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Abstract: Many epidemic diseases are season-related. Dengue is one of them. Since it is associated with a mosquito’s 
life cycle, it is genuinely affected by weather changes. In this paper, we model the dynamics of dengue disease 
transmission in the human population using two systems of delay differential equations. First, we carry out the modeling 
with the vertical transmission in the mosquito population and demonstrate its basic properties. Then, we implement 
the seasonality effect in a second model by choosing some of the parameters that are affected by weather changes to 
be periodically time-dependent and re-deriving these parameters. We illustrate the conditions when the disease-free 
periodic solution is locally asymptotically stable and when it is unstable. Simulations in this case were compatible with 
the theoretical results.
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1. Introduction
Dengue disease has been considered endemic in most tropical and subtropical areas [1]. In subtropical countries, 

the disease has shown a frequent resurgence with rainy seasons, where the outbreaks happen three to four months after 
the rainy season [2]. (See Figure 1 for average monthly rainfall in Jeddah city, Makkah Province, Saudi Arabia, and 
Figure 2 for cases reported in Makkah province in the three years 2017-2019.) Notice the rise in cases three months after 
the rainfall season. In dry seasons, the cases drop rapidly. This raises the question of how the virus survives throughout 
the dry seasons. Some of the hypotheses relate the survival to the vertical transmission of the virus in the mosquito 
population, where the female mosquito transmits the virus to the eggs (it defers from horizontal transmission, where the 
virus is transmitted from one individual to another from the same generation). The infected egg carries the virus until it 
hatches at the beginning of the rainy season [2]. This observation has been confirmed by the data from Belo Horizonte, 
Brazil (Eiras & Blackmer, 2003) [3]. Therefore, it can be confirmed that seasonality and vertical transmission are two 
crucial aspects of the existence of vector-borne diseases.

Mathematically, vertical transmission has been implemented in several models of different epidemiological 
diseases, like malaria, bluetongue, Chagas, and dengue. The most common models are those of Anderson and May [4], 
Brauer [5], Busenberg and Cooke [6-9], and Li and Smith [10]. Recent studies of vertical transmission in mosquitoes 
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have been precisely illustrated in [11] and [12-14].
On the other hand, the seasonal effect on vector-borne diseases forms a major factor in their dynamics in 

populations, where weather changes have a major role in vectors’ life cycles as well as human habits. In the work of 
Abdelrazec and Gumel [15] and Okuneye et al. [16], the impact of temperature and rainfall on the dynamics of mosquito 
populations has been studied by driving non-autonomous non-linear differential equations. Our implementation of 
seasonality in this paper defers by allowing some of the parameters to periodically change with time t. As a result, some 
terms of the vector differential equations will need to be derived.

In this paper, we will consider both factors: seasonality and vertical transmission of dengue disease in mosquito 
populations. This approach has been considered in the work of Coutinhoa et al. [17]. The classification of the mosquito 
population in their mathematical model considers the egg stage, which classifies both susceptible and infected egg 
classes. However, our approach considers only the mature mosquitoes and implements the egg stage in a delay term of 
the mosquito’s birth rate. Our justification for this is that the infected eggs do not infect humans directly, and our study 
concerns the dynamics of dengue disease in the human population and its interactions with infected mosquitoes via 
mature female bites.

The structure of this paper is to formulate an autonomous differential equation system implementing vertical 
transmission. We will then study its basic properties and the linear stability of its disease-free solutions. We move on 
in the next section to reformulate the same model with seasonality effects on some of the parameters that are mostly 
affected by weather changes. followed by analyzing the disease-free solutions of the non-autonomous model, where 
the disease-free equilibrium of susceptible mosquitoes is no longer expected to be a steady state but rather develops a 
periodic behavior. Then, a numerical analysis section will illustrate the numerical solution of the disease-free periodic 
solution. A discussion and conclusions are in the last section.

