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Abstract: Topological indices play a pivotal role in deciphering the structural and physicochemical properties of
complex molecular structures, especially polysaccharides like amylose and blue starch-iodine compounds. However,
accurately determining these indices for such compounds, considering their diverse isomeric forms, has been a
persistent challenge. While various methodologies have been proposed in the literature, many fall short in versatility,
often failing to provide comprehensive correlations with physicochemical properties. Addressing this gap, our study
introduces a pioneering apprggach using ¢ --polynomial and ¢,-polynomial methodologies. This novel method not only
encompasses both chair and boat isomeric forms but also integrates density functional theory (DFT) calculations
utilizing the DFT/TPSSTPSS/cc-pVTZ basis set within the Gaussian 09 software. To validate our approach, we
conducted a quantitative structure-property relationship (QSPR) analysis and juxtaposed our indings with renowned
compounds like nicotine and aspirin. The results unveiled robust correlations between the topological indices and the
intrinsic properties of the compounds, underscoring the efficacy and reliability of our methodology. This research
not only augments our comprehension of polysaccharides but also illuminates potential applications spanning
pharmaceuticals, materials science, and agriculture. Furthermore, the compelling correlations observed herald the
potential for the innovative design of new polysaccharides with tailored properties.
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1. Introduction

In the realm of molecular science, understanding the intricate properties and behaviors of complex molecules
is paramount. With the advent of computational tools, researchers have been able to delve deeper into the mysteries
of molecular structures, leading to groundbreaking discoveries in various fields [1]. Among these molecules,
polysaccharides stand out due to their multifaceted roles in living organisms, from energy storage mechanisms to
providing structural support [2]. Among all nutritional polysaccharides, amylose is the most basic, consisting purely of
glucose polymers connected only by a(1-4) bonds. Starch is a mixture of amylose and amylopectin.

In contrast to amylopectin, amylose cannot be dissolved in water and is harder to digest. Another view of
amylose digestibility and solubility is seen in its complexion. The structure of amylose, along with its slow breakdown
mechanisms, plays an important role in storing plant energy in the process of photosynthesis. Polysaccharides also
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provide structural support for cells. Besides, hemicelluloses are another group of polysaccharides located in plant cell
walls. In 1814, Colin and Claubry made the discovery of the starch-iodine reaction, known to every chemist from his
introductory courses in quantitating and qualitative analysis [3, 4].

However, comprehending the nuances of these biomolecules requires sophisticated mathematical descriptors and
computational methodologies. Computational chemistry and bioinformatics have emerged as indispensable tools in
this endeavor, offering a lens through which the properties of polysaccharides can be viewed and understood [5]. One
such mathematical descriptor, the domination topological indices, has proven to be particularly insightful, revealing the
structural and topological properties of molecules [6].

Many studies on topological indicators have been conducted in various fields of molecular graphs and networks,
with a variety of indicators having been created and developed (see examples in [7-11]). In recent work, Wazzan et
al. [12], presented a detailed investigation into symmetry-adapted domination indices, particularly focusing on the
enhanced domination sigma index (EDSI). Through its application in quantitative structure-property relationship
(QSPR) studies of octane and its isomers, they seek to highlight the potential of EDSI in understanding complex
molecular structures and predicting their physicochemical properties. This research contributes to the expanding field of
topological indices and sets the stage for future advancements in molecular design and material development.

Let { be a connected simple graph with V' ({), a set of vertices and E ({), a set of edges. A set D C V' is said to be a
dominating set of a graph (, if for any vertex ve V=D , there is a vertex u € D such that u and v are adjacent. For more
details on domination in graphs, (see examples in [13-16]). A dominating set D = {v,,v,,...,v,} is minimal if D —v,is not
a dominating set [17]. A dominating set of { of minimum cardinality is said to be a minimum dominating set. In [18],
Shashidhara et al. have introduced new degree-based topological indices called domination topological indices, which
are based on the p-degree set defined as: for each vertex v € V() the p-degree of the vertex v is denoted by ¢, and
defined as the number of minimal or minimum dominating set of ¢ which contains v. The first and second domination
Zagreb indices and modified first Zagreb domination indices are defined as:

DZ({)= ), d;, (1)
vel ({)
DZ,($)= Y. [d, -d, ] )
uveE($)
DZ/()= Y [d, +d, ] 3)
uveE($)

The forgotten domination, hyper domination, and modified forgotten domination indices of graphs are defined as:

DF({)= Y. d, “)
vel (&)
DH({)= Y [d, +d, ], (5)
uveE (&)
DF'(¢)= Y. [d} +d; | (6)
uveE($)

In the realm of science, algebraic polynomials [19], such as the Omega polynomial [20, 21], Padmakar-Ivan (PI)
[22], Zhang-Zhang [23], matching [24-26], Tutte [27], Schultz [28], and notably Hosoya polynomials [29], serve as
pivotal tools for deriving various topological indices. These polynomials, especially those based on distance, like the
Wiener [30] and hyper-Wiener index [31], offer insights into molecular structures. The M-polynomial, introduced
in 2015 [32], stands out for its capacity to elucidate degree-based graph invariants, as supported by studies [33-36].
QSPR analysis further enhances this understanding, enabling predictive modeling that correlates topological indices
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with polysaccharide properties. Such models are instrumental in areas like drug development, materials science, and
understanding molecular interactions [37-41].

As computational techniques advance, they hold the potential to reshape our comprehension of polysaccharides,
paving the way for novel polysaccharide-based innovations [42]. This has inspired our endeavor to refine domination
topological indices, as previously introduced by one of the authors [18], using innovative polynomial approaches. In this
study, the new polynomials represent ¢--polynomial and ¢, -polynomial. We study the ¢5-polynomial and #,-polynomial
by using minimal dominating sets (M.D.S.) and minimum dominating sets (m.d.s.) concepts for amylose and blue
starch-iodine complex. A graphic interpretation is provided in addition to the results. The ¢;-polynomial is defined as:

(\,/xy z d; m(,j)xy @)

O Si<j<Ag

Where dgm, (€) :|{e =uv:idg =idg = ]}| The minimum and maximum domination degree of { are denoted by
05(&) =05 and 4, (&) =4, respectively, where o, = min{dﬁv vel($)}and Ay = max{dﬁv :veV(<{)}. For each vertex
veV(¢), the domination value of v is defined as d, =[{S <V ({):S isam.d.s. and v € S}|. The minimum and maximum
domination value of a graph {'by 6,({) =0, = min{dyv velV(dlandA (§)=A, = max{dyv :veV(4)} respectively. The

@ -polynomial is defined as:

o, (¢xy)= de,"f'. (8)

5, <i<j<A,

Where d o (C ) =‘{e =uvid, =id, =] ‘ Hence, R-domination (,‘5"\) and y-domination (y) indices defined on E({),

which can be written as R({) = Z f(d; 5, ,dsR )and y({) = Z f(d, ,d, ). Hence, we define the R-domination and

uveE(() uveE(¢)

y-domination topological indices from @g-polynomial and ¢, -polynomial as in Table 1.

