algeria, Gabon, and Kenya respectively. Similarly,
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increasing ψu by 0.01 will lower the reproduction number by 0.030 (0.01× 279.4815), 0.025, 0.022, 0.025, 0.032, 0.028,
0.039, 0.027, 0.035 and 0.023 respectively in the same countries.

Interpreting sensitivities can be challenging because parameters aremeasured in different units. Infection probabilities
and proportions ψu and ψu are probabilities and can only take values between 0 and 1, while vaccination rate and relative
infectiousness are not subject to such restrictions. Therefore, comparing their sensitivity index may be difficult. This
is where elasticity comes into play. The elasticity analysis performed in Figure 3 presents the results of the elasticity
analysis, which estimates the effect of a proportional change in parameters on the transmission dynamics of COVID-19.
A comprehensive analysis of the results presented in Figure 3 revealed that the parameter ψu has the most significant
impact on the Rc in all ten African countries, with values ranging from -0.8174 to -0.1741. When the proportion of people
unvaccinated adhering to the control measures decreases by 10%, the control reproduction number increases by 8.174%
in Namibia, 7.980% in South Africa, 6.195% in Rwanda, 5.2% in Lybia, 6.66% in DRC, 7.66% in Nigeria, 4.23% in
Benin, 5.12% in Algeria, 4.27% in Gabon and 1.74% in Kenya. A larger unvaccinated population following the control
measures causes more infected cases. Thus, isolating that population and constraining them to wash their hands, follow
social distancing, or wear a mask is one of the most effective measures to reduce the virus transmission, particularly in
Namibia, where the elasticity index is the highest.

The findings from Figure 3 further reveal that vaccination rate is the second most influential parameter on the control
reproduction number in the studied countries. When the vaccination rate increases by 10%, the control reproduction
number decreases by 1.217% in Namibia, 1.640% in South Africa, 1.230% in Rwanda, 0.92% in Lybia, 0.251% in DRC,
0.424% in Nigeria, 0.127% in Benin, 0.973 % in Algeria, 1.226% in Gabon and 1.74% in Kenya. An effective way
to slow down the outbreak will be controlling the vaccination rate of the susceptible, exposed, pre-asymptomatic, and
asymptomatic individuals. A mass vaccination campaign targeting individuals in these classes could play an important
role in controlling the outbreak.

In contrast, results in Figure 3 show that the proportion of vaccinated people, ψv, has a lesser effect on the control
reproduction number than the proportion of unvaccinated people. A 10% decrease in ψv results in a minimal increase
of 1.217% in Rc in Namibia, 1.640% in South Africa, 1.230% in Rwanda, 0.92% in Libya, 0.251% in DRC, 0.424%
in Nigeria, 0.127% in Benin, 0.973% in Algeria, 1.226% in Gabon, and 1.74% in Kenya. Even though decreasing this
parameter does have a negative effect, it is not as severe as that of the proportion of the unvaccinated. This means that
even if few vaccinated people adhere to control measures, it won’t increase transmission as much as when unvaccinated
people do not follow control measures. Therefore, a vaccination campaign plays a crucial role in reducing the risk of
disease transmission by unvaccinated individuals who don’t follow control measures. Additionally, from this comparison,
improving the control measures on the unvaccinated more than the vaccinated is of utmost importance to control and
prevent further outbreaks of the pandemic.