Figure 1. Average monthly rainfall in Jeddah [18]

 
                                 
Figure 2. Dengue cases in Makkah, Kingdom of Saudi Arabia, by weeks. (a) The total number of confirmed dengue cases was plotted against the 
week numbers in 2017, 2018, and 2019. (b) Cumulative percentages of the total number of confirmed dengue cases were plotted against the week 

number in 2017, 2018, and 2019 [19]
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2. Autonomous model formulation
As mentioned above, we encounter the two main factors that, in our opinion, play a key role in transmitting dengue 

disease from mosquitoes to humans: vertical transmission of the virus from an infected female mosquito to its egg and 
weather changes due to varying rain seasons. During the dry season, mosquito population growth is postponed until 
the beginning of the rainy season, normally in late autumn in subtropical regions. The vertical transmission of the virus 
guarantees to maintain disease persistence within the population during that time. Therefore, the two factors, seasonality 
and vertical transmission in mosquitoes, coincide. First, we will formulate the autonomous differential equations of the 
model, and then we will add the seasonality effect to some of the parameters. Replacing the constant parameters with 
periodic functions will not be that simple. This step will undoubtedly necessitate re-deriving some of these periodic 
parameters.

Our approach to implementing vertical transmission in the vector population will be to consider only the mature 
class of females since they are the direct principle for transmitting the virus to humans via bites when the mature 
female seeks to feed on host blood. However, the previous stages of a mosquito’s life cycle are modeled as a delay 
in the birth rate of the female. The time of these stages from laying eggs until maturation (egg, larva, and pupa) is 
clumped in constant delay time τ since it is predictable. This approach has been implemented in Gourley et al.’s [20] 
work. Therefore, the probability that a single egg will survive these stages is given by ( )e ee ρ κ τ− +  where ρe is the per-capita 
natural mortality rate caused by dry weather or any other natural causes, and κe is the per-capita death rate caused by 
using larvicides (larva insecticide). Considering the larvicide rate here will help us measure the effect of using it early 
enough to prevent the vertical transmission of the virus to the next generation of mosquitoes. The probability that an 
egg will inherit the disease from the mother will be taken as [0,1],p∈  and we denote the per-capita laying egg rate 
for female mosquitoes by bmNm(t)), where Nm(t) is the total population of adult mosquitoes, Nm(t) = Sm(t) + Im(t), with 
susceptible mosquitoes Sm(t) and infectious ones Im(t). 

We likewise need to gauge the impact of insecticides on mature mosquitoes in terms of the per-capita death rate κm.  
Subsequently, we add an extra variable Km(t) to denote the biomass of the mosquitoes that die insecticidally. Moreover, 
the natural mortality rate of mosquitoes due to other causes is taken as ρm. We will introduce the classes of the host 
(human) population as Sh(t) for the number of susceptible, Ih(t) for the number of infectious, and the total number of 
human population will then be Nh(t) = Sh(t) + Ih(t). Due to its short duration in comparison to the yearly scale we are 
considering, we will not take into consideration the exposed but not yet infectious class. Also, since the recovered 
patient will develop immunity against the dengue infection, we will not consider the recovery class. Instead, we will 
represent the δh rate that will represent the removal per-capita rate, and we mean by removal rate the rate at which an 
individual patient of dengue fever will either recover or die because of the disease. We need to mention that dengue 
fever can cause death if not treated promptly. However, in most endemic regions, patient mortality due to dengue fever 
is significantly low [1]. All the parameters of the model are illustrated in Table 1.

Table 1. Description of variables and parameters of the model (1)

Variables Description

Sm(Im)
Sh(Im)
κm

Number of susceptible (infectious) female mosquitoes at time t
Number of susceptible (infectious) human at time t
The biomass of mosquitoes died insecticidally at time t

Parameters

bm(.)
bh(.)