Table 1. Calculating domination topological indices via new polynomials

(R) indices Derivation from @ () () indices Derivation from ¢, ()
RZ! () (D, +D)p (). YZ(©) (D, +D)9,(¢) ey
RF'($) (D2 + Doy () YF' (&) (D} + D)0, ()l iey
RZ,(0) (D.D,)95 (&) Z,(&) (D.D)¢,($) ey
RH(S) (D, +D,Y 05 ()l yH(S) (D, +D,)'0, ()i

Where D, (f (x,7)) = x and D, (f(x.y))=»

ox oy

In this article, we obtain the domination topological indices of a graph { of amylose and blue starch-iodine
compounds for n = 2 via ¢z-polynomial and ¢, -polynomial. The two compounds in their chair and boat isomeric forms
are investigated with advanced quantum calculations, DFT/TPSSTPSS/cc-pVTZ using the Gaussian 09 software package
in Section 2. In Sections 3 and 4, the domination topological indices via g;-polynomial and ¢, -polynomial for amylose
and blue starch-iodine complex are computed.
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Furthermore, in Section 5, quantitative structure-property/activity relationship (QSPR/QSAR) analysis for
-domination topological indices was performed to assess the efficacy of the calculated topological indices against
the physicochemical properties of these polysaccharides amylose along with nicotine, aspirin, chloroquine,
hydroxychloroquine, and anthraquinone. According to the results, the topological indices under study exhibit strong
correlations with physicochemical properties.

2. Density functional theory (DFT) part

Starch binds cells with glucopyranose alpha bonds, which are glycosidic molecules formed from glucose. It
consists of amylose and amylopectin. Glucose molecules assemble linearly into amylose. Amylose can’t be dissolved
in water. By breaking the glycosidic bonds (alpha bonds), it can be digested. Amounting to about 20 to 30 percent
of starch, it is one of two components. As a result of its tight spiral structure, amylose is not digested as readily as
other starch molecules, so it qualifies as a resistant starch [3]. Cycle degradants such as cyclodextrins form the bulk
of amylose. Enzymatically, they form a circular path that is representative of an amylose helix imploding into single
turns. A cyclodextrin dimer is stacked in front of all these complexes, generating large cylinders which, in their global
structure, are similar to amylose helixes. A particularly interesting one is (trimesic acid H,0),,HI; with linear polyiodide
chains. However, it is not possible to determine the exact form of the polyiodide chain from this structural model [4].

The monomers (\block building) of amylose and blue starch-iodine compounds are substituted cyclohexane rings.
Cyclohexane and its derivatives are well known to exist in two main isomeric forms: boat and chair isomeric forms. In
this work, one of density 7PSS functional developed in the Truhlar group (7PSSTPSS) which include the meta-GGA
part, was used to investigate the isomeric forms of the two investigated compounds [43]. TPSS functional are known to
correctly describe hydrogen bonds, which needed to be clarified accurately in the boat and chair isomers.

The functional was combined with one of the basis sets developed by Dunning and coworkers, the triple-zeta
cc-pVTZ [44]. In cc-pVTZ basis set, the ‘cc-p’ stands for ‘correlation-consistent polarized’ and the ‘J” indicates they are
valence-only basis sets. Frequency calculations were performed on each isomer at the same level of theory as required
to validate the obtained structures as minima points in their potential energy surfaces; no negative (imaginary) frequency
obtained. Calculations were performed on the Gaussian 09 suite program [45]. Molecular visualizations were performed
using the GaussView program (version 5.0.8) [46].

Our results indicate that the blue starch-iodine compound is more stable than amylose in their two isomeric
conformations. Since the electronic energies of the chair and boat forms of the blue starch-iodine compound are -690.83
and -690.896 Hartree, respectively, higher by not less than 3.38 Hartree than the corresponding ones of amylose.

Like the unsubstituted cyclohexane, the chair forms of amylose and blue starch-iodine are more stable than their
boat forms since the chair form has a negligible ring strain. On the other hand, the boat forms are less stable for two
reasons: (i) some eclipsed C-C bonds suffer from torsional strain, and (ii) some hydrogen atoms suffer from steric strain
due to Van der Waals strain. From our calculations, the chair form of amylose is more stable than its boat form by 0.015
eV, while the chair form of blue starch-iodine is more stable than its boat form by 0.061 eV. Therefore, among the four
investigated conformations, the chair form blue starch-iodine compound is the most stable conformer, and the boat form
of amylose is the least stable conformation, see Figure 1.
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Figure 1. Energy diagram of chair and boat isomers of the two investigated compounds calculated by DFT/TPSSTPSS/cc-pVTZ

Table 2 lists some of the quantum chemical parameters (QCPs) of the two isomers for each compound. Such
parameters are used to quantify the reactivity of each isomer. The energy gap, which is defined as the difference in
energy between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital, measures
the reactivity/stability of a conformation. The energy gap (AE,,)) of chair forms of the two investigated compounds is
lower than that of their boat forms by not less than 0.7 eV and not more than 1.9 eV, thus, it is expected that the chair
forms will be more reactive than their boat forms.