Compared to the previous parameters, it can be observed that the control reproduction number increases as the
remaining parameters increase, and the effect is less sensitive. A 10% increase in the probability bvv results in a 1.160e-
04% increase in control reproductions in Namibia, 3.73e-03% in South Africa, 0.039% in Rwanda, 1.7864e-03% in Lybia,
8.43e-07% in DRC, 6.44e-03% in Nigeria, 7.02e-05% in Benin, 3.59e-03 % in Algeria, 1.97e-04% in Gabon, and 1.53e-
03% in Kenya while a 10% increase in the probability bvu generate an increase of 8.1704e-03% in Namibia, 0.123% in
South Africa, 0.546% in Rwanda, 0.137% in Lybia, 8.0965e-04% in DRC, 0.566% in Nigeria, 0.085% in Benin, 0.377%
in Algeria, 0.020% in Gabon, and 0.072% in Kenya. These results show that vaccinated individuals are more likely to
infect unvaccinated individuals than themselves, suggesting that vaccination reduces the chances of getting infected with
the disease in the overall population.
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Figure 3. Elasticity analysis of the reproduction number with respect to: (a) the vaccination rate ν , (b) the proportion of unvaccinated people following
the control measures ψu, (c) the proportion of unvaccinated people following the control measures ψv, (d) the infection probability bvv, (e) the infection
probability bvu, (f) the relative infectiousness θpv , (g) the relative infectiousness θav , (h) the relative infectiousness θsv and (i) the relative infectiousness
θcv
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Regarding the remaining parameters, that is, the relative infectiousness θpv , θav , θsv and θcv of the vaccinated, the
elasticity index demonstrates negligible significance when compared to the previous parameters. The findings have shown
that a 10% increase in these parameters does not substantially increase the control reproduction number across countries.
This indicates that pre-symptomatic, asymptomatic, symptomatic, and confirmed vaccinated individuals can infect less,
especially the confirmed and the symptomatic communities, whose elasticity values vary from 9.72e-06 to 0.0067 and
3.03e-06 to 6.36e-04, respectively, among the countries, thus their role in disease transmission is not essential. The results
align with the results of the initial sensitivity analysis conducted.

3.4.3Effect of vaccination rate and control measures on the incidences and mortality in Africa

We conducted sensitivity simulations by numerically solving the differential system equation in (35) using ODE45
in Matlab with the initial values V0 = 016×3 (16 × 3 zeroes matrix). Tables 4 and 6 present the parameter values for
the simulation. Since our main focus was the incidences and mortality, we plotted the matrix elements [V61 + V141];
[V62 + V142]; [V63 + V143], respectively related to the vaccination rate ν , the proportions ψu, and ψv. These elements
correspond to both the vaccinated and unvaccinated confirmed case compartments. Additionally, we plotted the elements
[V71 + V151] (ν), [V72+V152] (ψu) and [V73 + V153] (ψv) for the deaths cases. The results are presented per country
in Figure 4 for the incidences and Figure 5 for the mortality. At any given time, we can observe the effect of each
parameter’s changes on each variable. The positivity of the sensitivity values indicates that an increase in the parameter
leads to a higher value of the variable. Conversely, a negative sensitivity value indicates a negative relationship between
the parameter and the variable. A value zero of the sensitivity means that changes in the parameter’s value do not affect
the variable. Globally, the plots show that the sensitivity values start from zero and decrease over time for each of the three
parameters, whether for incidences or mortality. This is the case in all countries. It means that the parameters ν , ψu, and
ψv affect the incidences and mortality negatively. Consequently, there are more susceptible, exposed, pre-symptomatic,
or recovered people vaccinated, and significantly fewer incidences and dead people of COVID-19 in Africa. Similarly,
with a higher proportion of adherence to the control measures, the number of confirmed cases and deaths was reduced.
Furthermore, of the three parameters, the one that has the most influence on changing incidences and mortality is the
vaccination rate. These results confirm that vaccination associated with high adherence to control measures reduces the
incidence and mortality of COVID-19 in Africa.
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Figure 4. Time-dependent sensitivity analysis of the incidences with respect to the vaccination rate ν , the proportion of unvaccinated people and
vaccinated people following the control measures ψu and ψv. Panels (a-j) are, respectively, for the cases of Namibia, South Africa, Rwanda, Lybia, the
Democratic Republic of Congo, Nigeria, Benin, Algeria, Gabon, and Kenya
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Figure 5. Time-dependent sensitivity analysis of the mortality with respect to the vaccination rate ν , the proportion of unvaccinated people and
vaccinated people following the control measures ψu and ψv. Panels (a-j) are, respectively, for the cases of Namibia, South Africa, Rwanda, Lybia,
the Democratic Republic of Congo, Nigeria, Benin, Algeria, Gabon, and Kenya

