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Abstract: In this work, a co-variational inequality problem and a co-resolvent equation problem are introduced and

investigated. It is shown that the fixed point problem is equivalent to the problem of co-variational inequality. The

co-variational inequality problem and the co-resolvent equation problem are equivalent due to this resemblance. The co-

resolvent equation problem is solved using an iterative approach that we provide at the final stage. Our findings may be

seen as an enhancement of several established findings.
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1. Introduction

The variational inequality is an influential unifying tool for solving problems in pure and applied sciences. The

extension and generalisation of variational inequalities in a variety of different directions, which has been done for the

purpose of applications in the fields of science and technology bymany researchers (see, [1]) after the variational inequality

introdced and studied by Stampacchia [2]. This theory can be applied as a potent mathematical instrument in order

to address issues that arise in several subfields of research, such as engineering, optimization, economics, equilibrium

theory, non-linear programming, elasticity, and so on, see e.g., [3–11] and references therein.

In 2000, Alber et al. [12] introduced and studied co-variational inequality problem, they obtained existence and

convergence results for the solution of co-variational inequality. In 2012, Ahmad et al. [13] extended co-variational

inequality and studied by different approach. Recently, Ahmad et al. [14], studied co-variational inequality involving two

Yosida approximation operator.

There are many different numerical approaches that may be used to solve variational inequalities, propose iterative

algorithms for variational inequalities, and analyse those algorithms. Some of these numerical methods include the

projection technique and its variant forms, the auxiliary principle technique, the Newton and descending framework,

and others can be found in [15–22] and references therein.
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Because resolvent equations generalise and expand theWiener-Hopf equations, the resolvent operator approaches are

effective for solving variational inequalities and other related problems. It is possible to utilise this method to demonstrate

that variational inequalities and resolvent equations are equivalent to one another. The resolvent equation methodology

is used in order to construct appropriate numerical methods for the purpose of resolving variational inequalities and

optimisation problems.

Motivated by the aformentioned works, this study presents a generalisation of co-variational inequality solved by the

idea of resolvent equations in Banach spaces through the incorporation co-resolvent equations which is a refinement of the

problems studied in [13, 14]. This investigation establishes a connection between the co-variational inequality problem

and the co-resolvent equation problem. A proposed approach for addressing the co-resolvent equation problem involves

the use of an iterative algorithm. Eventually, a proof of an existence and convergence result is presented.

2. Preliminaries

In this study, we make the assumption that E is a real Banach space equipped with its norm ‖·‖, E∗ is the topological

dual of E, d is the metric induced by the norm ‖ · ‖, CB(E) (respectively, 2E ) denotes the family of all nonempty closed

and bounded subsets (respectively, all nonempty subsets) of E, D(·, ·) known as the Hausdorff metric on CB(E) and is
defined as

D(P, Q) = max

{
sup
x∈P

d(x, Q), sup
y∈Q

d(P, y)

}
,

where d(x, Q) = inf
y∈Q

d(x, y) and d(P, y) = inf
x∈P

d(x, y). Additionally, it is assumed that 〈·, ·〉 represents the duality pairing

between E and E∗, and F : E −→ 2E∗
is the normalized duality mapping that has been defined by

F (x) = { f ∈ E∗: 〈x, f 〉= ‖x‖‖ f‖ and ‖ f‖= ‖x‖}, ∀x ∈ E.

The property of uniform smoothness of the space E may be defined as follows: for every given ε > 0, there exists a
δ > 0 such that for any x, y ∈ X , ‖x‖= 1 and ‖y‖ ≤ δ , the following condition holds:

‖x+ y‖+‖x− y‖ ≤ 2+ ε‖y‖.

The function

ρE(t) = sup
{
‖x+ y‖+‖x− y‖

2
−1: ‖x‖= 1, ‖y‖= t

}

is called the modulus of smoothness of the space E. The space E is uniformly smooth if and only if, lim
t→0

ρE(t)
t

= 0.

Remark 1 All Hilbert spaces, Lp(`p) spaces (p ≥ 2) and Sobolev spacesW p, m(p ≥ 2) exhibit uniform smoothness.