In addition, both the chair and boat forms of amylose are more reactive than those of blue starch-iodine, since the
AE,,, value of the chair form is lower than that of blue starch-iodine by a significant amount, 1.4 eV, and the AE,, value
of the boat form is lower than that of blue starch-iodine by a less significant amount, 0.1 eV. This result is consistent
with the stability order of amylose’s and blue starch-iodine’s isomers. In other words, the least stable isomers of
amylose are more reactive than the most stable isomers of blue starch-iodine, see Figure 1. Other QCPs were calculated
following Koopman’s theory [47], and tabulated in Table 2. By using the following equations, we found the required
values:

1. Energy gap, AE, , = E, 0 = Evouo

2. lonization energy, I =—E,,,,-

3. Global hardness, 4 = u ;E) .

4. Electron affinity, E=—F, ,,,

5. Global softness, s = %(/eV’l).

6. Global electronegativity, y =— 4 -;E) .
2
7. Global electrophilicity, = 0 —2) .
8(1+E)

8. Chemical potential, 1 =—y.

9. Global nucleophilicity, € = l
1)
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Table 2. QCPs (in eV, unless specified) of chair and boat isomers of the two investigated compounds

QCPs Chair-amylose Boat-amylose Chair-starch-iodine Boat-starch-iodine
HOMO energy, Enovo -6.070 -5.961 -5.384 -5.523
LUMO energy, Erumo -2.193 -0.150 -0.115 0.419

Energy gap 3.877 5.811 5.269 5.941
Ionization energy 6.070 5.961 5.384 5.5223
Electron affinity 2.193 0.150 0.115 -0.419
Global hardness 1.938 2.905 2.635 2.971
Global softness 0.516 0.344 0.380 0.337
Global electronegativity 4.132 3.056 2.750 2.552
Chemical potential -4.132 -3.056 -2.750 -2.552
Global electrophilicity 4.403 1.607 1.435 1.096
Global nucleophilicity 0.227 0.622 0.697 0.912

3. Result for amylose

In this section, we will compute the domination topological indices @z-polynomial in Equation 7 and ¢,-polynomial
in Equation 8 for amylose. In Figure 2, the molecular structure of amylose is displayed and Figure 3, for its unit graph
and the graph model corresponding to amylose for n = 2, where 7 is the number of units.

HO
e 20

"0 ’\ﬁ_\ HO

HO-— HO

Figure 2. Molecular structure of amylose

First component

Second component

Vs
(a) (W]
Figure 3. (a) Graph of amylose for n = 1; (b) graph of amylose for n =2

Theorem 3.1. The total number of M.D.S. in the molecular graph { of amylose is 2544.

Proof. Let { be the molecular graph of amylose, we divide { into two components, and we compute the number
of the M.D.S. of each component. First, we evaluate the number of the M.D.S. when n = 1. We can see that the M.D.S.
when n = 1 are the following sets:
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D, = {VZ’VS’VII’VI29V4’V7}9

D, ={vy, v, 11, V1, V5, v, )

Dy ={v), v, V5V Vs Veds Dy =105,V V115 V05 Vs, Ve (G1)
D; :{Vs’V117V1>V49V7}» Dy :{VZ’VS’VH’VI’VS’V7}
D, ={ve, v,V Ve Vets Dy = v, vy, Vs, Ve (G2)
Dy =1{v,, V4, V105V125Vas Vs ts Dy =1V, V55 Vig5Vigs Vss Vi }
D)y =1,V VigsViasVas Vel s Dig =1V, V55 V19 Vigs Vs Ve ) (G3)
Dyy =g, vi0sv Ve Vot Dy = {9,550, V55V, )
Dy =V, Vi0sVisVisVsts Dy =105, Vi95 V15 Vss V) (G4)
D17 = {VZ’VQ’VII’VIZ’V49V7}’ D18 = {Vzav9svll"’12’v5>v7}
Dyy ={vy, v, v115V105 V45 Vs ts Dag =105,V V115 V105 Vs, Ve } (G5)
D21 = {V93V1|9V19V4sv7}9 D22 = {Vzavo’vnavlsvs’v7}
Doy =g, v Vis Vs Ve ds Dy = {9,115V, V5,V ) (G6)
Dzs = {VZ’VQ’VIO’VIZ’V49V7}’ DZ6 = {Vz’v9’vlosv12"’5’v7}
D,y =1{v,,v9, V105V Vas Ve ds  Dag =1V5,V9, V105 V155 V5 Ve ) (67
D,y = vy, Vi0sV15Vs Ve b, Dy = {v5,v5,V0, 5 V5,V )
Dy, ={vg,vip, V15V Veds Dy = {Vg, V05 Vs Vs, Ve (GY)
Dy, = {v3,v8,v”,v]2,v4,v7}, Dy, = {V3,V8,VH,V12,V5,V7}
Dys = {3, g, V15V105 Vs Vet s Dig = V3,V V115 V105 Vs Ve ) (G9)
Dy; ={vy, v, v, 0, Vs, V5 ) (G10)
Dyg = {v3, v, Vi05 Vi Vi Ve by Dy = V35V, V05 Vi Vs, Vo }
D,y ={v3, Vg VigsVins Vas Vet s Dy = {3, V5, V105 Via s Vs Vi) (G11)
D,, ={v;, %, V0.V, Vs, Vs } (G12)
D, = {v3,v9,v”,v]2,v4,v7}, D, = {Vssvoavnavlzsvsav7}
Dy ={v, vy, vV Vs Ve by Dig = V350,115V, V5, V6 (G13)
Dy =1{v3,v5,v1,v1, V5, v, } (G14)
D4R ={v3,v9,vm,v,2,v4,v7}, D49 ={V3’V93V10»V12’V5’V7}
Dy, = {3, Vg, V105 V105 Vas Ve ts  Dsp = 1035V, Vi05Vigs Vs, Ve ) (G15)
Dy, ={v;,v5,v0, V15 V5,5V, } (G1e6)

Similarly, there are 52 M.D.S. for the second component. Now we add every M.D.S. in the first component to
all M.D.S. in the second component. We obtain (4 x 52) = 208 M.D.S. when we add the first four M.D.S. in G1 of the
first component to all dominating sets of the second component. Keeping in mind the minimalist condition, we obtain
(3 x 38) + (1 x 58) = 172 when we add the M.D.S. of G2 to all dominating sets in the second component. Hence,
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we notice the similarity of the groups G1=G3=G5~G7=G9=G11=G13~G15 when we continue to add the
M.D.S. of the first component to all M.D.S. in the second component we get the total number of M.D.S. for n = 2 is:

Gl xall M.D.S. of the second component G2 x all M.D.S. of the second component ~ G3 x all M.D.S. of the second component G4 x all M.D.S. of the second component
—— —

——
(4x52) +  (3x38)+(1x58) + (4x52) +  (3x38)+(1x58) +
G5xall M.D.S. of the second component ~ G'6 x all M.D.S. of the second component ~ G'7 x all M.D.S. of the second component ~ G8x all M.D.S. of the second component
— —— — ——
(4x52) +  (3x38)+(1x58) + (4x52) +  (3x38)+(1x58) +
G9xall M.D.S. of the second component ~ G10xall M.D.S. of the second component ~ G11xall M.D.S. of the second component ~ G12xall M.D.S. of the second component
—— — —— —
(4><52) + (l><38) + (4><52) + (l><58) +
G13xall M.D.S. of the second component ~ Gl4xall M.D.S. of the second component ~ G15xall M.D.S. of the second component ~ G16xall M.D.S. of the second component
— — — —
(4x52) + (1x38) + (4x52) + (1x58)
=2544.