4. Discussion
A big challenge in epidemiology is understanding how infectious diseases spread. This is usually investigated

through modeling [41, 42]. Using models, public health decision-makers can make the most efficient use of resources
and reduce epidemic severity [43]. The following paper proposes a compartmental model of the COVID-19 outbreak
constituted of susceptible, exposed, pre-symptomatically infectious, asymptomatically infectious, symptomatically
infectious, confirmed cases, death cases, and recovered populations. We analyzed the mathematical model analytically
and observed that model solutions remained positive and bounded. Additionally, using the Castillo Chevez method, we
have demonstrated that the disease-free equilibrium is globally stable when the control reproduction number Rc is less
than one unit. The model was calibrated using COVID-19 cumulative case data for each country for the third wave of
the COVID-19 pandemic. We then derived the sensitivity and elasticity expressions to assess the effect of the vaccination
rate, the control measures, the infection probabilities, and the relative infectiousness on the control reproduction number.

According to the results, vaccination rates and unvaccinated people’s compliance with control measures significantly
impacted the control reproduction number. Similarly, combining control strategies with a high percentage of vaccinated
people will effectively slow the COVID-19 virus spreading in Africa. Based on the parameters with the highest effect on
the COVID-19 transmission dynamics, we examined the numerical sensitivity analysis of the incidences and mortality.
The results were presented regarding the temporal dynamics sensitivity of the confirmed and death cases, illustrating that
the vaccination rate significantly reduces the number of confirmed and death cases as established in the study [44]. The
results also highlight that the parameter representing the control measures for the unvaccinated diminishes the confirmed
cases and fatalities as time progresses. Consequently, when vaccination rates and the proportion of unvaccinated people
wearing masks, washing hands, and following social distancing are low, containing the virus spread can not be effective.
To summarize, maintaining a high vaccination rate and control measures for unvaccinated people are essential to eliminate
the COVID-19 virus.

We incorporated heterogeneity of transmission in the model by dividing the population into two groups: those who
are vaccinated and those who are not. This might not be sufficient to capture the actual dynamics of the transmission of
COVID-19 in the population and could be addressed with other modeling approaches, such as agent-based modeling [45].
Such models, however, introduce many open parameters that need to be estimated using data from different sources (e.g.,
localization data) that may not have been available during the epidemic, particularly in Africa. In light of this, we opted
for a compartmental model that was less complex but with extensions increasing the accuracy of the model by adding
compartments and parameters that could be calculated using the available data. Also, we assume that individuals who
show severe symptoms and those from confirmed cases cannot be vaccinated, as considered in this study [46].

Our model provides estimates of control reproduction numbers (Rc) for ten African nations that account for
vaccination effects including Namibia (Rc = 1.713), South Africa (Rc = 1.500), Nigeria (Rc = 1.599), Libya (Rc = 1.432),
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DR Congo (Rc = 1.682), Rwanda (Rc = 1.806), Algeria (Rc = 1.902), Kenya (Rc = 1.911), Benin (Rc = 2.79) and Gabon
(Rc = 2.37). South Africa and Algeria exhibit the largest relative drops from an R0 of 3.1 and 3.6 to a Rc of 1.50 and
1.90, respectively, representing over a 50% reduction. In assessing our modeling approach’s efficiency, comparative
analyses revealed close concordance between our Rc estimations and those from prior modeling studies utilizing different
techniques utilizing techniques such as individual-based stochastic simulations [47].

Also, as an example, the early endemic South-Africa-based model results by Rabiu Musa and Iyaniwura Sarafa [48]
that considers the waning of both vaccine-induced immunity and post-recovery immunity estimated Rc up to 1.23 while
maintaining a vaccine waning rate of 0.5. This value is close to what our model estimated. The precise approximation
of the Rc for each nation demonstrates our model’s efficiency in capturing heterogeneous transmission patterns. For
instance, our model reliably predicted Rwanda’s lower Rc of 1.806, aligning with evidence of effective control policies
from past research [49]. Whereas higher Rc valuations for Algeria (1.902) and Kenya (1.911) accurately reflected relaxed
restrictions and elevated disease spread. By generating country-specific Rc estimates closely mirroring those derived
via different modeling techniques, our approach displayed its ability to reliably simulate region-particular transmission
dynamics.

