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Abstract: The efficacy of the Markovian single server symmetric queue is examined in this paper together with the 
suggested encouraged stationary queue-size analysis. First, we propose the stochastic Markov renewal process with 
encouraged arrival see time averages and encouraged arrival-stationary-queue-size analysis. The server takes further 
vacations after two extra service phases or until the server discovers a new set of clients in the service. Finally, we 
discuss the utility of the Bernoulli two-vacation symmetric queue, and it is clearly shown that the degree of efficiency 
rises when the encouraged arrival is taken into account. 
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1. Introduction
This paper’s primary contribution is to demonstrate the efficiency and utility of Markovian single-channel Bernoulli 

two-vacation symmetric queues with encouraged stationary queue-size analysis and stochastic Markov renewal 
processes.  The generalized Bernoulli system suggested in [1] states that a single server can take up to k more breaks 
with probability p if the line is empty when it returns. The Bernoulli vacation models have indeed been the subject of 
current research by several writers in many fields. Recently, several works [2-6] that implement Bernoulli-Schedule-
Vacations (BSV) in accordance with different vacation rules have been developed. The research [7-9] is related with 
various queues with two-phase. Utilization of free time in M/G/1 queue thoroughly examined in [10]. First developed 
by [11], the M/G/1 type queue with generalized vacations. Encouraged arrival concept in queueing system is mainly 
used to attract more customers by giving them some amount of discounts to gain positive response from customers, so 
this will surely increase amount of clients in the system and business profit. [12, 29] developed an M/M/1/N queueing 
model with encouraged arrival. In [13], a steady state study of an MX/G/1 queue with a two-phase service and Bernoulli 
vacation schedule was discovered. The author of [14] developed the busy and free hours of controllable M/G/1 queue. 
[15] studied the system size for the bulk service queuing system under the T-policies. [16] investigated the busy period 
distribution of the T-policy model using the entropy enlargement principle. The enormous body of research on queuing 
system optimization covers a wide variety of subjects. Different transit systems offer examples of these kinds of 
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situations. Additionally, [17] discussed its applications in a dual-access network. The dynamic of the M/G/1 Bernoulli 
vacation model and blocking probability were studied in [18-19]. When the M/G/1 system server is off or on studied in 
[20]. working vacation and interruption of M/G/1 vacation queue investigated in [21]. The k phases service, Bernoulli’s 
feedback T-policies for M/G/1 line model investigated in [22-23]. M[X]/G/1 queuing model with time-dependent solution 
instead of Bernoulli k vacation and balking consumers was examined in [23]. [24] Studied the expected delay of the M/
G/1 cyclic system service line using Bernoulli scheduling. The busy period of vacation M/G/1 queue l with a Bernoulli 
schedule in [25]. The period of peak activity for the M/G/1 vacation model was studied in [26]. Queues, basic stochastic 
model and the equation studied in [27-28, 30-32]. Proof for Poisson observe-time- averages has been developed in [33]. 
A single service provider retrial queue with disappointed consumers, vacations, and balking consumers developed in [34]. 
An encouraged arrival batch queue with secondary optional consumer service, breakdown and several vacations studied 
in [35]. In [36] the authors developed an encouraged arrival with various (W-V) working vacations.

There are many real-world point of sight this sort of model can be used model construction of a manufacture 
technique. For example, consider a manufacture process, where the engine fabricating certain substances may need two 
stages of service such as initial checking (1st phase of service) trailed by normal processing (2nd stage of service) to finish 
the processing of resources. It may so occur that the procedure either wants to be stopped for fixing and preservation 
of the organization after these 2-stages of service or may stay the extra processing of the resources if no fault in the 
organization. This repairing can be used as a vacation in our (organization) system. To be additional truthful, we further 
undertake that the resources arrive in bunches (batch) of arbitrary size instead of solitary units. There might be several 
other circumstances such as digital-communication or data communication organizations which contain 2-stages or 
phases of service.

The structure of this essay is as follows: portion 1 talks about the introductory portion. Section 2 provides an 
explanation of the Notation and Model. Section 3 presents the stochastic Markov renewal theory for the stationary-
queue-size distribution. Section 4 provides the embedded Markov chain and the stochastic Markov renewal mechanism 
at exit epochs. Delivered in Section 5 are the embedded Markov process and stationary queue size (S-Q-S) distribution. 
Bernoulli model’s efficiency and application in Section 6. Section 7 contains the conclusion and future scope.