ρm(ρe)
κm(κe)

c
ρh

δh

ꞵmh(ꞵhm)

Per capita laying eggs rate for female mosquitoes
Overall (not per capita) birth rate of human
Natural per capita death rate for mature (pre-mature) mosquitoes
Mortality per capita rate of mature (pre-mature) mosquitoes due to insecticide (larvicide)
Clearance rate of dead mosquitoes due to insecticide (larvicide)
Mortality per capita rate of humans caused by causes other than dengue
Per capita removal rate of dengue in human
Dengue virus transmission probability from mosquitoes to humans (human to mosquitoes)
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Therefore, the autonomous system of differential equations that models dengue disease in a population without the 
seasonality effect will take the form
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(1)

The terms involving delays, Sm and Im, will need to be prescribed on the negative time from [−τ, 0] as follows:

0 0( ) ( ) 0, ( ) ( ) 0m m m mS S I Iθ θ θ θ= ≥ = ≥

for [ ,0].θ τ∈ −  But the other variables do not need initial data for the previous time of t = 0 since they do not involve any 
delays, and therefore we only need their following initial data:

0 0 0(0) 0, (0) 0 (0) 0,h h h h m mS S I I K K= ≥ = ≥ = ≥

such that (0) (0) 0,h hS I+ >  since Nh appears in the denominator. This assumption is plausible in the sense that we need 
an initial human population to start the dynamic.

3. Basic properties of the autonomous model
In the absence of dengue disease in both vector and host populations, the birth rates of humans and mosquitoes will 

be bh(Sh) and bm(Sm), respectively. For non-negative arguments, we assume they are locally Lipschitz continuous. We 
add a negative argument extension to the definition of bm by defining bm(N) = 0 for N < 0. Also, at zero, we assume bh(0) 
=  bm(0) = 0. This addition will preserve the continuity of Lipschitz. We also assume that bh(s) > 0 and bm(t) > 0 for all s, 
t > 0, which is biologically acceptable.

3.1 Positivity

Easily, one can establish the non-negativity of solutions using the standard approach of setting all variables in 
(1) to zero except the variable that appears on the left-hand side. Then, the non-negativity of that variable will follow. 
However, establishing that solutions to all variables, especially the disease variables, Ih and Im, become and remain 
strictly positive, requires the necessary condition of an initial infected mosquito’s presence. The following proposition 
illustrates this result.

Proposition 1. Suppose that (0), (0), (0), (0), (0) 0.h h v m mS I S I K ≥  Additionally, suppose that Im(0) > 0. Then, for all 
t > 0, Ih(t) > 0.

Proof. Let Im(0) > 0. Knowing that solutions are non-negative, from the fourth equation of (1), we get

( )
( ) ( ).m

m m m
dI t

I t
dt

ρ κ≥ − +

By solving this inequality, we get
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( )( ) (0) 0,m m t
m mI t I e ρ κ− +≥ >

for all t > 0.
From the equation of Ih(t) in (1),

( ) ( ) ( ) ( ) ( ).
( )

h h m
mh h h h

h

dI t S t I t I t
dt N t

β ρ δ= − +

Solving this equation,

			            
( ) ( )( )
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( ) ( )
( ) (0) .

( )
h h h h

tt t s h m
h h mh

h

S s I s
I t I e e ds

N s
ρ δ ρ δ β− + − + −= + ∫                                                 

(2)

Ih(t) is strictly positive if Ih(0) > 0, but we need to prove the strict positivity in the case when Ih(0) = 0. So, we assume 
that there exists, such a t* > 0 where Ih(t

*) = 0, then (2) will be

*
*( )( )

0

( ) ( )
0 ,

( )
h h

t t s h m
mh

h

S s I s
e ds

N s
ρ δ β− + −= ∫

but ( ) ( )
( )

h m
mh

h

S s I s
N s

β  is non-negative and moreover, Im(t) > 0 for all t > 0 as proven above.

Therefore, for all *[0, ], ( ) 0,hs t S s∈ ≡  more precisely, Sh(0) = 0, which implies that there is no human population 
since we assumed that also Ih(0) = 0, and this contradicts the initial condition (0) (0) (0) 0.h h hN S I= + >  Then, for all t > 0, 
Ih(t) > 0. 