Hence, the result.

We have 23 vertices in total in the molecular graph of amylose when # = 2. In order to compute the domination
degree dj; of each vertex v; (i = 1, ..., 23) in this molecular graph, we have to count the number of dominating sets that

consist of this vertex. For example, to compute the domination degree of v,, we note that v, lies in the groups G2, G4,
G6, G8, G10, G12, and G14. Now, when we add each M.D.S. of G1 of the first component to all M.D.S. in the second
component, we get (3 x 38) + (1 x 58) M.D.S. and v, is in (3 X 38) + 22 = 136, which similar to the groups G4, G6,
and G8. For G10 and G14, we get 38 M.D.S., which are containing v,. For G12 and G16, we obtain 22 M.D.S. Hence,

G2 xall M.D.S. of second component G4 x all M.D.S. of second component ~ G6 x all M.D.S. of second component ~ G8x all M.D.S. of second component
——

— — —
d; = (3x38)+22 + (3x38)+22 + (3x38)+22 + (3x38)+22 +

Ty

G10xall M.D.S. of second component ~ G12xall M.D.S. of second component ~ Gl4xall M.D.S. of second component ~ G16xall M.D.S. of second component
—— —— ~— —

38 + 22 + 38 + 22
(4x136)+2(38)+2(22) = 664.

Similar calculations for the other 22 vertices lead us to the following Tables 3 and 4.

Table 3. RR-domination degrees of all vertices of the molecular graph of amylose

dgz\’ 664 1064 1024 1136 1408 1120 1252 1292 1104

Number of vertices 2 2 2 2 4 4 2 2 1

Table 4. Edge partition based on the R-domination degree of the end vertices of each edge

(.)) (664, 1064) (664, 1024) (664, 1104) (664, 1120)
dg m; 1 1 2 1

() (664, 1292) (1024, 1064) (1024, 1136) (1136, 1408)

&, i.j) 1 2 2 2

(%)) (1024, 1136) (1064, 1136) (1136, 1408) (1136, 1292)
dg m; 1 1 2 1

(@, J) (1120, 1136)  (1120,1292)  (1120,1120) (1252, 1292)

R, m(z,j) 1 2 2 2

Volume 5 Issue 1]2024| 33 Cont ary Math tics

/




Theorem 3.2. If {'is the molecular graph of amylose, then

Qj‘(;,x’y):xsm[yl(m 1024"‘2}’1104'*')/1120"‘)’]292} 1024[ 1064+3y1136j| ]]36[4yl408+y1292]

+y1136 1064 +x1120:|+x1120 [2y1292 +2y1120:|+2x1252y1292.

RZ,(£) =31044928, RZ, () =29107712.
RZ"(£) = 52800, RF(£)=3.73750x10".
RH(¢)=118138880, RF" (&) =59923456.
Proof.

Letd._m (é’) = ‘{e =uv:dg =i,d; = ]}‘ The edge set of { can be divided into 16 partitions based on the

domination degree of end vertices of each edge as given as in Table 3, then

03 (Sox)= D dym X'y
Sy <i<j<hg

664 1064 664 1024 664 1104 664 _ 1120 664 _ 1292 1024 _ 1064 1024 _ 1136 1136 _ 1408
Y2y x4 2x Ty 42 Ty U+ 2x Ty
1120 _ 1292 1120 _ 1120 1252 1292

=Xy
+x1024y1136+x1064y1136+2x1136y1408+x1136y1292 +x1120y1136+2x y +2x y +2x y

:x664 |:le64 +y1024 +2y1104 +y1120 +y1292]+x1024 |:2y1064 +3y1136]+x1136 [4y1408 +y1292
+x1136 [4y1408 + y1292] + y1136 |:x1064 + x1120] + x1120 [2)/1292 + 2y1120]+ 2x1252y1292.

2. Now we compute the following to find the R -domination topological indices
Dx [(0\5; (C;,X,J/):l _ 664x664 [y1064 + y1024 + 2y1104 + y1120 + y1292:| + 1024x1024 |:2y1064 + 3y1136:|
+1 136x“36 |:4y1408 +y1292:|+ y1136 |:1064x1064 +1 120x”20:| +1 120x”20 |:2y1292 T 2y1120:|

+2504x1252y1292,

which implies that

Dz [go‘)-i C,x,y)] _ 440896x664 [y1064 + y1024 + 2y1104 + yl 120 + y1292:| + 1048576)(]024 [2y1064 + 3y1]36:|
+1290496x' %[ 4y 4y |+ y"**[ 11320962 +1254400x" |

+1254400x"° [ 2 + 2y |+3135008x'>7 '*2,

[ 25 (.3 p) | = x* [ 10641 +1024)"" +2208y"* +1120y"* +1292y |
+x1024 [2128y1064+3408y]]36j|+x]]36 [5632y|408+1292y1292j|+1136y1136 |ix1064+x1120i|

+x1120 [2584)/1292 + 2240}/1120]4‘ 2584x'252y1292,

which implies that

D} [ 05(¢.x.v) ] = x**[ 1132096y +1048576 ' +2437632y"* +1254400)""* +1669264 )" |
+x'"1[ 2264192y + 3871488y |+ x'[ 7924856 " +1669264y' |
+1290496 "% [ x4+ 5112 ]+ x1*°[ 3338528y + 2508800y |+ 3338528x% >

34 | Suha Wazzan, et al.



and
D.D,[ 95 (£ x,) = 664x" [1064y"**" +1024y'"" +2208y""™ +1120y"* +1292y” |

+1024x" [ 21281 + 3408y | +1136x'°[ 5632 +1292)"*” |
+1136y" 0 [1064x"" +1120x"% |+ 1120x'*[ 2584y +2240)"™ |

+3235168x1252y1292.
Now,
sj'{Zl*(é/) = (Dx + Dy )I:(osjg (;»%J’)] |x:y:l
B 1728y1064 ]
+1688y"
_ 664 y1104 1024 4176)’1064 + 4 136 10176)’1408 + 41136 2200x""* + RIEY 4824)’1292 +
=X 43536y = 648013 * 2428y'%? 2256x"%° * 4480y'%°
+1784y”2° y Yy X y
_+1956y1292_
+ 5088xl252y1292 |X:y:l

=10692 +10656 +12604 + 4456 + 9304 + 5088 = 52800.