Despite the size of the model, which has sixteen state variables and forty parameters, we fail to consider every factor
to represent the dynamics of COVID-19 in the face of vaccination. We assume that both asymptomatic and symptomatic
infectious cases move into the confirmed class, although this may not be true in all countries. For example, this study
from South Africa [50] didn’t include a route for asymptomatic individuals to move into the confirmed class. Also, we did
not include multiple doses that an individual may have received regarding the fact that most of the COVID-19 vaccines
available today need more than one dose to provide adequate protection. Instead, we stated that the vaccinated populations
had been vaccinated at least once.

A possible future approach is expanding the model to include precise infection or immune decline cycles. There will
be sixteen compartments of our current model in each cycle. Individuals who lose their natural immunity and vaccine
immunity will move to the susceptible unvaccinated compartment of the next cycle instead of the susceptible unvaccinated
compartment of their current cycle, as in our current model. One advantageous aspect of formulating the model in such a
structure is that the number of individuals infected during each infection cycle can be easily tracked. In addition, at this
time, variants of the SARS-COV-2 virus had emerged in many African countries. Defining different cycles of infection
can be interpreted as susceptibility to other variants of COVID-19.

Another limitation in our model pertains to the assumption of a homogeneous mixed population. In fact, contact rates
and mixing patterns may exhibit variations among individuals based on age and activity level. Stratifying the population
by age is also an interesting approach to investigate since young people are not allowed to get vaccinated. Despite
these aforementioned limitations, the employed modeling approach has provided valuable insights into understanding
the dynamics of COVID-19 in the face of vaccination, as well as some plausible recommendations on crucial factors to
consider in curtailing the COVID-19 virus.

5. Conclusion and perspectives
The COVID-19 pandemic has emerged as an immensely destructive disease that has profoundly impacted global

populations, and Africa has not been excluded. Businesses closed, schools closed, travel restrictions in place, and
regulations on the limitation of social interaction, among other containment measures. In this research study, we have
developed an expanded SEIR mathematical model to incorporate the vaccination program in the context of Africa. We
performed extensive analytical analyses by checking the positiveness and boundedness of the model solutions. The global
stability analysis for the disease-free equilibrium performed using the Castillo-Chavez method revealed that the model is
globally stable when the control reproduction number is less than 1. Furthermore, both control and basic reproduction
numbers have been derived. We fitted the model using cumulative case data resulting from the third wave of the pandemic.
The study also encompassed numerical sensitivity and elasticity analyses to identify the influential parameters that should
be targeted to reduce the control reproduction number, as well as incidences and mortality rates. Interestingly, it was
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observed that the transmission rate from vaccinated individuals exhibited a minor effect on the control reproduction
number. However, the vaccination rate and the proportion of unvaccinated individuals adhering to control measures
were found to have a substantial influence. Simulation results revealed that the vaccination rate and the percentage
of unvaccinated individuals following control measures were highly effective in reducing the number of COVID-19
confirmed cases and fatalities. To effectively mitigate the transmission dynamics of the pandemic and curb the incidence
and mortality rates in Africa, it is imperative to achieve higher vaccination rates among pre-symptomatic, exposed, or
recovered individuals. Furthermore, a crucial aspect is to ensure a greater proportion of unvaccinated individuals adhering
to control measures compared to vaccinated individuals. It is worth noting that the pandemic continues to spread across
the continent, underscoring the significance of the findings from this study as valuable inputs for policymaking by African
governments. As long as the pandemic persists, it is of utmost importance to implement compulsory mass vaccination
campaigns and enforce personal protective measures to effectively mitigate the devastating effects of the COVID-19
pandemic and safeguard the well-being of African nations. We are investigating possibilities to optimize the model
to fit the COVID-19 evolution in Africa with more accurate methods. Future projects in this field may explore the
integration of behavioral modeling to understand how pandemic dynamics respond to public behavior changes combined
with vaccination campaigns.
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Appendix
A.1 Tables of fixed model parameters; countries names per region and varying per countries
parameters

Table 4. Value of the fixed model parameters

Parameter Value References

du 1/180 [51]

dv 1/180 [52]

ω 1/180 [53]

αe 1/5.5 [54]

αp 1/3.2 [12]

ρ1 0.6 [29]

ρ2 0.1 [55]

γa1 (γa2 ) 1/5 (1/2.7) [51]

γs1 (γs2 ) 1/10 (1/8) [51]

γc1 (γc2 ) 1/11 (1/10) [51]

Table 5. Countries selected per region with their vaccination start date

Region Selected Countries Vaccination Start date

Central Democratic Republic of Congo (DRC)
Gabon

2021-05-25
2021-03-31

Eastern Rwanda
Lybia

2021-03-05
2021-04-21

Northern Kenya
Algeria

2021-02-19
2021-01-30

Southern Namibia
South Africa (South A.)