3.2 Existence of disease-free equilibrium

In the absence of dengue disease in the human population, a disease-free equilibrium exists if and only if

	  				                0 0( ) ,h h h hb S Sρ= 						       (3)

and

	  				  
( )0 0( ) ( ) .e e

m m m m mb S e Sρ κ τ ρ κ− + = + 					      (4)

The total human population in this case will be 0 ;( )h hN t S=  similarly, 0( ) ,m mN t S=  and all other variables remain 
identically zero. The assumption that bh(·) and bm(·) are Lipstchitz continuous guarantees that (3) and (4) have unique 
solutions 0 00 and 0,h mS S> >  respectively.

3.3 Extinction of the whole mosquito population

Notice from (4) that as κm increases, 0  decreases. If m mS κ  is sufficiently large, then for a realistic bm(·), equation 
(4) has no root with 0 0.mS >  This suggests that the whole population of mosquitoes will be extinct. We state this in the 
following theorem.

Theorem 1. Let bm(·) be twice differentiable and concave. Moreover, let bm(0) = 0, such that

	  				       ( )(0) ( ),e e
m m mb e ρ κ τ ρ κ− +′ < + 					      (5)

then, ( ) 0 as  for sufficiently large .m mN t t κ→ →∞
Proof. Recall that the total number of the mosquitoes is Nm(t) = Sm(t) + Im(t). By adding up  and m mS I′ ′  equations 
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from (1), we have

	 	 	              
( )( )

( ( )) ( ) ( ).e em
m m m m m

dN t
e b N t N t

dt
ρ κ τ τ ρ κ− += − − +

                                                   (6)

By the concavity of bm(.) and Taylor expansion, ( ) (0)m m m mb N b N′≤  and equation (6) becomes

			               
( )( )

(0) ( ) ( ) ( ).e em
m m m m m

dN t
e b N t N t

dt
ρ κ τ τ ρ κ− + ′≤ − − + 				     (7)

Since (0) 0,mb′ >  then as ( )mN t τ−  increases, the right-hand side of (7) increases. Using the comparison argument of 
Smith [21], let the solution of

( )
ˆ ( ) ˆ ˆ(0) ( ) ( ) ( ),e em

m m m m m
dN t

e b N t N t
dt

ρ κ τ τ ρ κ− + ′= − − +

be ˆ ( )mN t  subjected to initial data as of Nm(t). Then, by applying the comparison argument, ˆ( ) ( ).m mN t N t≤  Recall that

( )(0) ( ),e e
m m mb e ρ κ τ ρ κ− +′ < +

then ˆ ( ) 0 as  .mN t t→ → ∞  Regarding that ˆ0 ( ) ( ),m mN t N t≤ ≤  then ( ) 0 as  .mN t t→ → ∞

3.4 Linear stability and the basic reproduction number

In the absence of dengue disease, we proved that the dengue-free equilibrium exists under certain conditions. We 
now linearize the system (1) in order to investigate its linear stability. We will only consider the disease equations (Ih and 
Im) around this equilibrium and introduce a small perturbation of the disease. Then, the linearized, decoupled infection 
subsystem will take the form

			       

0

0

( )
( ) ( ) ( ),

( )
( ) ( ) ( ) ( ) ( ),

h
mh m h h h

m m
m m m hm h m m m

h

dI t
I t I t

dt

dI t S
pI t I t I t

dt S

β ρ δ

ρ κ τ β ρ κ

= − +

= + − + − +



 



  

                                           
(8)

recalling that ( )0( ) .m m
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According to the Routh-Hurwitz criterion, this equation has negative real parts if and only if
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Therefore, we can state the following theorem.
Theorem 2. If the assumption of (3) and (4) hold and

				               

0

0

0 1,
( )( )(1 )

m
mh hm

h

h h m m

S
S

R
p

β β

ρ δ ρ κ
= <

+ + −   				                 
(10)

then the dengue-free equilibrium 0 0( ,0, ,0,0)h mS S  is locally asymptotically stable to perturbations involving small 
introductions of disease.