RZ,($) = (DD, )| 05 (:%3) Loy
_1064y1064 7

1024 '

+
+
21281 563214 106421 +
= 6645 | 220810 4 [ 4102410 | Z1ZV H Iy yagme SOIZVTH g6 ) 106407
3408y 1292 1120x
+

F11205170| 2584 +
2240y

x=y=1

}r 3235168x'22 )12 |

=4454112+ 5668864 + 7865664 + 2481024 + 5402880 +323516 = 29107712.

RE'($)=(D} +D} )[04 (£:%.7)] ey

[ 157992y'%% 4+
1489472y +
e 7 Hod (e | 436134419 111130918401 + | | 5| 2422592x1%% +
=x]3319424y ™" + |+ x e | TX b T 1120
1695296, + 7017216y 2959760y 2544896x
2110160y"**

L 584732872 + |
5017600y"'> |

=10187344 +11378560+16051600 + 4967488 +10864928 + 6473536 = 59923456.

+6473536x'72 " |

x=y=1
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RH(O) = (Dj +D’ +2D.D, )[(/z}.i (&%) ]y
[29859841'%% |
28493441 4
=x""] 6251648y + |+ x””‘{
31826562 +
| 3825936y |
L {1 1635488y +
100352002
=19095568 + 54499216 + 31600224 + 12943872 = 118138880.

8719488y +] | ..[25887744% +] . T4840000x'"° +
+x +
13996800 "% 5895184 ' 5089536x''%

x=y=1

}r 12943872x'2y'*? |

RZ,()= . d;

vel (€)
=2(664)" +4(1120)° +2(1024)" +4(1408)" +2(1064)" +2(1292)" +2(1252)" +(1104)’
=31044928.
K= &

vel ({)
=2(664)’ +4(1120)’ +2(1024)’ +4(1408)’ +2(1064)’ +2(1292)’ +2(1252)’ +(1104)’
=3.73750x10".

This completes the proof.

In the next theorem, we will give the m.d.s. of amylose.

Theorem 3.3. The total number of m.d.s. in the molecular graph { of amylose is 24.

Proof. Let { be the molecular graph of amylose, we have the following m.d.s. for the first component:

Dy = {ve, vV, V, Vo by Dy =, vV Vi Ve ks Dy = {0,015V, Vs,V )
D, ={vg, 10,1V, v, b Dy =g, vi0, V1 Vias Vs D = Vg, Vi05 V1, V55 Ve
D, =1{ve, v,V Vi s Dy = e, V1150V Ve b Do = Vg, vy, Vs, Ve )

Dyy ={vg, V105V, Vi s Dy = {05V, Vi5Vas Ve b Diy = {09, V195V, Vs, Ve -
For the second component, we have the following m.d.s.:

Dy = {4175 Vig5Vars Vin b Dy = {145 Vi70Vigs Vans Vists Dy = {0, V175 Vigo Vi Vi
Dy ={vi45VigsVigs VarsVia s Ds = g5 Vigs Vigs Vi s Vis ds D = V145 Vigs Vigs Voo Vis |
D7 = {V15>v17>v18>vzz’vl2}a Ds = {v157vl77V18’v22’V13}7 D9 = {v15’V17’V18’V23>V13}

'

Dy = {55V Vigs Vs Vin b Diy = issVigs Vigs Vans Vis s Dia = V155 Vigs Vigs Vazs Vis -

In order to compute the m.d.s. for n = 2, we have combined the sets in the first component with all sets in the
second component keeping in mind the minimum condition, we obtain the following dominating sets:

from D, and all m.d.s. in the second component

E = {Vxﬂvmvl9V4=V79V14avl7alevvzz} ’Fz = {v89vll9V19V4’v7’v14’v16’V18’v22}

from D, and all m.d.s. in the second component

F3 = {VR’V]]’VI’v4’v6’v14’v]7’V]89v22} > Et = {Vg9V11»V1’V45V63V14»V16’V18>V22}

from Dy and all m.d.s. in the second component

F =g, V115V V55 Ve Vigs Vigs Vigs Via b s B = 1V Vi Vis Vs, Vs Vigs Vigs Vigs Vo
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from D, and all m.d.s. in the second component

F =g, V105 V15 Vas Voo Vigs Vigs Vigs Vaa b s By = Vs Vigs Vis Vs Va5 Vigs Vigs Vigs Vi

from Dy and all m.d.s. in the second component

E) = {VS’VIO’vl’v4’V69V14’v17’V189V22} > Flo = {vssvloavl9V4=V6aV14DV16’V189V22}

from Dy and all m.d.s. in the second component

El = {VS’VIO’VI’v53v6’vl4’vl7’vl8’v22} ’EZ :{VS’VIO’VI’VS’vﬁ’v]4’vl6’v18’v22}

from D; and all m.d.s. in the second component

Fiy = 00, Vi Vi Vas Vs Vigs Viro Vigs Vaa b > Fla = 1005 Vi Vis Vs Vs Vigs Vigs Vigs Vi |

from Dy and all m.d.s. in the second component

ES = {v‘)’v]]’v]’v4’v6’v14’v]7’v18’v22} b Eé = {VQ’VII’Vl’v4’v7’v]4’vl6’V18’v22}

from Dy and all m.d.s.in the second component

= {Ves ViV Vs Ve Vigs Vizs Vigs Vaa | s Fig = {005 Vi Vis Vss Vs Vigs Vigs Vigs Vi |

from Dy, and all m.d.s. in the second component

Flo = Vg5 VigsVisVis Vi Vias Vizs Vigs Vi b s Fag = Vo5 Vigs Vis Vi Va5 Vigs Vigs Vigs Voo

from Dy and all m.d.s. in the second component

F21 = {VQ’VIO’VI’v4’v6’v14’v17’v18’v22} ° F‘ZZ = {VQ’VIO’VI’V4’V(J’v14’v16’V18’v22}

from Dy, and all m.d.s.in the second component

F23 = {v‘)’VIO’vl’VS’VG’v14’v17’v18’v22} s F‘24 = {VQ’VIO’VI’VS’vé’vM’Vlé’VlS’VZZ}

Hence, we can conclude that we have 24 m.d.s. of amylose.
With some calculations, we obtain the following Tables 5 and 6.