2. Notations and M x/(G1, G2)/1 model description
The following notations are used in this paper. 

λ × (1 + ι) Encouraged arrival rate and  represent the discount value

ζn Probability-Mass-Function (PMF)

α(o) Probability-Generating-Function (PGF)

Yc(t) Probability-Density-Function (PDF)

β*(φ) & Yc
*(φ) Laplace-Stieltjes-Transform-Functions

U(Π) General-Probability (G-P) with Density-Function

c, d phases

Υk Busy time distribution

Exp(T0) Expected-length-of idle-period

Тβ and Тβ
*(φ) Busy-time random-variable

ψ Utilization-component of the-system

T Length of the-period

ϖ2 matrix variances

A Markov process
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We investigate an M x/(G1, G2)/1 queuing system, where the Encouraged-arrival rate is given by “λ × (1 + ι)”. Size 

of the successive batch arrivals are, Π1, Π2 …, distributed with PMF ζn = P[Πc = k]; k ≥ 1 and PGF α(o) = E[oΠ1]. The 

1st and 2nd moments are α(1) = E[Π1] and ζ (2) = E[Π1
2] respectively.

All unit observing, multiple phases of heterogeneous system service from the system are given the First-Phase-
Service (F-P-S) and then the Second-Phase-Service (S-P-S). It is assumed that the service discipline is First Come First 
Service (F-C-F-S). Further, the exponential time Yc of the cth phase of service follow General-Probability-Law (G-P-L) 
with PDF. Yc(t) with the condition that (Yc(0) = 0) Laplace-Stieltjes-Transform [L-S-T], Yc

*(φ) = E[e-φYc] with finite 1st 
and 2nd moments as bc

(1) = E(Yc) and bc
(2) = E(Yc

2) respectively, for c = 1 and 2.
In which the sub-index c = 1, 2 denotes F-P-S and S-P-S respectively. The server will decide to a vacation 

random length "U" with probability p (0 ≤ p ≤ 1). When the S-P-S of a unit is finished, the server could keep providing 
them with services with probability q(1 - p). The-vacation period random-variable "U" of the system has a General-
Probability (G-P) with density function U(Π), [L-S-T], U*(φ) = Exp[e-φU] and the 1st and 2nd factorials of free time 
moments are ϑ(1) = Exp(U ) and ϑ(2) = Exp(U2) are finite. This kind of model is called as single vacation, batch arrival 
Bernoulli vacation queue with two-phases of heterogeneous service studied by [3] and [4].

We now propose the idea of multiple vacation policy for further development of this model:
It is to be emphasized that the same server handles both stages of the process. A modified-service is defined as 

follows: 

Y 1 + Y 2 + U  with probability "p "

Y 1 + Y 2 with probability "q" (= 1 - p).

Now, we denote  fc,d and hd as the-probability d independent arrival with cth phases of service for "c" belongs 

to 1 and 2 with d = {0, 1, 2, …}; and is defined by  fc,d = ∫∞
0. pd(t)dYc(t) and hd = ∫∞

0. pd(t)dU(t); respectively, where 

pd(t) = [e-λ×(1 + ι)t(λ × (1 + ι)t)d]/d! is the probability that d arrivals occur during [0, t] and therefore we write  fc,d = 
( ) ( )( )1

, 0.
(

1
)

!

j

c d c

t

f dY t
d

e tλ ι λ ι- ×
∞

+ × +
= ∫  and 

( ) ( )( )
0.

1

( );
!

1t d

dh
e t

dU t
d

λ ι λ ι∞
- × +

=
× +

∫  respectively. So, the probability that d 

customers are accepted under server-on vacation period is represented by gd and is given by

00.
0

( ) ; 1, 2, 3, .
(1 )

c d
d dc

h
g h h d

h
∞
== = =

-∑ 

Now, we elaborate the queue-size-distribution at busy-vacation-period-initiation-epoch, defined as Υk (k ≥ 1) as the 
steady-state probability that random customers observe a various batches ‘n’ customer in the queue (including customer 
already in service, if any) at busy-period (working) initiation epoch. Then conditioning number of customer arrivals 
through the free period and an appeal to the P-A-S-T-A property (see [33]) we observe that

( )

1
; 1,

k
d

k dk
d

g kζ
=

ϒ = ≥∑ (1)

where ( ){ }1
( )

2 k
d

k Prob dζ = Π +Π + +Π =  is the k-fold of {ζd} with itself and [0]
0 1.ζ =

Now, we define Υ(o) = Exp[oΥ] be the P-G-F of {Υk for k ≥ 1}, from Equation [1], we know that 
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(2)
( ) ( ) ( )( ) ( )( )

( )( )( )
* *

*

1 1
( ,

1
)

1

1U Uo
o

U

λ ι λ ι ζ λ ι

λ ι

× + - × + - × +

×
ϒ =

+


-

where ( ) ( ) ( )( )* 1 1U oλ ι λ ι ζ× + - × +  is the Z-transform of U. 

The 1st two-factorials moments of free time equations are,

( )
( )( )( )

1 1

*

1

1
(i). ( ) (1) ,

1
'

U
Exp

λ ι ζ ϑ

λ ι
ϒ = ϒ =

×-

× +

+
(3)

and

[ ]
( )( ) ( ) ( )

( )( )( )

21 2 1 2 1

*
(ii). ( 1) (1) .