However, for 1 ≤ p < 2, both Lp(`p) andW p, m spaces demonstrate p-uniform smoothness.

Remark 2 ([23]) If a Banach spaceE has the property of uniform smoothness, it may be inferred that it also possesses

the properties of smoothness and reflexivity.
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The subsequent inequalities will be used in the presentation of our main result, and the demonstration of these

inequalities may be located in the reference [12].

Proposition 1 ([12]) Let E be a uniformly smooth Banach space and J be the normalized duality mapping from E
to E∗. Then for all x, y ∈ E, we have

(i) ‖x+ y‖2 ≤ ‖x‖2 +2〈y, J(x+ y)〉;
(ii) 〈x− y, J(x)− J(y)〉 ≤ 2k2ρE

(
4‖x−y‖

k

)
,

where k =

√
‖x‖2 +‖y‖2

2
.

The following definitions are needed in the sequel.

Definition 1 Let T : E −→ CB(E) be a set-valued mapping, J: E −→ E∗ and g: E −→ E be the single-valued

mappings. Then,

(i) T is said to be D-Lipschitz continuous with constant δT > 0 if,

D (T (x)−T (y))≤ δT‖x− y‖, ∀x, y ∈ E;

(ii) J is said to be strongly monotone if, there exists a constant α > 0 such that

〈J(x)− J(y), x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ E;

(iii) g is said to be strongly accretive if for any x, y ∈ E, there exists j(x− y) ∈ F (x− y) and a constant γ > 0 such
that

〈 j(x− y), g(x)−g(y)〉 ≥ γ‖x− y‖2.

Definition 2 Let φ : E −→ R∪{+∞} be a proper functional such that

φ(y)−φ(x)≥ 〈 f ∗, y− x〉, ∀x, y ∈ E, f ∗ ∈ E∗.

The point f ∗ is called subgradient of φ at x. The set of all subgradients of φ at x is denoted by ∂φ(x). The mapping
∂φ : E −→ 2E∗

, defined by

∂φ(x) = { f ∗ ∈ E∗: φ(y)−φ(x)≥ 〈 f ∗, y− x〉, ∀y ∈ E},

is said to be subdifferential of φ at x.
Definition 3 ([6]) Let E be a Banach space with its dual space E∗, φ : E −→R∪{+∞} be a proper subdifferentiable

(may not convex) functional, and J: E −→ E∗ be a mapping. If for any given point x∗ ∈ E∗ and ρ > 0, there is a unique
point x ∈ E satisfying

〈J(x)− x∗, y− x〉+ρφ(y)−ρφ(x)≥ 0, ∀y ∈ E.
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The mapping x∗ → x, denoted by J∂φ

ρ (x∗), is said to be J-proximal mapping of φ . We have x∗− J(x) ∈ ρ∂φ(x), it
follows that

J∂φ

ρ (x∗) = (J+ρ∂φ)−1 (x∗).

Remark 3 Given a Hilbert space E, let φ be a convex, lower semicontinuous, and proper functional defined on E,
and consider J as the identity mapping. In this context, the J-proximal mapping of φ can be seen as equivalent to the

resolvent operator of φ on Hilbert spaces.

Theorem 1 ([6]) Let E be a reflexive Banach space with its dual space E∗, and φ : E −→ R∪{+∞} be a lower
semicontinuous subdifferentiable proper functional which may not be convex. Let J: E −→ E∗ be α-strongly monotone

continuous mapping. Then for any ρ > 0, x∗ ∈ E∗, there exists a unique x ∈ E such that

〈J(x)− x∗, y− x〉+ρφ(y)−ρφ(x)≥ 0, ∀y ∈ E.

That is x = J∂φ

ρ (x∗) and so the J-proximal mapping of φ is well-defined and 1
α
-Lipschitz continuous.