2021-03-25
2021-02-18

Western Benin
Nigeria

2021-05-12
2021-03-15
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Table 6. Value of the estimated varying parameters per country, the computed ones and initial conditions

Parameters Countries

Namibia South A. Rwanda Libya DRC Nigeria Benin Algeria Gabon Kenya

buu 0.6694 0.7413 0.5268 0.3456 0.5925 0.6308 0.8862 0.7990 0.6977 0.6392

buv 0.4698 0.4048 0.3296 0.1877 0.2562 0.4683 0.3658 0.4440 0.1996 0.6995

bvu 0.4994 0.6343 0.3447 0.6354 0.2997 0.5005 0.8170 0.5470 0.1000 0.4969

bvv 0.0992 0.0990 0.1871 0.0806 0.0133 0.0880 0.0249 0.0562 0.0618 0.0408

θpu 0.9499 0.9426 0.4965 0.9735 0.9999 1.1e-04 0.2065 0.9583 0.4965 0.4616
θau 0.2462 0.3275 0.3610 0.5431 0.4269 0.1072 0.9893 0.3630 0.5901 0.2427
θsu 1.1e-04 0.1175 0.4358 0.5100 0.0033 0.5197 0.2914 0.2222 0.4671 0.3168
θcu 5.8e-06 0.2812 0.4106 0.8762 0.1070 0.7108 0.7057 0.1791 0.2670 0.0821
θpv 0.6898 0.6939 0.4820 0.4907 0.2284 0.1718 0.7775 0.2346 0.1016 0.4551
θav 0.2790 0.5936 0.4979 0.4720 0.0172 0.2692 0.5197 0.4848 0.2940 0.2532
θsv 0.1641 0.0050 0.3727 0.5913 0.4898 0.0556 0.9498 0.6214 0.1993 0.3950
θcv 0.6778 0.2163 0.0373 0.3785 0.4097 0.0327 0.8935 0.7306 0.1944 0.0043

qp1 0.0022 0.0049 0.0001 0.0048 7.3e-04 5.3e-06 1.0e-04 0.0016 4.9e-04 1.9e-04
qp2 6.0e-04 0.0013 9.8e-05 0.0013 2.8e-04 0.0011 9.0e-05 8.0e-05 1.4e-04 5.6e-05
qa1 0.0049 0.0049 0.0025 0.0035 9.5e-04 1.4e-04 1.4e-04 2.5e-04 4.9e-04 0.0028
qa2 0.0039 0.0025 0.0018 0.0025 9.7e-04 0.0031 9.3e-05 2.9e-05 1.0e-04 0.0019
qs1 0.0086 0.0083 1.7e-04 0.0086 8.5e-06 1.0e-04 4.0e-04 0.0013 7.4e-04 0.0019
qs2 0.0029 0.0035 9.1e-04 0.0043 8.3e-06 0.0048 4.1e-04 0.0034 3.4e-04 0.0019

δs1 2.9e-04 0.1970 2.2e-05 0.0019 2.6e-04 2.8e-04 9.8e-04 2.4e-04 2.9e-04 2.9e-04
δs2 1.9e-04 0.0958 1.9e-04 9.9e-04 6.0e-07 0.0085 2.8e-04 1.6e-04 1.8e-04 1.1e-04
δc1 3.9e-04 0.1995 2.0e-04 0.0019 2.9e-04 0.0093 2.9e-04 5.1e-04 1.9e-04 1.3e-04
δc2 1.9e-05 0.0227 1.9e-04 9.9e-04 1.8e-05 0.0073 9.9e-05 2.1e-05 9.9e-05 5.5e-05

µ 4.221e-05 4.219e-05 3.911e-05 3.731e-05 4.445e-05 4.911e-05 0.0003e-05 3.533e-05 4.085e-05 4.061e-05
ν 0.00056 0.00101 0.00125 0.00107 0.00001 0.00015 0.000133 0.00085 0.00075 0.00045