1

1 1

1
''

U
Exp

λ ι ζ ϑ λ ι ϑ ζ ζ

λ ι
ϒ ϒ - = ϒ =

-

× + + × + -

× +
(4)

We note equation (3) expression is denoted by average number of arrivals in the free time and equation (4) 
represent the second derivative of arrival in the system. 

2.1 The T-policy

The T-policy model is applicable, when the period is deterministic and has a set length of period (T).
Let Exp(T0) be the Expected-Length-of the Idle-Period [ELIP], by using the Little’s law in (3), 
We obtain,

( ) ( )( )( )0

1

1 *1 1

( )( ) .
1

EExp T
U

ϑ
λ ι ζ λ ι× + ×

ϒ

- +
= = (5)

Now, we define Tβ, the busy-time-random-variable and its L-S-T as Tβ
*(φ) = E[e-Tβφ] given by 

( ) ( )
( ) ( ) ( )( )( ) ( )( )

( )( )( )1

**
*

*

*
*

.
,

1

1 1 1

1

k
k

k

U
T

U
a

U
β

λ ι λ ι ζ λ ι

λ

β ϕ
ϕ β

ι
ϕ

∞

=

× + - × 
   = =

+ - × +

×  +-
∑

where ( ) ( ) ( ) ( )( )( )* * *1 1G ϕ λ ι ιβ ϕ ζ ϕλ β+ × + - × +=  represents the well-known L-S-T of an M x/(G1, G2)/1 queue’s 

busy period that began with one unit utilizing the upgraded service period as the real service period. The anticipated 
busy time is defined by,
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( ) ( )*
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dT
E T
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ϕ
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=

-
=
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( ) ( )( )( )

( )
( ) ( )( )( )

1 1 1 1 1 21 2
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1 1

1
,

1 11 1 1

b b p

U U

λ ι

ψ

ζ ϑ λ ι ζ ϑ

λ ψι λ ι

×
= +

-

+ + × +

× - ×-+ +-
(6)

where ( ) 1 1 1 1
1 21 .b b pψ λ ι ζ ϑ = × + + 

Let Exp(T1) be the [ELIP] and so, 

( ) ( )( )( )0

1

*
( ) ( ) ( ) .

1 11
IExp T Exp T Exp T

U
β

ψ

ϑ

λ ι
= + =

× +- -
(7)

In [13], we know that, ( )( ) ( ) ( ) ( )( )
1* 1 1 1 1

1 2 0 1
,1  , , )

1
1  (T

T
U T b Te Expb T

e
pTλ

ιλ
ιλ ι ϑ ψ λ ι ζ- × +

× +-
 × + = = × += =

-
+   
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(8)
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1 1 1 1 21 2
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1T T
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ψ ψ

ι ζ
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2.2 Working model

MARKOV CHAIN ANALYSIS

MARKOVIAN BATCH SIZE

ENCOURAGED ARRIVALCUSTOMER

SERVICE (𝐺1 ,𝐺2 )

BERNOULLI FIRST VACATION𝑀𝐽 𝐸𝐹𝐹𝐸𝐶𝑇

AFTER

𝐵𝐸𝑅𝑁𝑂𝑈𝐿𝐼𝑆𝐸𝐶𝑂𝑁𝐷 𝑉𝐴𝐶𝐴𝑇𝐼𝑂𝑁; 𝐴𝐶𝐶𝐸𝐿𝐸𝑅𝐴𝑇𝐸𝐷𝑉𝐴𝐶𝐴𝑇𝐼𝑂𝑁 𝑇𝐼𝑀𝐸 𝐴𝑁𝐷𝑇 −𝑃𝑂𝐿𝐼𝐶𝑌

STATIONARY QUEUESIZE DISTRIBUTION

BERNOULI SECOND VACATION; ACCELERATED VACATION TIME AND T – POLICY

BERNOULLI FIRST VACATION MJ , EFFECT

SERVICE (G1, G2) 
IF SERVICE “NO” 𝑌1 +
𝑌2 with -probability_"𝑞"
IF SERVICE “NO” Y1 + 
Y2 with-probability_"q"

EFFECTIVE AND
USAGE OF BERNOULLI

MODEL

EFFECTIVE 
AND USAGE OF 

BERNOULLI MODEL

IF SERVICE “YES” 𝑌1 +𝑌2 +𝑈 with -probability_"𝑝"IF SERVICE “YES” Y1 + Y2 + U with-probability_"p"

EMBENDED MARKOV STOCHASTIC
RENEWELTHEORY

EMBENDED MARKOV STOCHASTIC 
RENEWEL THEORY

3. Stochastic Markov renewal theory of stationary-queue-size distribution
In this section, we examine the stationary queue size distribution. 
Let {ρk; k ≥ 1}, the steady-state-probability that several batches totalling ‘k’ customers will arrive before an 

identified customer during the idle period’s residual life, where the identifiable customer is randomly chosen from the 
arriving groups at the end of the idle period and by “Stationary-Renewal-Process”, we can write

1
; 0, 1, 2, ,K

k
K k

k
K
γ

ρ
∞

= +
= =∑ 

(9)

where {γK; K ≥ 1} is the identified arrival belong to the kth batch of an idle time, which is picked at random with 
probability (1/k). 
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From (1) by implementing the Length of-Biasing-Argument [L-B-A] of Markovian renewal theory, we-have 

( )
( ) 1

0
1

1.