Table 5. y-domination degrees of all vertices of the molecular graph of amylose

d, 0 8 12 16 18

Number of vertices 9 2 6 2 4

Table 6. Edge partition based on the y-domination degree of the end vertices of each edge

@@,7) 0,00 (0,16) (0,24) (8,16) (12,12) (12,16) (12,24)

dmy 4 2 8 2 4 1 3

In the next Theorem 3.4, we compute the y-domination topological indices via y-polynomial.
Theorem 3.4. If {is the molecular graph of amylose, then

¢y(é/,x’y)=4+2y16+8y24+2x8y16+4x12y12+x]2y16+3x12y24.

2. yZ,(¢)=3808, 7Z,($)=1888.
yZ($) =504, yF () =74880.
yH($)=13248, yF* (&) =9472.
Proof.

1.

Let dym(i”j)(g):‘{e:uv:dy =id, :j}‘. The edge set of ¢ can be divided into 7 partitions based on the y-
domination degree of end vertices of each edge as given in Table 6, then
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q)y (é’a X, J’) = Z dym(i”j)xiyj

5,<i<j<A,

0_16 0 24 8..16

=4x"y" +2x"y" +8x"y* +2x%y

12 12 12 24

+4x 7y +3x7y

1216

=4+2y"° + 8™ +2x"y"* +4x"p" + x2p'0 4 3x2 M,
Now, we compute the following to find the y-domination topological indices
D, [(py (g”,x,y)] =16x"y" +48x" " +12x"%y"° +36x"y*,

which implies that

D[, (¢.x.y) ]| =128x"y'* +576x"y' +144x ' + 4325y
D, [gpy (é’,x,y)] =162y +48x'2p12 +12x21 1 36x2 %,

which implies that

D}[o,(¢.x.y) =512y +4608y> +512x"y' +576x'*y'* +256xy'¢ +1728x7)*
and
DD, [goy (;’,x,y)] =256x*y'"% +576x"7y'"* +192x" )"0 + 864x"y*.

Now,

72, ()=(D,+D,)[9,(¢.%3) |licyu
=32y" +192y™ +48x* ' +96x"*y"* +28x"* " +108x'* y**
=504.

72, =(D.D,) 2, (¢ %.7) 1oy
= 256x8y"’ + 576)612)/12 + 192xlzy16 + 864)c12y24 |
=1888.

yF () =(D:+D;} ) 0, (%) |y
=512y +4608x*y'° +1152x"y" +400x"*y'® +2160x"* ™ |
=9472.

yH(&)=(D; +D; +2D.D, )9, (¢.%.%) ]l
=512y +4608y™ +1152x°y'* +2304x"7 y'* + 784x"*'* +3888x"* ™ |

‘x: y=1

x=y=1

x=y=1

x=y=1

=13248.

yZ(&) =Y. d?>=9(0) +2(8) +6(12)" +2(16)’ +4(24)’ = 3808.
vel (&)

YE(C) =Y. d>=9(0) +2(8) +6(12)" +2(16)" +4(24)’ = 74880.
Vel ({)

This completes the proof.

In Figure 4, we present the 3D representation of ¢-polynomial and ¢,-polynomial of amylose.
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le+22
S5e+22

170

(®)
Figure 4. Plotting of (a) ¢;-polynomial; (b) ¢ -polynomial of amylose

4. Results for blue starch-iodine complex

In this section, we will compute the domination topological indices via the Eﬁ-polynomial in Equation 7, and the ¢,
-polynomial in Equation 8 for the blue starch-iodine complex. Figure 5 is the molecular structure of blue starch-iodine,
and Figure 6 shows the unit graph and the graph model corresponding to blue starch-iodine for n = 2, where »n is the
number of units.

-

0
SO HO--
-OH

~0 }0
A 0 o) )
\“;FCI K()))zo
0 i )
o) -0 Y
L.
O
1

Figure 5. Molecular structure of blue starch-iodine

v,

(b)

Figure 6. (a) Graph of blue starch-iodine for » = 1; (b) graph of blue starch-iodine for n =2
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Theorem 4.1. The total number of M.D.S. and m.d.s. in the molecular graph of blue starch-iodine for n =2, is 1874
and 16, respectively.

Proof. Notice that in the two components of blue starch-iodine the M.D.S. is the same number of the M.D.S.s of
amylose.

First, we compute the M.D.S. of the molecular graph of blue starch-iodine for n = 2

Glxall M.D.S. of the second component G2 x all M.D.S. of the second component  G3 x all M.D.S. of the second component G4 x all M.D.S. of the second component

(2x44)+(2x29) + (3x33)+(26) +  (2x44)+(2%x29) + (3x33)+(26) +

G5xall M.D.S. of the second component G 6 x all M.D.S. of the second component G 7 x all M.D.S. of the second component ~ G8x all M.D.S. of the second component
——

(4><44) + (4><33) + (4><44) + (4><33) +

G9xall M.D.S. of the second component  G10xall M.D.S. of the second component ~ G11xall M.D.S. of the second component  G12xall M.D.S. of the second component

(2x44)+(2x29) + (FZ»?) +  (2x44)+(2x29) + (FE:;) +

G13xall M.D.S. of the second component  Gl14xall M.D.S. of the second component ~ G15xall M.D.S. of the second component

of the sc Gl6xall M.D.S. cif_tlﬁccond component
(2x44)+(2x29)  + (33) +  (2x44)+(2x29)  + (33)

=(6x146)+(2x125)+(2x176)+(2x132)+(4x33)

=1874.

Second, we compute the m.d.s. of the molecular graph of blue starch-iodine for n = 2; we follow the same steps of
Theorem 3.3, keeping in mind the minimum condition, we conclude the following:

K :{Vs’vu’v1>v4sv7’v14avl77V22}’ E={vv v4,v7,v14,v16,v22},
F3 :{V ’vu’vl’vwv()’"wvls’vzz}’ Et =W Vi ViV veav14’V16’V22}’
Fsy =W ’VIO’vl’v4’v77vl4’vl7’V22}’ Fe :{V sV10s V15 Ve Vg v14’V165V22}’
E={v ’VIO’vl’v4’v6’v14’v167V22}’ K= {v V10> V15 Vs Veavwvleavzz}’
F; =V ’vll’vl’v4’v7’vl4’vl7’V22}’ Fio {V V115V1’v4av7’vw"m:"zz}’
Fiyl :{V ’Vu’v15v4’V67"14’v16’V22}’ Ez :{V Vi1s V15 Vs Ves Vigs Vigs V 2}’
E3 :{V 7V10>v15v4av7"’14=V17aV22}= Fi4 :{v V105V1’V4’V7>v14’V16=V22}’
FIS :{v9’VIO’VI’V4’V6’Vl4’V16’v22}’ Flﬁ {V9’v10’v vé’vl4’V16’V22}

Hence, we have 16 m.d.s.
With some calculations, we obtain the following Tables 7 to 10.