4. The model with seasonality (the non-autonomous system)
As we mentioned before, to implement seasonality into the autonomous system, we will need to re-derive some of 

the terms with parameters that we believe are the most affected by weather changes. The first term we will re-derive is 
( )e ee ρ κ τ− +  in the rate of maturity of mosquitoes (taken before as ( ) ( )( )e e

m m me b S I tρ κ τ τ− + + −  for p = 0, where the vertical 
transmission is zero), by considering ρe and κe as periodic functions of time ρe(t) and κe(t), respectively. Let the density 
of larvae at time t be l (t, a), where a is age. Therefore, for mosquitoes that are still in the larval stage, the age-structure 
equation of McKendrick-von Foerster is

				          
( , ) ( , ) ( ( ) ( )) ( , ).e e

l t a l t a t t l t a
t a

ρ κ∂ ∂
+ = − +

∂ ∂ 				                (11)

By solving this partial differential equation, we get the formula l (t, a). Firstly, we take the mosquito’s egg-hatching rate 
as a decreasing function called bm(.), and that is when a = 0, as follows: l (t, 0) = bm((Sm + (1- p) Im )(t)).

Define

( ) ( , ).l a l a aα α= +
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∂ ∂ = + ∂ ∂ 

= − +

= − + + +

Now, we solve this ordinary differential equation (ODE) as follows

{ }0
( ) (0)exp ( ( ) ( )) .

a

e el a l dα α ρ η α κ η α η= − + + +∫

Rewriting this equation in form ( ) ( , ).l a l a aα α= + , we have

{ }0
( , ) ( ,0)exp ( ( ) ( )) .

a

e el a a l dα α ρ η α κ η α η+ = − + + +∫

Put α = t ₋ a, then the above equation will be
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			         { }0
( , ) ( ,0)exp ( ( ) ( )) .

a

e el t a l t a t a t a dρ η κ η η= − − + − + + −∫ 		              
 (12)

Let a be the age when a larva turns into a mosquito, so the rate at which mosquito larva enter the population is l(t, τ). Put 
a = τ in (12), and then the mosquito maturity rate can be expressed as the product of its hatching rate and the probability 
of surviving the life stages before maturity as

			           ( ) 0
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Therefore, the susceptible vectors equation is giving by
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and the model for the dengue disease with seasonality is as follows:
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=
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κ
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− + − +

= + + (15)

Note that in the absence of seasonality, that is, when τ → 0, the system will be reduced to the autonomous system (1).

4.1 Disease-free periodic solution

Regarding the representation of some of the parameters as periodic coefficients, we never again expect a disease-
free equilibrium to be a steady-state. Alternatively, the disease-free solution will be periodic.

Obviously, the steady state values of the susceptible human population will remain the same since we assume 
that the human population is not affected by seasonality. However, it is not the case for mosquitoes. The disease-free 
periodic solution

0 0( ( ), ( ), ( ), ( ), ( )) ( ,0, ,0,0)h h m m m h mS t I t S t I t K t S S=

exists if

					                 0 0( ) ,h h h hb S Sρ= 					                  (16)

and the function 0 ( )mS t  satisfies
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0

0
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b S t e t t S t

dt

τ
ρ η τ κ η τ η

τ ρ κ
− + − + + −∫= − − + 		               (17)

Let 0 ( )mS t  be the periodic solution of this equation. The plausibility of this solution will require that the non-periodic 
solution is linearly unstable. We examine that and linearize (17) about its non-periodic solution
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We suggest a form of

0 ( ) ( )t
mS t e tλ ω=

as a solution where ω(t) is a periodic function of period T. Then, by substituting this solution in (18), we get
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Solving this equation by recasting it as
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d t t t t t e b e

dt

τ
ρ η τ κ η τ ηλτω ω ρ κ λ ω τ

− + − + + −− ′ ∫+ + + = −

which can be written as

0 0 0
( ( ) ( ) ) ( ( ) ( )) ( ( ) ( ))