Let T, A: E −→CB(E) be two set-valued mappings, J: E −→ E∗, N: E ×E −→ E and f , h, g: E −→ E be single-

valued mappings. Let φ : E × E −→ R∪ {+∞} be such that for each fixed x ∈ E, φ(·, x) is lower semicontinuous,
subdifferentiable functional (may not convex) on E satisfying g(E) ∩ dom(∂φ(·, x)) 6= /0, where ∂φ(·, x) is the

subdifferential of φ(·, x). We consider the following problem of finding x ∈ E, u ∈ T (x) and v ∈ A(x) such that

g(x) ∈ dom(∂φ(·, x)) and

〈J (N( f (u), h(v)), y−g(x))〉 ≥ φ(g(x), x)−φ(y, x), ∀y ∈ E. (1)

Problem (1) is called co-variational inequality problem.

Special Cases: The following are particular examples of problem (1).

(I) IfE is a real Banach space and J, f and h are identity mappings, then problem (1) can be simplified to the following

problem: Find x ∈ E, u ∈ T (x) and v ∈ A(x) such that

〈N(u, v), y−g(x)〉 ≥ φ(g(x), x)−φ(y, x), ∀y ∈ E. (2)

Problem (2) covers a range of problems that have been investigated by Hassouni andMoudafi [18], Kazmi [20], and

Ding [15, 16] as special cases.

(II) If E is a real Hilbert space, φ(x, y) = φ(x), for all x, y ∈ E, J is the identity mapping, and N( f (u), h(v)) =
f (u)−h(v), for all u, v ∈ E, then problem (1) transforms into the problem of determining x ∈ E, u ∈ T (x) and v ∈ A(x)
such that

〈 f (u)−h(v), y−g(x)〉 ≥ φ(g(x))−φ(y), ∀y ∈ E. (3)

The problem (3) was first proposed and subsequently investigated by Huang [24].

By carefully selecting the appropriate mappings in the formulation of problem (1), one may establish relationships

to other existing problems that have been previously studied, see e.g., [8–11].
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In relation to the co-variational inequality problem (1), we consider the subsequent co-resolvent equation problem:

Find z ∈ E∗, x ∈ E, u ∈ T (x) and v ∈ A(x) such that

J (N( f (u), h(v)))+ρ
−1R∂φ(·, x)

ρ (z) = 0, (4)

where ρ > 0 is a constant, R∂φ

ρ = I − J
(

J∂φ

ρ (z)
)
, where J

(
J∂φ

ρ (z)
)
=
[
J
(

J∂φ

ρ

)]
(z) and I is the identity mapping.

3. Iterative algorithm and convergence result

Initially, we establish a correspondence between the co-variational inequality problem (1) and a fixed point

problem. This correspondence can be simply shown by using the notion of the resolvent operator and the concept of

subdifferentiability of φ(·, x).
Lemma 1 Let (x, u, v), where x ∈ E, u ∈ T (x) and v ∈ A(x), be a solution of co-variational inequality problem (1)

if and only if it is the solution of the following equation

g(x) = J∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))} . (5)

Proof. Let (5) holds, then

g(x) = J∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))}

g(x) = [J+ρ∂φ ]−1 {J(g(x))−ρJ(N( f (u), h(v)))} ,

which implies that,

J(g(x))+ρ∂φ(g(x), x) = J(g(x)−ρJ(N( f (u), h(v)))

J(N( f (u), h(v))) ∈ ∂φ(g(x), x).

Therefore (x, u, v) is the solution of problem (1). That is,

〈J (N( f (u), h(v)), y−g(x))〉 ≥ φ(g(x), x)−φ(y, x), ∀y ∈ E,

holds. �
Now, we prove that co-variational inequality problem (1) is equivalent to the co-resolvent equation problem (4).

Lemma 2 If J is one-one, then co-variational inequality problem (1) has a solution (x, u, v), where x ∈ E, u ∈ T (x)
and v ∈ A(x), if and only if co-resolvent equation problem (4) has a solution (z, x, u, v), z ∈ E∗, x ∈ E, u ∈ T (x) and
v ∈ A(x), where

g(x) = J∂φ(·, x)
ρ (z), (6)
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and

z = J(g(x))−ρJ(N( f (u), h(v))).