1
, 1, 2, 

1
.nk

k
kk

k hk
k

k λ ι ζ ϑ
γ

∞
=

- ϒϒ

ϒ × +
= = =
∑

 (10)

We define ψ(o) represent the utilizing-component of the system given by 

( )
( ) ( ) ( )( )
( ) ( )

*

1 1

1 1

1 1

1
.o

U

o

oζ
ψ

λ ι λ ι

λ ι ζ ϑ

× + × +

×

 
 

+

-

-

-
= (11)

By the encouraged arrival see time averages property, the average queue-size due to idle period, M0 is given by

( ) ( ) ( )1

0

21 2

1 1
1

1 .
22

'M
ζ ζλ ι ζ ϑ

ϑ ζ
ρ

-×
= +

+
= (12)

Now, we discuss how the T-policy method is incorporated:
We have the vacation period random variable U. The Z-transform of U is given by 

( )( ) ( ) ( ) ( ) ( )( )1 1* 2 2 and 1 1 .T ooU Te ιλ ζλ ι ϑζλ ι × + --× + × =- + =

Equation (11) and (12) we get 	

(13)( )
( ) ( )( )

( ) ( )

1 1

1

1
.

1 1

T oe
o

T o

λ ι ζ

ι ζ
ρ

λ

× -- + - 
×


+ -

=

Let V0
*(φ) be the L-S-T of the P-D-F for the unfinished work at free time. Then, by applying classic queuing theory 

approach [28], we get

( ) ( )
( ) ( ) ( )( )( )
( ) ( )

*

1 1

*
* *
0 *

1 1

1
,

1

1 G
V

U
G

G

ζλ ι λ ι

λ ι ζ
ϕ

ϕϑ

ϕ
ρ ϕ

 - -   = =
× + × +

+ × - 

(14)

where G*(φ) denotes the adjusted accelerated time distribution of G. In order to make it simple to derive the L-S-T of 
this model’s probability distribution function for the unfinished task V* (say), the following decomposition result is 
used:

( ) ( )* *
1 2/ , /1,xV V M G Gϕ =

where 
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( ) ( )
( ) ( ) ( )( )

*
1 2 *

1
/ , 

1
1

1
/xV M G G

Gϕ λ ι λ ι

ψ ϕ

ϕζ

-
=
 + 

- + × +


×
 

is the L-S-T of the W-T-D of the 1st batch with M x/(M x/(G1, G2)/1) line and upgraded accelerated period.
Remark 1.
We note that equation (12) is same as the equation (15) of the reference [19] for ζ(o) = 0 and ζ 1 = 1. 

4. The embedded-Markov-chain and the stochastic Markov-renewal process at 
exit epoch:

In this section, the distribution of the Embedded-Markov-chain and the Stochastic Markov-renewal process at exit 
epoch is discussed:

When we talk about the epoch, at which a customer’s entire service request expires, let δl be the period of the lth 
Service-completion-epoch. Then Kl = K(δl + 0) forms a Markov-chain. This is an embedded-stochastic-Markov-renewal 
process for a continuous-time-Markov process. 

A Markov chain is present in {Kl; l ≥ 0} and the transition that causes this is responsible. 

1 1
1

1

1 and 0
,

1   and 0
l l l

l
l l l

Y U K
K

K Y K
+ +

+
+

+ - =
=  + - >

(15)

where Yl is no. of arrival due to the lth upgraded service time, Ul is the number of arrival due to the lth vacation time. 
Then the transition-probability-matrix (Pc,d) to be a ϖ2 matrix in [29]. The ϖ2 matrix-variances from that of M x/(G1, 
G2)/1 queue in the 1st row only. Now, we consider that ψ < 1 will assure {Kl; l ≥ 0} is a positive-recurrent function, 
where Kl represent the embedded-stochastic Markov-renewal process for a continuous time-Markov process. Which is 
limiting-probabilities are,

[ ]lim Prob ;  0 exists.d l
l

x K d d
→∞

= = ≥

The Kolmogorov-govern equation is,

(16)( ){ }
1

0 1 1
. 1

: 0,
d

d c c d c d c
c

a qm pn dϖ ϖ ϖ
+

- + - +
=

= + + ≥∑

where, for 2,. 0 . 01,
0, , .d d

d d c d c d cc cc
d m m m n m β- -= =≥ = =∑ ∑

Let 
( )( ) ( )( )

, ,. 0 . 0 0 !
1 kct

d dk k
c d c k d cdk k

e t
m f dY t

k
λ ι

ζ ζ
-

∞
= =

×
= =

+
∑ ∑ ∫  is many-batches totaling "d" units due to the cth 

phase for {1, 2}. 