Table 7. The $R-domination degrees of all vertices of the molecular graph of blue starch-iodine complex

dg 770 774 716 864 1010 762 646 937 900 974

Number of vertices 1 2 2 2 2 2 2 4 2 2
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Table 8. Edge partition based on the R-domination degree of the end vertices of each edge

(i.)) (646,744)  (646,937)  (646,716)  (664,761)
dym, , 2 2 1 1
) (716,762)  (716,846)  (716,774)  (762,774)
d,m, 2 2 1 1
) (770,744)  (864,1010)  (774,900)  (900,937)
(864,1010)
dym, 2 2 2 2
) (900,947)  (937,937) / /
d,m, 2 2 / /

Table 9. The y-domination degrees of all vertices of the molecular graph of blue starch-iodine complex

d, 0 4 8 12 16

¥

Number of vertices 9 2 6 2 3

Table 10. Edge partition based on the y-domination degree of the end vertices of each edge

(i,)) (0,0) (0,16) (0,24) (8,16) (12,12) (12,16) (12,24)

dmg, 4 2 8 2 4 1 3

In the next Theorem 4.2, we compute the SR-domination topological indices via SR-polynomial.
Theorem 4.2. If {'is the molecular graph of blue starch-iodine complex, then

%_‘(;’x’y)zst |:2y744 +2y937 +y716 +y762:|+x716 |:2y762 +2y864 +y774:|+y774[x762 +2x770]

937 . 937 774 900

+2x7 T+ 2x Ty

900 937 974 864 1010

+x (27 42y +2x Ty
RZ,(£) =15928240, RZ,(£)=16125222.
RZ'(£)=39212, RF(£)=1.39011263x10",
RH () = 64847468, RE* () = 32597024

Proof. For (1), similar steps on proof of Theorem 3.2. For part (2), in order to find the R-domination topological

indices, we need the following calculations

DX [Qﬁ (é’,x,y)] _ 646x646 [2y744 + 2y937 + y716 + y762:| + 716x716 [Zym + 2y864 + y774

+y7 [762x762 +1540x7° ] +900x°" [2 Y7 42T ] +17280x* 1010 41874 x%7 %

+1 548x774y900 s

which implies that

)

S
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D} 0 (& x,) | =417316x°%[ 2™ + 29”7 + y7' + 37 |+ 51265627 [ 27 +2)"* + )7
+y7"[ 580644x™ +1185800x"" |+810000x" [ 2”7 + 2y | +1492992x" y''°
+1755938x”7 "7 +1198152x"y°,

D, [ 05(¢.x.) = x"[1488)™ +1874y"7 + 7167 + 762" |+ T16x7°[ 1524y +1728y* +774y™" |
+774y™ [ X7 +2x77 [+900x™ [ 1874”7 +1948)" |+ 2020x* '

+1874x”7 "7 +1800x"7*y™

which implies that

D} ¢ (&%) | = x*[1107072y™ +1755938)"" +512656)"'° + 580644 )" |
+x"°[ 1161288y +1492992* + 599076y |+599076y [ x™* +2x" |
+x"[ 1755938y +1897352y"™* | +2040200x* ' +1755938x" "
+1620000x "7y

and

D,p; (£.x.y) = 6462 [ 14887 +1874y"7 + 716" + 762y |+ 716x"°[ 1524y" +1728)*" + 774y |
+774y"* [ 76257 +1540x7 | +900x" [ 1874y +1948y”* | +1745280x* """
+1755938x"7 %7 +1393200x 7).

The values of the R-domination topological indices obtained by substitute of x =y = | in previous calculations and
from Table 1.

In the next Theorem 4.3, we compute the y-domination topological indices via y-polynomial.
Theorem 4.3. If {'is the molecular graph of blue starch-iodine complex, then

1. ¢, (¢xy)=5+2y"+2y2+6y" +2x*y" + 52" + 5" ' + x2y"°.
2. yZ,(5)=1470, 7Z,(&)=1736.

rZ(£) =300, yF($)=18944.

yH(S)=5104, yF* (&) =3632.

Proof. For (1), similar steps of the proof of Theorem 3.4. For part (2), in order to find the y-domination topological
indices, we need the following calculations

yZ()=(D,+D,)[ o, (¢.x.3) ||
=16y" +24y"” +96y" +32x"y"* +80x" y* +24x" ' +28x7 ' |
=300.

12, =(D.D,) ¢, (5.x.) Jl.cre
=96x"y" +320x"y" +128x"y"° +192x"%y" |
=1736.

yF (&) =(D2+ D)o, (¢.x0) ]I,
=128y" +288y" +1536y" +320x*y"* +640x"y* +320x"y'® + 400x"y'° |
=3632.

x=y=1

x=y=1

x=y=1
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yH()=(D:+D; +2D.D, ) ¢, (<% 7) ]Iy
=128y° +288y" +1536)'° +512x*y"* +1280x"y* +576x° y'® + 784x"*'° |

=5104
yZ($)= Y. d>=9(0) +2(4) +6(8) +2(12) +3(16)" =1472.
veV ({)
yF(O)= > d>=9(0) +2(4)’ +6(8) +2(12)’ +3(16)’ =18944.
vel ()

This completes the proof.
In Figure 7, we present the 3D representation of @z -polynomial and ¢ -polynomial of blue starch-iodine complex.

0 o 5
@ (b)

Figure 7. Plotting of (a) ¢;-polynomial; (b) ¢,-polynomial of blue starch-iodine complex

5. Statistical validity of domination topological indices

Numerous QSPR/QSAR studies effectively use topological indexes to model the physicochemical properties of
compounds based on their molecular structure. To be accepted by Randi¢ [48], a topological index must meet certain
requirements. Among these, the most significant is positively correlated with at least one property. The purpose of
this section is to investigate the significance of these newly developed domination topological indices. Using the
methodology developed by Vardhan et al. [49], 12 phytochemicals are screened against SARS-CoV-2 3CLpro and used
in the QSPR model for predicting topological polar surface, binding energy, docking score, and molecular weight.