Proof. Let (x, u, v) be a solution of co-variational inequality problem (1). Then by Lemma 1, it is a solution of the

following equation

g(x) = J∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))} .

Using the fact that R∂φ(·, x)
ρ =

[
I − J

(
J∂φ(·, x)

ρ

)]
and (6), we have

R∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))}

=J(g(x))−ρJ(N( f (u), h(v)))− J
[
J∂φ(·, x)

ρ {J(g(x))−ρJ(N( f (u), h(v)))}
]

=J(g(x))−ρJ(N( f (u), h(v)))− J(g(x))

=−ρJ(N( f (u), h(v))),

which implies that

J(N( f (u), h(v)))+ρ
−1R∂φ(·, x)

ρ (z) = 0,

with z = J(g(x))−ρJ(N( f (u), h(v))), i.e., (z, x, u, v) is the solution of co-resolvent equation problem (4).

Conversely, let (z, x, u, v) be the solution of co-resolvent equation problem (4), then

ρJ(N( f (u), h(v))) =−R∂φ(·, x)
ρ (z) = J

(
J∂φ(·, x)

ρ (z)
)
− z. (7)

From (6) and (7), we have

ρJ(N( f (u), h(v)))

=J
(

J∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))}

)
− J(g(x))−ρJ(N( f (u), h(v))),

which implies that
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J(g(x)) = J
(

J∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))}

)
.

Since J is one-one, we have

g(x) = J∂φ(·, x)
ρ {J(g(x))−ρJ(N( f (u), h(v)))} ,

i.e., (x, u, v) is the solution of co-variational inequality problem (1). �
Alternative Proof. Let

z = J(g(x))−ρJ(N( f (u), h(v))).

Then from (6), we have

g(x) = J∂φ(·, x)
ρ (z),

and

z = J
(

J∂φ(·, x)
ρ (z)

)
−ρJ(N( f (u), h(v))).

By using the fact that J
(

J∂φ(·, x)
ρ (z)

)
=
[
J
(

J∂φ(·, x)
ρ

)]
(z), it follows that

J(N( f (u), h(v)))+ρ
−1R∂φ(·, x)

ρ (z) = 0,

which is the required co-resolvent equation problem (4). �
Following is the iterative algorithm to solve our problem.

Algorithm 1 For any z0 ∈ E∗, x0 ∈ E, u0 ∈ T (x0) and v0 ∈ A(x0), let

z1 = J(g(x0))−ρJ(N( f (u0), h(v0))) ∈ E∗,

and take x1 ∈ E such that

g(x1) = J∂φ(·, x1)
ρ (z1).

Since u0 ∈ T (x0) and v0 ∈ A(x0), by Nadler’s Theorem [25], there exists u1 ∈ T (x1) and v1 ∈ A(x1) such that
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‖u0 −u1‖ ≤(1+1)D (T (x0), T (x1)) ;

‖v0 − v1‖ ≤(1+1)D (A(x0), A(x1)) ,

where D(·, ·) is the Hausdorff metric on CB(E). Let

z2 = J(g(x1))−ρJ(N( f (u1), h(v1))),

and take any x2 ∈ E such that

g(x2) = J∂φ(·, x2)
ρ (z2).

Continuing the above process inductively, we can obtain the following scheme:

For any z0 ∈ E∗, x0 ∈ E, u0 ∈ T (x0) and v0 ∈ A(x0), compute the sequences {zn}, {xn}, {un} and {vn} by the iterative
schemes such that

1.

g(xn) = J∂φ(·, xn)
ρ (zn); (8)

2.

un ∈ T (xn), ‖un −un+1‖ ≤
(

1+
1

n+1

)
D (T (xn), T (xn+1)) ; (9)

3.

vn ∈ A(xn), ‖vn − vn+1‖ ≤
(

1+
1

n+1

)
D (A(xn), A(xn+1)) ; (10)

4.

zn+1 = J(g(xn))−ρJ(N( f (un), h(vn))), (11)

for n = 0, 1, 2, · · · and ρ > 0 is a constant.
Now, we have the main result.