Let 
( )( ) ( )( ) ( )

. 0 . 0 0

1
!

kct
d dk k

d kd dk k
e t

h dU t
k

ιλ
β ζ ζ

-
∞

= ==
× +

=∑ ∑ ∫  represent that many batches-totaling d units due 

to be a vacation respectively.
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Now, the following z-transform can be used to convert equation (15)

( ) ( ) ( ) ( ),
. 0 . 0 . 0 . 0

, ,  and .d d d d
d c c d d d

d d d d
x o o x M o o m M o o m N o o n

∞ ∞ ∞ ∞

= = = =
= = = =∑ ∑ ∑ ∑

Note that, ( ) ( ) ( ) ( )( ) { } ( ) ( ) ( ) ( ) ( )*
1 2, for 1, 2 ; . and 1  1c cM o Y c M o M o M o No o M oλ ι ι ζλ× + × += - = = ⊗ = ⊗

( ) ( ) ( ) ( ) ( )( )* 1 .1 oN o M o U λ ι ι ζλ× + × += ⊗ -

Using (2) in (16), we get,
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ι ζ λ ι ζ
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=

  -
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× + × +  - 
- + - × -    

   
× + × +

× +  × +

(18)( ) ( )
11

0 1 .1x E Tλ ι ζ
-

 =  × +

In reality, this is comparable to the ordinary (M x/(G1, G2)/1) queue, x(o) average number of units in the-system thus 
we have,
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(20)

is the PGF of the queue-size distribution at Random-Process (RP) of period of an M x/(G1, G2)/1 queue.
If M J is found to be
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(21)
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2 1
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2 1

M
ψ ζ ζ

ψ ζ

-
+ +

-

( )1'
JM x=

In equation (21) corresponds with the outcome found in [26]. We obtained that β1
2 = β2

2 = 0. Υ1 = 1 and Υ2 = 0. 
Similarly, β1

2 = β2
2 = 0, p = 0 in equation (21) with the results will be obtained by [3].

Remark 2. The M x/(G1, G2)/1 line provided in equation (19). Decomposes the service into the two different 
probabilities (Random Variable). An M x/(G1, G2)/1 queue’s stationary queue size distribution, where V 

S stands for 
one vacation [produced by our first-term of equation (19)]. The queue-size distribution outcome from the not used of 
vacation period, which happens due to the free time process [produced by second-term of equation (19)].

Remark 3. The gained result is fairly broad & applies to a variety of real-world scenarios. For example, consider 
the T-policy model. Hence outcome for the T-policy method with a two-phase service under a Bernoulli schedule, 
equations, (19) and (21) obtained
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(22)

and

(23)
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Assume that, we have ( ) ( ) ( )( )* 1 2
2 2 21 1  and 1 0,Y o b bλ ι λ ι ζ× + × + = = =-  equation (22) and (23) obtained
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respectively, where M 
J is an anticipated service in this-system.

Remark 4. We obtained that these two results are consistent with formulas for p = 0 and ζ(o) = o. These two 
outcomes support the formula in [15].

5. Embedded-Markov-Process and Stationary-Queue-Size (S-Q-S) distribution
In this section, the S-Q-S of M x/(G1, G2)/1 queue is examined. Given that the [P-D] of the embedded-Markov-

process is known, we use regenerative process approach to this model. A Markov process is used to define the system at 
period t. π(t) = {S(t), K(t), ς (t)}, where S(t) = 0, 1, 2 or 3 occurs to the system is free, the server is work on F-P-S, the-
server is work on S-P-S, or the-server is on vacation at period t respectively. K(t) indicates the number-of customers in 
the line at period ‘t’, S(t) ∈ {0, 1, 2, 3}, then we obtained relevant vacation period is represented by ς (t).

Subsequently, the Markov regenerative process theory ensures that for (c, d) belongs to ϑ; where ϑ = {(c, d) : d ≥ 0; 
0 ≤ c ≤ 3} bounded probabilities

( ) ( ){ }, lim Pr ( ), ( ) , ,c d
t

A S t K t c d
→∞

= =

where Ac, d is represent the Markov process with phases and given the same-limitations on probability, are positive {xd; 
d ≥ 0}.

We define {Π(t); t ≥ 0.} is an [E-M-R-P] that is a Markov-Regenerative-Process, {Kl; l ≥ 0.}. Therefore, we will be 
using the proved Classical-limiting-Theorems [C-L-T] in [30].