The correlation coefficients of computed polysaccharides and literature values in [50] and [51] are calculated.
Various chemical compounds have been studied in the following experimental data [52], and also https://pubchem.
ncbi.nlm.nih.gov (accessed on 26 March 2022). Chemical compounds are described in Table 11 according to their
experimental data. Compound R-domination index values are shown in Table 12. Our analysis has shown that these
indices play a crucial role in evaluating the topological polar surface area (7.P.S.4.), molecular weight (M.W.),
complexity (C), boiling point (B.P.), and octanol-water partition coefficient (XLogP3) for the different chemical
compounds. A correlation coefficient (R) between these indices and some physicochemical properties can be seen in
Table 13.
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Table 11. Experimental values of some physicochemical properties of some chemical compounds

Chemical compound (B.P.)°C ©) (F.P.) XLogP3 (T.PSA)A (M.W.)
Amylose 627.7 641 3334 6.9 269 504.4

Blue starch-iodine / / / / / /
Chloroquine [50] 460.6 309 2323 4.6 28.2 319.9
Hydroxy-chloroquine [50] 516.7 331 266.3 3.6 48.4 335.9
Anthraquinone [51] 279.8 261 185 3.4 34.1 208.21
Nicotine [51] 247 147 59 1.2 16.1 162.23
Aspirin [51] 140 212 250 1.2 63.6 180.16

Table 12. Domination indices of some chemical compounds

Chemical compound RZ () RZ,(0) RZ () RE() RH() RE*(0)

Amylose 31044928 29107712 52800 373750 x 10 118138880 59923456

Blue starch-iodine 15928240 16125222 39212 139011263 x 10° 64847468 32597024

Chloroquine [50] 1811457 1728576 12627 554421762 7090227 3633075

Hydroxy-chloroquine [50] 4003420 3708635 18892 1820798614 15276248 7858978
Anthraquinone [51] 4003420 28400 1430 581576 115300 58500
Nicotine [51] 1808 1700 298 23922 6936 3536
Aspirin [51] 1041 968 223 9607 3903 1967

Table 13. Correlation coefficients (R) between domination indices and some physiochemical properties of some chemical compounds

R-domination index (B.P.)°C ©) (F.P.) XLogP3 (T.P.SA)A M.w)
9}2'(4") 0.710 0.954 0.646 0.816 0.981 0.888
RZ,(£) 0.709 0.954 0.645 0.817 0.981 0.888
RZ" () 0.839 0.979 0.724 0.889 0.919 0.973
RE(0) / / / / / /
RH(C) 0.710 0.954 0.646 0.817 0.981 0.888
RF*(£) 0.711 0.955 0.647 0.818 0.981 0.889

5.1 Results and discussion

On the basis of the data in Tables 11 and 12, a linear regression model was developed for the topological polar
surface area (7T.P.S.4.), molecular weight (M.W.), complexity (C), boiling point (B.P.), and octanol-water partition
coefficient (XLogP3). Our linear regression model is as follows: P = 4 + B(DI) where P = physical property and
DI = domination index. R was calculated correspondingly. Based on the data in Table 13, some results can be derived
for the new R-domination topological indices given (except for the forgotten domination index, RF (£) which will not
be discussed). A regression model is shown in this table for various physicochemical properties. As can be seen, R is
greater than 0.645 in the regression model.

Hence, the defined new R-domination topological indices correlate positively with all the physical and chemical
properties of the different chemical compounds. To begin with, it was discovered that any structure-property relationship
could not be achieved using the forgotten domination index RF(¢). Modified domination Zagreb index ‘.ﬁZl* <)
demonstrates that this index is a powerful tool for determining physical and chemical properties of different chemical
compounds under this study, with correlation coefficients ranging from 0.724 to 0.979. According to the table, when
we examine the correlation coefficients horizontally for physical properties, we see that 9~%Zl* (¢) index gives the highest
correlation coefficient for boiling point (B.P.) (R = 0.839), complexity (C) (R = 0.979), flash point (F.P.) (R = 0.724),
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octanol-water partition coefficient (XLogP3) (R = 0.889), and molecular weight (M.W.) (R = 0.973).

As a result, QSPR/QSAR can be predicted from the modified domination Zagreb index ‘J?Zf(g” ) for a wide variety
of chemical compounds. The topological polar surface area (7.P.S.4.) properties are correctly predicted using these
R-domination topological indices. The range of the correlation coefficient is between 0.919 and 0.981. According to all
domination topological indices, the molecular weight (M.W.) is predicted with a high correlation coefficient between
0.888 and 0.973. In a similar range, complexity (C) 0.954 < R <0.979 can also be found.

In Figure 8, the correlation coefficient R values are displayed with the different domination topological indices.
These chemical compounds may not be suitable for predicting the efficiency of the y-dominations since the correlation
coefficient R was not satisfactory. This may indicate that topological indices based on M.D.S. are more powerful than
those based on m.d.s. Despite this, we believe it is well justified to raise concerns about more different compounds.

This paper reconstructs the topological indices of domination ({R-domination topological indices and y-dominations
topological indices) via new polynomials (@;-polynomial and ¢ -polynomial), and finds their exact values over
polysaccharides: amylose and blue starch-iodine complex.

A QSPR was performed to assess the efficacy of the calculated domination topological indices against
the physicochemical properties of amylose as well as nicotine, aspirin, chloroquine, hydroxychloroquine, and
anthraquinone. According to this QSPR study, various domination topological indices computed in this article are highly
predictive of physicochemical properties. With the help of these domination topological indices, future calculations
could involve more complex compounds.
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Figure 8. Correlation coefficient values for the domination topological indices
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6. Conclusion

In the intricate realm of molecular structures, topological indices have emerged as indispensable tools for
unraveling the structural and physicochemical intricacies of polysaccharides, notably amylose and blue starch-iodine
compounds. Our research has addressed the long-standing challenge of accurately determining these indices across
diverse isomeric forms. By introducing these innovative polynomials methodologies, we have not only catered to
both chair and boat isomeric forms but also seamless integrated advanced computational techniques, specifically DFT
calculations, within the Gaussian 09 software framework.

Our rigorous validation process, encompassing a QSPR analysis and benchmarking against well-established
compounds such as nicotine and aspirin, has unequivocally demonstrated the robustness and precision of our approach.
The compelling correlations we observed between topological indices and the inherent properties of the compounds
underscore the potential of our methodology as a reliable and versatile tool. In essence, this study has significantly
enriched our understanding of polysaccharides, paving the way for groundbreaking applications in diverse sectors,
including pharmaceuticals, materials science, and agriculture.

The insights gleaned from our research not only hold promise for a deeper comprehension of these complex
molecules but also beckon a new era of innovation, where the design of novel polysaccharides with bespoke properties
becomes a tangible reality.
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