Theorem 2 Let E be a uniformly smooth Banach space with the module of smoothness ρE(t)≤Ct2, for some t > 0.
Let T, A: E −→CB(E) be theD-Lipschitz continuous mappings with constants δT and δA, respectively. Let f , h: E −→ E
be the Lipschitz continuous mappings with constants λ f and λh, respectively, and g: E −→ E be a Lipschitz continuous

mapping with constant λg and strongly accretive with constant γ > 0. Let J: E −→ E∗ be a Lipschitz continuous mapping
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with constant λ j and strongly monotone with constant α > 0, and N: E ×E −→ E be Lipschitz continuous in both the

arguments with constants λN1 and λN2 , respectively. Let φ : E ×E −→ R∪{+∞} be a mapping such that for each fixed
x ∈ E, φ(·, x) is lower semicontinuous, subdifferentiable, proper functional satisfying g(x) ∈ dom∂φ(·, x), for all x ∈ E.
Suppose that there exists a constant ρ > 0 such that for each x, y ∈ E, x∗ ∈ E∗

∥∥∥J∂φ(·, x)
ρ (x∗)− J∂φ(·, y)

ρ (x∗)
∥∥∥≤ µ‖x− y‖, (12)

where J∂φ(·, x) is J-proximal mapping of φ and the following condition is satisfied:

∣∣∣∣∣ρ −
αµ −λgλ j

λ j
(
λN1λ f δT +λN2λhδA

) ∣∣∣∣∣< α

√
1−2γ +64Cλ 2

g

λ j
(
λN1λ f δT +λN2λhδA

) , (13)

αµ > λgλ j, then there exists z ∈ E∗, x ∈ E, u ∈ T (x) and v ∈ A(x) satisfying co-resolvent equation problem (4), and the
iterative sequences {zn}, {xn}, {un} and {vn} generated by Algorithm 1 converge strongly to z, x, u and v, respectively.

Proof. FromAlgorithm 1, we have

‖zn+1 − zn‖

=‖J(g(xn))−ρJ(N( f (un), h(vn)))−{J(g(xn−1))−ρJ(N( f (un−1), h(vn−1)))}‖

≤‖J(g(xn))− J(g(xn−1))‖+ρ ‖J(N( f (un), h(vn)))− J(N( f (un−1), h(vn−1)))‖ .

(14)

By the Lipschitz continuity of J and g, we have

‖J(g(xn))− J(g(xn−1))‖ ≤ λ j‖g(xn)−g(xn−1)‖ ≤ λ jλg‖xn − xn−1‖. (15)

By the Lipschitz continuity of J, f , h, D-Lipschitz continuity of T, A and Lipschitz continuity of N in both the

arguments, we have

‖J(N( f (un), h(vn)))− J(N( f (un−1), h(vn−1)))‖

≤λ j {λN1‖ f (un)− f (un−1)‖+λN2‖h(vn)−h(vn−1)‖}

≤λ jλN1λ f ‖un −un−1‖+λ jλN2λh‖vn − vn−1‖

≤λ jλN1λ f [D (T (xn), T (xn−1))]+λ jλN2λh [D (A(xn), A(xn−1))]

≤λ jλN1λ f δT‖xn − xn−1‖+λ jλN2λhδA‖xn − xn−1‖
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= λ j
(
λN1λ f δT +λN2λhδA

)
‖xn − xn−1‖. (16)

Combining (15) and (16) with (14), we obtain

‖zn+1 − zn‖ ≤
[
λ jλg +ρλ j

(
λN1λ f δT +λN2λhδA

)]
‖xn − xn−1‖. (17)

Using condition (12) and Lipschitz continuity of J∂φ(·, x)
ρ , we get

‖xn − xn−1‖

=
∥∥∥J∂φ(·, xn)

ρ (zn)− J∂φ(·, xn−1)
ρ (zn−1)− [g(xn)− xn −{g(xn−1)− xn−1}]

∥∥∥
≤
∥∥∥J∂φ(·, xn)

ρ (zn)− J∂φ(·, xn−1)
ρ (zn−1)+ J∂φ(·, xn−1)

ρ (zn)− J∂φ(·, xn−1)
ρ (zn)