We get

(25)
( )

( ). 0
,

. 0

, 
; , ,k kk

c d
k kk

x c d
A c d

x

δ
ϑ

µ

∞
=
∞
=

= ∈
∑
∑

where δk(c, d) = the anticipated duration of the processed, {Π(t); t ≥ 0.} in the state (c, d) due to a service-cycle, given 
starting queue-size is ‘k’ & μk Considering that the starting queue size is “k”.

Now, we have

(26)
( )

1 1 1
1 2

1 1 1
1 2

1

0
; for 0,

1

;             for 1,
k

k
h

k

B B p

B B p

ϑ

µ

ϑ

ϑ

+ +


=
-= 

+ ≥+



and therefore ( )
11

0 1 ;k kk x λ ιµ ζ
-∞

=
 × 
 +=∑  is mean anticipated cycle.

Let’s now assume the scenario of a [S-Q-S] distribution at an idle-period before-vacation period. 
Now, c = 0 is simply-probability-argument results in (25), we have 
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( ) 1
0, 0

0
1 ; 0,
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=

= × + ≥∑ (27)

where ( ) ( ) ( )( )1
0 .0

1 1 ; 0.'
k de h p t U t jt d

∞-= - - ≥∫
Let’s now assume that the F-P-S accelerated-time finishes with k units still in the line. We are able to independent 

between two-instances based location of the customer who will observe the following F-P-S.
Assuming k point is the basically one, let’s say that the F-P-S begins at period t = 0.
Next, we find that the period span (t, t + ϖt) contributes to δk(1, d) if,
(i) The F-P-S not finish in period t, and
(ii) (d. - k + 1) the peak period for customers [0, t].
Then, we obtain

(28)( ) ( )1, 11, ; for 0, 1 ,'
k d kd l d l kδ - += ≥ -

where ( ) ( )( )1, 10 0.
1 ; 0.d' c
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== - ≥∑ ∫

We define that, ( ) ( )1, 1,01 ; .1  for 0d'
d ccl l dλ ι == -× ≥+ ∑

Using (28) in (25), on simplification, we obtain
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Similarly, we obtain, 

(30)( ) { }
1 1

1
2, 0 1, 2, 1

1. 1.
; 0,1

d d c
'

d c c k d k c
c k

A x x m l dι ζλ
+ - +

- - +
= =

 
= ϒ + ≥ 

 
× +


∑ ∑

and
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 
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where ( ) ( ) ( ) ( )2, 2,. 0 . 01  and = 1 ; for .1 01 d d' '
d c d cc cl m dλ ι λ β βι= =× + × -+= - ≥∑ ∑

Using the efficient recursive method for calculating the bounded probabilities of {Ac,d; d ≥ 0} for c ∈ {1, 2, 3} in 
terms of {xd; d ≥ 0} then combines (6) with equation (31)-(29).

Now we consider markov process with two phase Ac(o). Then the P-G-F of Ac(o) = ,0
d

c dd o A∞
=∑  for ∈ {0, 1, 2, 3}, 

are given by
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The probability of the system’s states is given by
Pr {The system is not in use} = A0(1) = (1 - ψ),

Pr {The server is occupied by FPS} = A1(1) = λ × (1 + ι)ζ1B1
1 

Pr {SPS is occupying the server} = A2(1) = λ × (1 + ι)ζ1B2
1, and

Pr {The -server is away on-vacation} = A3(1) = pλ × (1 + ι)ζ1ϑ1. Now, we determine the anticipated number of unit 
in the line due to the free period, F-P-S-time, S-P-S-time-and-vacation-time-as-follows: 
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where 1 1 2 2 1 1
1 2 1 2 1

1 2
2 and 2 .B B B B B Bβ β= =+ + +

The quantity of units in the queue LA the length of unit in the-system is found to be 

( ) ( ) ( ) ( )1 20 (1),'
A Y Y UL E K E K E K E K P= + + + =

( )1 2

1  as obtained
2

,JM
ζ ζ

ζ

-
= +

where MJ represent the length of-anticipated service.

6. Effectiveness and usage of Bernoulli model:
In this section provided by service-periods follows accelerated distributions with Bc

1 = 1/μc, Bc
2 = 2/μc

2; for c = {1, 
2} and vacation period is distributed, with χ(1) = 1/u, χ2 = 2/u2 for in model-I. In [13], when the distribution of vacation 
period is predicted with ϑ1 = T, ϑ2 = T2 correspondingly for model-II, in [13]. Additionally, we used batch-size G-D 
(Geometrical-Distribution) with average Exp(Π) = 1/Δ.