Λ 264.94 4999.12 1424.7 433.56 17591.2 39787.8 2591.9 6227.6 413.61 10285.0

ψu 0.30 0.45 0.45 0.35 0.30 0.45 0.30 0.35 0.30 0.15

ψv 0.25 0.45 0.25 0.25 0.25 0.25 0.30 0.25 0.30 0.18

Initial conditions

Su(0)(×104) 166.34 4487.12 1335.27 419.45 714.87 4994.65 589.74 958.35 187.55 432.98

Eu(0) 1500.00 4763.61 3191.59 10043.62 69889.75 76207.26 506.92 93208.19 500.37 77571.99

IPu (0) 700.15 5499.92 1120.60 7097.94 1002.16 39377.52 150.36 4344.26 50.099 44589.27

IAu (0) 706.06 1322.84 1011.78 5144.0 541.19 12989.71 151.03 530.67 70.85 34186.64

ISu (0) 700.00 265.16 741.58 2500.26 784.58 571.77 228.45 581.77 314.67 13641.08

Ru(0) 144.62 455.28 251.03 1159.89 249.44 249.44 99.95 100.51 130.30 962.79

Reproduction numbers

Ro 2.569 3.131 2.817 2.586 2.407 3.157 4.04 3.640 3.74 2.438

Rc 1.713 1.500 1.806 1.432 1.682 1.599 2.79 1.902 2.37 1.91

Volume 5 Issue 3|2024| 3735 Contemporary Mathematics



A.2 Analytical expressions of SSSuuu(((ttt))) and SSSvvv(((ttt)))

Su(t) =Sv(0)
(

σ3σ6 (ω −µ +σ43)

2σ43
+

σ4σ5 (µ −ω +σ43)

2σ43

)
−Su(0)

(
νσ3σ6

σ43
− νσ4σ5

σ43

)
− Λσ1

σ43
+

Λσ2

σ43
+σ28 −σ23

− Λωσ35

σ43
+

K2dvσ36σ1

2ν
+

K2dvσ36σ2

2ν
− K1duσ34σ1

σ43
+

K1duσ34σ2

σ43
+

K1dvσ36σ1

σ33
+

K1dvσ36σ2

σ33

−σ22 −
K1dvσ34σ1

σ33
− K1dvσ34σ2

σ33
−σ25 −

K1dvωσ34σ35

σ33
+

σ24

2ν
+

σ24

2σ43
−σ27 −

K1duωσ34σ35

σ43

+σ26 −σ18 −σ15 +
K1dvωσ36σ35

σ33
+

K1dvω2σ36σ35

σ32
+

K1dvµσ34σ1

σ32
− K1dvµσ34σ2

σ32
− K1dvωσ34σ1

σ32

+
K1dvωσ34σ2

σ32
− K2dvµσ36σ1

2νσ43
+

K2dvµσ36σ2

2νσ43
+

K2dvωσ36σ1

2νσ43
− K2dvωσ36σ2

2νσ43
− K1dvω2σ34σ35

σ32

+
K2dvω2σ36σ35

2νσ43
− K1dvµσ36σ1

σ32
+

K1dvµσ36σ2

σ32
+

K1dvωσ36σ1

σ32
− K1dvωσ36σ2

σ32
−σ21

− K1dvµωσ36σ35

σ32
+σ19 −σ9 −

2Λωσ40e−νtσ39σ31

σ37σ43
+σ20 +

K1dvµωσ34σ35

σ32
− K2dvµωσ36σ35

2νσ43

−σ16 +σ14 +
K1dvωσ40e−νtσ39σ34σ31

σ30
− σ17

νσ37
−σ8 +

σ17

σ37σ43
−σ7 −

2K1duωσ40e−νtσ39σ34σ31

σ37σ43

− K1dvωσ36σ40e−νtσ39σ31

σ30
− K1dvω2σ40e−νtσ39σ34σ31

σ29
+

K2dvω2σ36σ40e−νtσ39σ31

νσ37σ43

+
K1dvω2σ36σ40e−νtσ39σ31

σ29
+σ12 +

K1dvµωσ40e−νtσ39σ34σ31

σ29
−σ10 −

K2dvµωσ36σ40e−νtσ39σ31

νσ37σ43

−σ13 +σ11 −
K1dvµωσ36σ40e−νtσ39σ31

νσ37
.