( ) ( ) (0) .
t t

m m m m e es s ds s s ds t t d

m
d t e t e e b e
dt

τ
ρ κ λ λ ρ κ ρ η τ κ η τ ηλτω ω τ

+ + + + − + − + + −− ′ ∫ ∫ ∫= − 
 

By integrating from −∞ to t, we get

0 0 0
( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ) (0) ( ) . 
t

m m m m e ets s ds s s ds d

mt e e e b e d
ζ τ

λ ρ κ λ ρ κ ρ η ζ τ κ η ζ τ ηλτω ω ζ τ ζ
+ + + + − + − + + −− ′

−∞

∫ ∫ ∫= −∫

Therefore,

		             
0

( ( ) ( )) ( ( ) ( ))
( ) (0) ( ) .

t
m m e es s dst d

mt e e b e d
τ

ζ
λ ρ κ ρ η ζ τ κ η ζ τ ηλτω ω ζ τ ζ

− + + − + − + + −− ′

−∞

∫ ∫= −∫  		               (19)

Let ϕ(t) be a function that is defined as

			      
0

( ( ) ( )) ( ( ) ( ))
( )  | (0) | .

t
m m e es s dst d

mt b e e d
τ

ζ
ρ κ ρ η ζ τ κ η ζ τ η

φ ζ
− + − + − + + −′

−∞

∫ ∫= ∫ 			                (20) 

Recalling that all of ( ), ( ), ( ),and ( )e m e mρ ρ κ κ⋅ ⋅ ⋅ ⋅  are periodic of period T, thus, ϕ(t) is periodic as well with period T. 
Now, we establish the condition when the non-periodic solution is locally asymptotically stable in the next theorem.

Theorem 3. If ϕ(t) < 1 for all ,t∈  then the non-periodic solution 0 ( ) 0mS t ≡  of (17) is locally asymptotically stable.
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Proof. For a contradiction, we suppose that the non-periodic solution 0 ( ) 0mS t ≡  is unstable. Therefore, there exists λ 
such that its real part is positive, as we get from equation (19).

 
0

0

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

(

| ( ) | | (0) || ( ) | ,

           | (0) || ( ) | ,

           max | ( ) |

t
m m e e

t
m m e e

Re s s dst dRe
m

s s dst d

m

t e e e b d

e e b d

e

τ

ζ

τ

ζ

λ ρ κ ρ η ζ τ κ η ζ τ ηλτ

ρ κ ρ η ζ τ κ η ζ τ η

ρ

ζ

ω ω ζ τ ζ

ω ζ τ ζ

ω ζ

− + + − + − + + −− ′

−∞

− + − + − + + − ′

−∞

−

∈

∫ ∫≤ −

∫ ∫≤ −

≤

∫

∫



0
( ) ( )) ( ( ) ( ))

| (0) | .
t

m m e es s dst d

me b d
τ

ζ
κ ρ η ζ τ κ η ζ τ η

ζ
+ − + − + + − ′

−∞

∫ ∫∫

Therefore, 

 | ( ) | ( ) max | ( ) | .t t ζω φ ω ζ∈≤


Since | ( ) |tω  is periodic, then there exists t*, such that 

 

*| ( ) | max | ( ) | .t
ζ

ω ω ζ
∈

=


Then,

 

*max | ( ) | ( ) max | ( ) | .t
ζ ζ

ω ζ φ ω ζ
∈ ∈

≤
 

Thus, *( ) 1,tφ ≥  which contradicts the assumption.
The numerical solution of Sm(t) in Figure 3 shows the eradication of the whole population of mosquitoes when 

ϕ(t) < 1 for all t, and the disease-free periodic solution no longer exists as a result of the population extinction.

Figure 3. When ϕ(t) < 1, the non-periodic solution of (17) is locally asymptotically stable for all t.