Thus, the equation (21) for case 1 becomes
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
 and MJ is an anticipated-service in this system and ψ represent the utilization 

component of the system.
Now, we investigate the scenario when p = 0 as equation (32) simplifies that,
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+
 therefore, the impact of using the Bernoulli schedule on the system’s predicted 

number at a departure epoch will be

(34)
0

impact .J J JM M M- = -

We consider the following four system parameters in order to examine the MJ -effect in different encouraged 
arrival-rates and the Bernoulli-symbol represented “p” - (μ1, μ2, u, Δ, ι) = (2.0, 1.5, 1.5, 0.25, 0.1 to 0.3).

We Take Table 1 to Table 3 of our results.
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Figure 1. MJ -impact value with encouraged arrival (ι = 0.5).

ι = 0.5 or 5%
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Table 1. Calculated MJ -effect value with encouraged arrival λ = 0.01, 0.02, 0.05, 0.1, ι = 0.05, λ × (1 + ι): 0.105, 0.021, 0.525, 0.105 for accelerated 
vacation period

P. 0.0105 0.021 0.0525 0.105

0.1 0.3155 0.6476 1.7784 4.5322

0.2 0.3302 0.6788 1.8751 4.8892

0.3 0.3450 0.7103 1.9746 5.2858

0.4 0.3598 0.7420 2.0769 5.7303

0.5 0.3747 0.7739 2.1823 6.2336

0.6 0.3897 0.8062 2.2908 6.8101

0.7 0.4047 0.8387 2.4029 7.4795

0.8 0.4198 0.8715 2.5185 8.2690

0.9 0.4349 0.9045 2.6381 9.2177

Table 2. Calculated MJ -impact value with encouraged arrival λ = 0.01, 0.02, 0.05, 0.1, ι = 0.10, λ × (1 + ι): 0.11, 0.022, 0.055, 0.11 for accelerated 
vacation period

P. 0.011 0.022 0.055 0.11

0.1 0.3309 0.6802 1.8793 4.9041

0.2 0.3464 0.7131 1.9828 5.3116

0.3 0.3619 0.7463 2.0894 5.7704

0.4 0.3775 0.7797 2.1993 6.2928

0.5 0.3932 0.8134 2.3127 6.8953

0.6 0.4089 0.8474 2.4299 7.6004

0.7 0.4247 0.8818 2.5511 8.4403

0.8 0.4405 0.9164 2.6766 9.4621

0.9 0.4564 0.9514 2.8068 10.7376
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Figure 2. MJ -impact value with encouraged arrival (ι = 0.10)

Table 3. Calculated MJ -impact value with encouraged arrival λ = 0.01, 0.02, 0.05, 0.1, ι = 0.15, λ × (1 + ι): 0.115, 0.023, 0.575, 0.115 for accelerated 
vacation period

P. 0.0115 0.023 0.0575 0.115

0.1 0.3464 0.7130 1.9823 5.3083

0.2 0.3626 0.7476 2.0928 5.7758

0.3 0.3789 0.7825 2.2069 6.3103

0.4 0.3952 0.8177 2.3248 6.9301

0.5 0.4116 0.8532 2.4468 7.6604

0.6 0.4281 0.8890 2.5732 8.5375

0.7 0.4447 0.9252 2.7042 9.6159

0.8 0.4613 0.9618 2.8403 10.9804

0.9 0.4780 0.9987 2.9819 12.7716

ι = 0.10 or 10%



Contemporary MathematicsVolume 4 Issue 4|2023| 1167

0

2

4

6

8

10

12

14

16

18

20

P. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

� = 0.15 or 15%

0.0115 0.023 0.0575 0.115

Figure 3. MJ -impact value with encouraged arrival (ι = 0.15)

Table 4. MJ -impact in the T-policy value computed for the Encouraged arrival λ = 0.01, 0.02, 0.05, 0.1, ι = 0.05, λ × (1 + ι): 0.105, 0.021, 0.525, 0.105 

P. 0.0105 0.021 0.0525 0.105

0.1 0.0078 0.0192 0.0839 0.4354

0.2 0.0149 0.0352 0.1460 0.8016

0.3 0.0220 0.0514 0.2110 1.2867

0.4 0.0291 0.0676 0.2794 1.9781

0.5 0.0362 0.0839 0.3517 3.0754

0.6 0.0433 0.1004 0.4285 5.1601

0.7 0.0504 0.1170 0.5107 10.9365

0.8 0.0576 0.1337 0.5992 36.6952

0.9 0.0647 0.1505 0.6953 15.3997

                   

ι = 0.15 or 15%
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Figure 4. MJ -impact in the T-policy value computed for the Encouraged arrival (ι = 0.5).