∥∥∥
+‖xn − xn−1 −{g(xn)−g(xn−1)}‖

≤
∥∥∥J∂φ(·, xn)

ρ (zn)− J∂φ(·, xn−1)
ρ (zn)

∥∥∥+∥∥∥J∂φ(·, xn−1)
ρ (zn)− J∂φ(·, xn−1)

ρ (zn−1)
∥∥∥

+‖xn − xn−1 −{g(xn)−g(xn−1)}‖

≤µ‖xn − xn−1‖+
1
α
‖zn − zn−1‖+‖xn − xn−1 −{g(xn)−g(xn−1)}‖ .

(18)

By Proposition 1, we have

‖xn − xn−1 −{g(xn)−g(xn−1)}‖2

≤‖xn − xn−1‖2 −2〈g(xn)−g(xn−1), J(xn − xn−1 −{g(xn)−g(xn−1)})〉

=‖xn − xn−1‖2 −2〈g(xn)−g(xn−1), J(xn − xn−1)〉−

2〈g(xn)−g(xn−1), J(xn − xn−1 −{g(xn)−g(xn−1)})− J(xn − xn−1)〉
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≤‖xn − xn−1‖2 −2γ‖xn − xn−1‖2 +4k2
ρE

(
4‖g(xn)−g(xn−1)‖

k

)

≤‖xn − xn−1‖2 −2γ‖xn − xn−1‖2 +64C‖g(xn)−g(xn−1)‖2

≤
(
1−2γ +64Cλ

2
g
)
‖xn − xn−1‖2,

which implies that

‖xn − xn−1 −{g(xn)−g(xn−1)}‖ ≤
√(

1−2γ +64Cλ 2
g
)
‖xn − xn−1‖. (19)

Using (19), (18) becomes

‖xn − xn−1‖ ≤
[√(

1−2γ +64Cλ 2
g
)
+µ

]
‖xn − xn−1‖+

1
α
‖zn − zn−1‖,

which implies that

‖xn − xn−1‖ ≤
1

α

[√(
1−2γ +64Cλ 2

g
)
+µ

]‖zn − zn−1‖. (20)

By the application of (20), (17) reduces to

‖zn+1 − zn‖ ≤
[
λ jλg +ρλ j

(
λN1λ f δT +λN2λhδA

)]
α

[√(
1−2γ +64Cλ 2

g
)
+µ

] ‖zn − zn−1‖,

i.e.,

‖zn+1 − zn‖ ≤ Θ‖zn − zn−1‖, (21)

where Θ =
λ jλg +ρλ j

(
λN1λ f δT +λN2λhδA

)
α

[√(
1−2γ +64Cλ 2

g
)
+µ

] .

From (13), we have Θ < 1, and consequently {zn} is a cauchy sequence in E∗. Since E∗ is a Banach space, there

exists z ∈ E∗ such that zn → z as n → ∞. From (18), we can see that {xn} is also a cauchy sequence in E. Therefore, there
exists x ∈ E such that xn → x as n → ∞. Since the mappings T and A are D-Lipschitz continuous, it follows from (9) and

(10) of Algorithm 1 that {un} and {vn} are also cauchy sequences, we may assume that un → u and vn → v.
Since J, N, g, f and h are continuous mappings, and by (11) of Algorithm 1, it follows that
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J(g(xn))−ρJ(N( f (un), h(vn))) = zn+1 → z = J(g(x))−ρJ(N( f (u), h(v))), n → ∞, (22)

and

J∂φ(·, xn)
ρ (zn) = g(xn)→ g(x) = J∂φ(·, x)

ρ (z), n → ∞. (23)

By (22), (23) and Lemma 2, we have

J(N( f (u), h(v)))+ρ
−1R∂φ(·, x)

ρ (z) = 0.

Finally, we prove that u ∈ T (x) and v ∈ A(x). In fact, since un ∈ T (xn) and

d(un, T (x))≤max

{
d(un, T (x)), sup

q∈T (x)
d(T (x), q)

}

=D (T (xn), T (x)) .