The time unit is a month, and therefore, T = 12 is a one-year period. For the periodic functions we used: (0) (1)( ) sin( )
6e e et tπρ ρ ρ= +  with (0) (1) (0) (1)1 and 0.2, ( ) sin( )

6e e e e et tπρ ρ κ κ κ= = = +

(0) (1) (0) (1)1 and 0.2, ( ) sin( )
6e e e e et tπρ ρ κ κ κ= = = +  with (0) 1eκ =  and (1) (0) (1)0.1, ( ) sin( )

6e m m mt tπκ ρ ρ ρ= = +  with (0) 1mρ =  and (1) (0) (1)0.4, ( ) sin( )
6m m m mt tπρ κ κ κ= = +  with

(0) 0.8mκ =  and (1) 0.3.mκ =  The function of mosquito birth rate we used is 
( )
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mS t
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=  where the time delay is τ = 0.1
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We should highlight the fact that the system (15) will convert into the autonomous system (1) in the case of 
constant coefficients instead of periodic ones, and equation (17) becomes

0
( )0 0( )

( ( )) ( ) ( ).e em
m m m m m

dS t
b S t e S t

dt
ρ κ ττ ρ κ− += − − +

 
and for all t, the condition ϕ < 1 will be
 

( )( ) ( )

( ) ( )( )

( )

1 ( )  | (0) | ,

            | (0) | ,

| (0) |
            ,

m m e e

e e m m

e e

t t
m

t t
m

m

m m

t b e e d

b e e d

b e

ρ κ ζ ρ κ τ

ρ κ τ ρ κ ζ

ρ κ τ

φ ζ

ζ

ρ κ

− + − − +′

−∞

− + − + −′

−∞

− +′

> =

=

=
+

∫

∫

that is,

( )| (0) | .e e
m m mb e ρ κ τ ρ κ− +′ < +

Recall that it is the same condition (5) of the whole mosquito population extinction.
The next theorem demonstrates the condition that guarantees the instability of the non-periodic solution (17). For 

all t > 0, let ω(t) > 0 in the trail solution 0 ( ) ( )t
mS t e tλ ω≡  and that λ is real. This is plausible since the solutions to (17) and 

(18) are positive.
Theorem 4. Suppose that for all , ( ) 1.t tφ∈ >  Then, the non-periodic solution of (17) is linearly unstable.
Proof. Considering equation (19) and the trail solution 0 ( ) ( )t

mS t e tλ ω≡  of the linearized equation (18), we use a 
contradiction argument and assume that λ is real. However, we need to investigate whether it is positive or negative. 
Then, the non-periodic solution will be linearly unstable if the solution (18) grows with time, which means λ is positive. 
So we assume for a contradiction that it is non-positive λ ≤ 0.

Then, equation (19) will be

0

0

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

( ) (0) ( ) ,

      min ( ) (0) ,

     ( ) min ( ).

t
m m e e

t
m m e e

s s dst d

m

s s dst d

m

t e e b d

e e b d

t

τ

ζ

τ

ζ

ρ κ ρ η ζ τ κ η ζ τ η

ρ κ ρ η ζ τ κ η ζ τ η

ζ

ζ

ω ω ζ τ ζ

ω ζ ζ

φ ω ζ

− + − + − + + − ′

−∞
− + − + − + + − ′

∈ −∞

∈

∫ ∫≥ −

∫ ∫≥

=

∫
∫



Let ˆ( ) min ( ).t ζω ω ζ∈=


 be the value of t when ˆ( ) min ( ).t ζω ω ζ∈=


 Therefore,
 

ˆmin ( ) ( ) min ( ).

ˆ( ) 1,

t

t

ζ ζω ζ φ ω ζ

φ

∈ ∈≥

≤

 

which is a contradiction.
This periodic solution of the disease-free solution is consistent with the numerical solution of equation (17) in Figure 