Sv(t) =Sv(0)
(

σ3 (ω −µ +σ43)

2σ43
+

σ4 (µ −ω +σ43)

2σ43

)
−Su(0)

(
νσ3

σ43
− νσ4

σ43

)
+σ28 −σ23 −σ25 −σ22 +

σ24

2σ43
−σ27

+σ26 −σ21 +σ19 −σ9 +σ20 −σ18 −σ16 +σ14 −σ8 +
σ17

σ37σ43
−σ7 −σ15 +σ12 −σ10 −σ13 +σ11.

where,
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σ1 = σ41σ40e−νtσ39 −1; σ2 = σ38σ40e−νtσ39 −1; σ3 = e−t( µ+ω+2ν+σ43
2 );

σ4 = et(−µ−ω−2ν+σ43
2 ); σ5 =

−ν+ω+σ43
2 ; σ6 =

−ν+ω−σ43
2 ;

σ7 =
2K1duνσ40e−νt σ39σ34σ31

σ37σ43
; σ8 =

K2dvµσ36σ40e−νt σ39σ31
σ37σ43

; σ9 =
2Λνσ40e−νt σ39σ31

σ37σ43
;

σ10 =
K1dvνωσ40e−νt σ39σ34σ31

σ29
; σ11 =

K1dvνωσ36σ40e−νt σ39σ31
σ29

; σ12 =
K1dvµνσ40e−νt σ39σ34σ31

σ29
;

σ13 =
K1dvµνσ36σ40e−νt σ39σ31

σ29
; σ14 =

K1dvνσ40e−νt σ39σ34σ31
σ30

; σ15 =
K1dvνσ36σ40e−νt σ39σ31

σ30
;

σ16 =
K2dvσ36σ40e−νt σ39σ31

σ37
; σ17 = K2dvωσ36σ40e−νtσ39σ31; σ18 =

K1dvνωσ34σ35
σ32

;

σ19 =
K1dvνωσ36σ35

σ32
; σ20 =

K1dvµνσ34σ35
σ32

; σ21 =
K1dvµνσ36σ35

σ32
;

σ22 =
K2dvµσ36σ35

2σ43
; σ23 =

Λνσ35
σ43

; σ24 = K2dvωσ36σ35;

σ25 =
K1dvνσ34σ35

σ33
; σ26 =

K1dvνσ36σ35
σ33

; σ27 =
K1duνσ34σ35

σ43
;

σ28 =
K2dvσ36σ35

2 ; σ29 = (du −dv +ν)σ37σ43; σ30 = (du −dv +ν)σ37;

σ31 = σ38 − et( µ+2ν+ω
2 ); σ32 = 2(du −dv +ν)σ43; σ33 = 2(du −dv +ν);

σ34 = e−t(du+µ+ν); σ35 =
2(1−σ41σ40e−νt σ39)

σ42
; σ36 = e−t(dv+µ);

σ37 = µ +2ν +ω −σ43; σ38 = e
tσ43

2 ; σ39 = e−
ωt
2 ;

σ40 = e−
µt
2 ; σ41 = e−

tσ43
2 ; σ42 = µ +2ν +ω +σ43 and

σ43 =
√
(µ −ω)2 +4νω .
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A.3 Analytical expressions of matrices J11J11J11, J12J12J12, J13J13J13 and J14J14J14

J11 =



−L1
N′ +

L1Su
N′2 −µ −ν L1Su

N′2 −Su

(
− L1

N′2 +
buuθpu(1−ψu)

N′

)
−Su

(
− L1

N′2 +
buuθau(1−ψu)

N′

)
L1
N′ − L1Su

N′2 −L1Su
N′2 −a1 −L1Su

N′2 +
Subuuθpu(1−ψu)

N′ −L1Su
N′2 + Subuuθau(1−ψu)

N′

0 αe −a2 0
0 0 αp (1−ρ1) −a3

0 0 αpρ1 0
0 0 qp1 qa1

0 0 0 0
0 0 0 γa1

L2Sv
N′2 +ν L2Sv

N′2 −Sv

(
− L2

N′2 +
buvθpu(1−ψu)