Table 5. MJ -impact in the T-policy value computed for the Encouraged arrival λ = 0.01, 0.02, 0.05, 0.1, ι = 0.10, λ × (1 + ι): 0.11, 0.022, 0.055, 0.11 

P. 0.011 0.022 0.055 0.11

0.1 0.0083 0.0205 0.0918 0.5060

0.2 0.0157 0.0375 0.1595 0.9483

0.3 0.0232 0.0546 0.2307 1.5627

0.4 0.0307 0.0718 0.3061 2.5022

0.5 0.0382 0.0892 0.3863 4.1776

0.6 0.0457 0.1067 0.4723 8.1962

0.7 0.0532 0.1244 0.5651 33.3663

0.8 0.0607 0.1422 0.6660 21.6348

0.9 0.0683 0.1601 0.7771 8.9137

ι = 0.5 or 5%
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Figure 5. MJ -impact in the T-policy value computed for the Encouraged arrival (ι = 0.10).

Table 6. MJ -impact in the T-policy value computed for the Encouraged arrival λ = 0.01, 0.02, 0.05, 0.1, ι = 0.15, λ × (1 + ι): 0.115, 0.023, 0.575, 0.115 

P. 0.0115 0.023 0.0575 0.115

0.1 0.0088 0.0218 0.1001 0.5894

0.2 0.0166 0.098 0.1739 1.1284

0.3 0.0244 0.0579 0.2519 1.9206

0.4 0.0323 0.0762 0.3350 3.2454

0.5 0.0402 0.0947 0.4241 6.0349

0.6 0.0481 0.1132 0.5203 16.4342

0.7 0.0560 0.1320 0.6253 45.6537

0.8 0.0639 0.1509 0.7409 11.0012

0.9 0.0719 0.1700 0.8698 6.6184

ι = 0.10 or 10%
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Figure 6. MJ -impact in the T-policy value computed for the Encouraged arrival (ι = 0.15).

Produced in equation (34), We provide some quantitative findings for MJ -effect for λ = 0.01, 0.02, 0.05 and 0.1; ι = 
0.05, 0.10, 0.15; p = 0.1 to 0.9 (in Table 1).

The expression for (21) in the T-policy model, which we will now investigate, will be

( )( ) { } ( ){ }
( )

2 2 2 2
1 2 1 2 1 2/ 1/ 1/ 1/ 1/ 11 /

1J
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µ µ µ µ µ µ
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 and when p = 0, then equation (25) decreases to
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+
 and MJ  is Length of the anticipated-service in this-system and ψ represent 

utlization component of the system.

ι = 0.15 or 15%
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(36)
0

Result .J JM M= -

We now numerical findings regarding the same data’s MJ  impact. i.e., (μ1, μ2, T, ϖ) = (2.0, 1.5, 1.5, 0.25) for λ = 
0.01, 0.02, 0.05 and 0.1; ι = 0.05, 0.10, 0.15; p = 0.1 (in Table 4 to Table 6). Figure 1, 2 and 3 represents MJ -impact 
value with encouraged arrival (ι = 0.05, 0.10 and 0.15) respectively. Figure 4, 5 and 6 represents MJ -impact in the 
T-policy value computed for the Encouraged arrival (ι = 0.05, 0.10 and 0.15) respectively.

Every Table has its corresponding Figures. The effect of using the Bernoulli schedule on the no. of the system at 
an exit epoch is now compulsory insignificant for the reasons shown in Tables 1 and 2 above. λ = 0.01, 0.02 and 0.05, 
ι = 0.05, 0.10, 0.15 (in model I), and λ = 0.01, 0.02, ι = 0.05, 0.10, 0.15 (in model II i.e., in case of T-policy model). 
However, for bigger values of λ i.e., for λ = 0.1 in both models, the implications on the predicted number in the system 
are large. More so than the accelerated model, the model without T-policy has greater effect on the projected number in 
the system. It is evident that the (ι = 0.15) 15% offer shown more effective results of MJ compared to 5% and 10% in 
both the model I and II. On the other hand, the values of Table 1 (Figure 1) to Table 3 (Figure 3) has high effect on the 
projected number in the system when compared with the Poisson process method Table 1 provided by [13]. As a result, 
our intuition was correct and it was discovered that Bernoulli schedules are essential, especially in overcrowded queues 
when arrivals happen more quickly than departures.  

7. Conclusion
In this paper, we have investigated the effectiveness and the usefulness of Markovian single-channel Bernoulli 

two-vacation symmetric queue with encouraged stationary-queue-size analysis and Stochastic Markov-renewal process. 
Also, we have shown the effectiveness of the accelerated vacation time with the T-policy. We have introduced the 
encouraged arrival stationary-queue-size analysis and Stochastic Markov-renewal process with encouraged arrival see 
time averages. We have provided the usefulness of the Bernoulli two-vacation symmetric queue. It is evidently identified 
that the efficiency level increased while the encouraged arrival is incorporated. It is found that the discount 15% shown 
more efficient results. We gave numerical examples to show the effectiveness and the usefulness of Markovian single-
channel Bernoulli two-vacation symmetric queue with encouraged stationary-queue-size analysis and Stochastic 
Markov-renewal process. In future, this study be extended to multi-channel with Bernoulli vacation symmetric queue 
along with encouraged arrival see time averages.
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