4 when ϕ(t) > 1.
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Figure 4. When ϕ(t) > 1, the disease has a periodic solution of (17) for all t, where the time unit is a month with a period of one year. The periodic functions 
are taken as the ones in Figure 3, with the following values of the parameters: (0) (1) (0) (1) (0) (1) (0)0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.5e e e e m m mρ ρ κ κ ρ ρ κ= = = = = = = , 

and (1) 0.3.mκ =  We used the mosquito birth rate function as shown in Figure 3

5. Numerical simulation
As referred to in the analytical study in the previous section, the solution of the susceptible mosquito disease-

free equation (17) shows a periodic behavior when ϕ(t) > 1, Figure 4, and an extinct behavior of the whole population 
of mosquitoes when ϕ(t) > 1, Figure 3. The periodicity of the susceptible mosquito populations suggests a survival 
period during the dry seasons and rising again in the rainfall seasons. Since the mosquitoes that carry the dengue virus 
do not die as a result, we cannot anticipate that the dynamics of mosquito population growth will change when dengue 
disease is present. In this manner, when a mosquito becomes infected with the dengue virus, it is bound to bite a human 
during ideal season conditions for its endurance. The reports from international public health organizations support 
this observation, where they show a rise in dengue disease cases after rainy seasons, as shown in Figure 5 [22]. The 
simulations for ordinary differential equations with delays were carried out using the MATLAB routine DDE23. Default 
values were used for numerical parameters such as step sizes.

Figure 5. Confirmed cases were reported in Jeddah, Makkah, and Saudi Arabia from 2019-2021. The total number of confirmed dengue cases was 
plotted against the week numbers in 2019, 2020, and 2021 [3]
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6. Discussion and conclusion
ϕ(t), which is defined in (20), is the function from which we derive the most insightful information. We have 

shown that when ϕ(t) < 1, the whole population of mosquitoes will be extinct, whereas when ϕ(t) > 1, the population 
of mosquitoes will adopt a periodic behavior. Regarding that, the disease’s existence in the mosquito population does 
not affect its growth; in other words, it does not cause mosquito death. This refers to the period where the disease cases 
rise simultaneously with the population growth period, more precisely, three months after the growth peak. Having that 
said, one would suggest a scenario of eliminating the whole population of mosquitoes by decreasing the value of the   
equation. This can be done by increasing the parameters that appear in the exponential terms in the ϕ(t) function. Those 
are mainly the death rate parameters , , ,  and .m m e eρ κ ρ κ This means that insecticide mosquitoes are crucial in controlling 
dengue. However, reducing the mosquito population to a very low level to avoid extinction is not realistic in real life. 
Alternatively, the insecticide procedure can be effective if applied during the time period of nesting to lower the peak 
point of the population wave. Limited data on female mosque’s egg-laying rate in the most common regions where 
dengue is considered an endemic disease is a basic obstacle. The accuracy of the numerical simulations is therefore quite 
vague. Establishing a collaboration with the public health authorities in these regions to set up a scientific mosquito trap 
to collect accurate data on their population growth behavior will indeed improve future studies’ impact and, therefore, 
better control of the disease dynamics.
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Appendix
Comparison principle

In Theorem 1, we used the comparison argument to prove the theorem. The rigorous background to this principle 
can be found in Smith’s [21] book, page 78, Theorem 5.1.1, which we restate below with related notation to our models. 
First, consider the system of ordinary differential inequalities:

				    1 2( ( ), ( ),..., ( )), 1, 2,..., .i
i n

dy
f y t y t y t i n

dt
≤ =

			                
(21)

Let 1 2( ( ), ( ),..., ( ))nx t x t x t  be a solution of the system of corresponding differential equations

	  			   1 2( ( ), ( ),..., ( )), 1, 2,..., .i
i n

dx
f x t x t x t i n

dt
= =

			                
(22)

We state the following theorem without proof, where the proof can be found in [4] as mentioned above.
Theorem 5. For (21) and (22), suppose that, for each ( ) ( ), 1, 2,...,i iy t x t i n≤ =  the function fi (y1, y2, ..., yn) is non-decreasing 

with respect to yj for all j i≠  (quasi-monotone condition). Suppose that (0) (0)i iy x≤  for all ( ) ( ), 1, 2,...,i iy t x t i n≤ = . Then, 
( ) ( ), 1, 2,...,i iy t x t i n≤ =  for all t > 0, such that the solution of (22) is defined.