N′

)
−Sv

(
− L2

N′2 +
buvθau(1−ψu)

N′

)
−L2Sv

N′2 −L2Sv
N′2 +ν −L2Sv

N′2 +
Svbuvθpu(1−ψu)

N′ −L2Su
N′2 + Svbuvθau(1−ψu)

N′

0 0 ν 0
0 0 0 ν
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



J12 =



−Su

(
− L1

N′2 +
buuθsu(1−ψu)

N′

)
−Su

(
− L1

N′2 +
buuθcu(1−ψu)

N′

)
L1Su
N′2

L1Su
N′2 +du

−L1Su
N′2 + Subuuθsu(1−ψu)

N′ −L1Su
N′2 + Subuuθcu(1−ψu)

N′ −L1Su
N′2 −L1Su

N′2

0 0 0 0
0 0 0 0

−a4 0 0 0
qs1 −a5 0 0
δs1 δc1 0 0
γc1 γc1 0 −du −µ −ν

−Sv

(
− L2

N′2 +
buvθsu(1−ψu)

N′

)
−Sv

(
− L2

N′2 +
buvθcu(1−ψu)

N′

)
L2Sv
N′2

L2Sv
N′2

γs1 −L2Su
N′2 + Svbuvθcu(1−ψu

N′ −L2Su
N′2 −L2Su

N′2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



;
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J13 =



L1Su
N′2 +ω L1Su

N′2 −Su

(
− L1

N′2 +
bvuθpv(1−ψv)

N′

)
−Su

(
− L1

N′2 +
bvuθav(1−ψv)

N′

)
−L1Su

N′2 −L1Su
N′2 −L1Su

N′2 +
Subvuθpv(1−ψv)

N′ −L1Suv
N′2 + Subvuθav(1−ψv)

N′

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−L2
N′ +

L2Sv
N′2 −µ −ω L2Sv

N′2 −Sv

(
− L2

N′2 +
bvvθpv(1−ψv)

N′

)
−Sv

(
− L2

N′2 +
bvvθav(1−ψv)

N′

)
L2
N′ − L2Sv

N′2 −L2Sv
N′2 −a6 −L2Sv

N′2 +
Svbvvθpv(1−ψv)

N′ −L2Sv
N′2 + Svbvvθav(1−ψv)

N′

0 αe −a7 0
0 0 αp (1−ρ2) −a8

0 0 αpρ2 0
0 0 qp2 qa2

0 0 0 0
0 0 0 γa2



;

J14 =



−Su

(
− L1

N′2 +
bvuθsv(1−ψv)

N′

)
−Su

(
− L1

N′2 +
buuθcu(1−ψv)

N′

)
L1Su
N′2

L1Su
N′2

−L1Su
N′2 + Subvuθsv(1−ψv)

N′ −L1Su
N′2 + Subvuθuv(1−ψv)

N′ −L1Su
N′2 −L1Su

N′2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−Sv

(
− L2

N′2 +
bvvθsv(1−ψv)

N′

)
−Sv

(
− L2

N′2 +
bvvθcv(1−ψv)

N′

)
L2Sv
N′2

L2Sv
N′2 +dv

−L2Sv
N′2 + Svbvvθsv(1−ψv)

N′ −L2Sv
N′2 + Svbvvθcv(1−ψv)

N′ −L2Sv
N′2 −L2Sv

N′2

0 0 0 0
0 0 0 0

−a9 0 0 0
qs2 −a0 0 0
δs2 δc2 0 0
γs2 γc2 0 −dv −µ



.

L1 = (1−ψu)buu (θpuIPu +θauIAu +θsuISu +θcuCu)+(1−ψv)bvu (θpvIPv +θavIAv +θsvISv +θcvCv)

L2 = (1−ψv)bvv (θpvIPv +θavIAv +θsvISv +θcvCv)+(1−ψu)buv (θpuIPu +θauIAu +θsuISu +θcuCu)

N′ = Cu +Cv +Du +Dv +Eu +Ev + IAu + IAv + IPu + IPv + ISu + ISv +Ru +Rv +Su +Sv
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