Therefore, we have

d(u, T (x))≤‖u−un‖+d(un, T (x))

≤‖u−un‖+D (T (xn), T (x))

≤‖u−un‖+δT‖xn − x‖→ 0, as n → ∞,

which implies that d(u, T (x)) = 0. Since T (x) ∈CB(E), it follows that u ∈ T (x). Similarly, we can prove that v ∈ A(x).
By Lemma 2, the required result follows. This completes the proof. �

To substantiate the assertion made in problem (1), we provide the following example.

Example 1 Let us suppose that E = R. Define T, A: E −→CB(E) by T (x) = { 3x
5 +1}, A(x) = { x

11}, g and φ by

g(x) = x−1 and φ(y, x) = y+ x, for all x, y ∈ E.
We define for x ∈ E, u ∈ T (x) and v ∈ A(x)
(i) J(x) = 2x,
(ii) N(x, y) = 2x+3y,
(iii) f (u) = u

2 ,

(iv) h(v) = v
3 ,

(v) ∂φ(·, x) = {α ∈ R: φ(·, y)−φ(·, x)≥ α(y− x)}.
Now, for ρ = 1, we define the J-proximal mapping
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J∂φ

ρ (x) =
x−2

2
.

We examine the sequence {xn} by using Algorithm 1 as

g(xn) = J∂φ(·, xn)
ρ (zn)

xn =
zn

2
,

(24)

and

zn+1 = J(g(xn))−ρJ(N( f (un), h(vn)))

zn+1 =
17xn

55
−2.

(25)

Using (24) in (25), we have

zn+1 =
17zn

110
−2.

The convergence of the sequence {zn} is shown in Figure 1 and computational table is also provided. As {zn}
converges to −2.3656. Hence, {xn} converges to −1.1828.

Z0 = 5
Z0 = 1

Z0 = -5
Z0 = -4

n

-5

Z n
+1

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35

Figure 1. The sequence {zn}′s convergence for four distinct initial values
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Table 1. The values of zn with initial values z0 =−5, z0 =−4, z0 = 1 and z0 = 5

No. of For z0 =−5 For z0 =−4 For z0 = 1 For z0 = 5

Iteration zn zn zn zn

n = 1 −5 2.5 5 5

n = 2 −2.7727 −2.6182 −1.8455 −1.2273
n = 3 −2.4285 −2.2852 −2.1897 −2.1897
n = 4 −2.3753 −2.3532 −2.3384 −2.3384
n = 5 −2.3671 −2.3637 −2.3614 −2.3614
n = 10 −2.3656 −2.3656 −2.3656 −2.3656
n = 15 −2.3656 −2.3656 −2.3656 −2.3656
n = 20 −2.3656 −2.3656 −2.3656 −2.3656
n = 25 −2.3656 −2.3656 −2.3656 −2.3656
n = 27 −2.3656 −2.3656 −2.3656 −2.3656
n = 29 −2.3656 −2.3656 −2.3656 −2.3656
n = 30 −2.3656 −2.3656 −2.3656 −2.3656

4. Conclusion and future recommendations

This work presents a comprehensive analysis of a co-variational inequality problem and a co-resolvent equation

problem. The scope of our study encompasses a broader range of problems compared to those previously explored in

the literature, as shown by the works of [15, 16, 18, 20]. The proof of the equivalence lemma between the co-variational

inequality problem and the co-resolvent equation problem is established by using the concepts of sub-differentiability and

the resolvent operator. Moreover, a suggested iterative algorithm is presented for the purpose of addressing the problems at

hand. Additionally, a strong convergence theorem is established to demonstrate that the sequences created by the algorithm

exhibit strong convergence towards the solution of the primary problem. The findings of our study may be regarded as

an advancement upon several previously established findings. To prove our main result the Lipschitz continuity of J-
proximal mapping is needed where the Lipschitz constant K = 1/α , which is often difficult and expensive to get in real

applications. So, we tried to remove this condition but we couldn’t get it. This was the challenge which we faced during

the proof of our main results. So further investigation on convergence analysis of our proposed problems is needed to

obtain more milder and checkable conditions.
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